1
|
He W, Hu Q, Wang J, Rao Y, Cheng C, Fang P, Zhang Q, Lu Y. Relationship Between Stressful Life Events and Depression Among Adolescents: The Mediating Roles of Subcomponents of Executive Function. Behav Sci (Basel) 2025; 15:145. [PMID: 40001776 PMCID: PMC11851365 DOI: 10.3390/bs15020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Stressful life events are important risk factors in the development of adolescent depression. Executive function is significant in the stress-depression link. However, it is not clear whether there is a specific effect for subcomponents of executive function (working memory, inhibition, and shifting). Therefore, the present study recruited 213 adolescents (mean age (Mage) = 15.19 years, SD = 1.27, range = 12.00-18.00 years, and 53.00% girls) and measured their perceived stress using the questionnaire of the Adolescent Self-Rating Life Events Checklist, working memory ability by two-back tasks, inhibition ability by Stroop tasks, and shifting ability by Wisconsin Card-Sorting tasks. Results showed that stressful life events positively correlated with adolescents' depression, while stressful life events negatively linked with working memory and inhibition. Depression was negatively associated with working memory and inhibition. No significant correlation was found between shifting and either stressful life events or depression. Mediation analyses revealed that working memory and inhibition mediated the link between stressful life events and adolescent depression, while shifting did not show a mediating effect. Our findings provide further evidence for the precise effect of executive function in the stress-depression link, implicating that different subcomponents should be considered to provide targeted intervention to alleviate adolescents' depressive symptoms.
Collapse
Affiliation(s)
- Wenli He
- Department of Psychiatry, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China; (W.H.); (J.W.); (P.F.)
| | - Qiong Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310000, China; (Q.H.); (Q.Z.)
| | - Jiejie Wang
- Department of Psychiatry, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China; (W.H.); (J.W.); (P.F.)
| | - Yingbo Rao
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China; (Y.R.); (C.C.)
| | - Chen Cheng
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China; (Y.R.); (C.C.)
| | - Ping Fang
- Department of Psychiatry, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China; (W.H.); (J.W.); (P.F.)
| | - Qiong Zhang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310000, China; (Q.H.); (Q.Z.)
| | - Yunrong Lu
- Department of Psychiatry, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China; (W.H.); (J.W.); (P.F.)
| |
Collapse
|
2
|
Corrone M, Nanev A, Amato I, Bicknell R, Piantella S, Maruff P, van den Buuse M, Wright BJ. The brain-derived neurotrophic factor Val66met polymorphism is associated with better attention and working memory performance and resilience to mild chronic stress. Eur J Neurosci 2023; 58:3903-3916. [PMID: 37740693 DOI: 10.1111/ejn.16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
The val66met polymorphism of the brain-derived neurotrophic factor (BDNF) gene has been identified as a potential moderator for the relationship between chronic stress and executive functioning. However, whether the presence of the met allele increases cognitive vulnerability or resilience to stress has yet to be determined. Given the established effects of autonomic activity and psychological arousal on executive functioning, in the present study, 56 healthy university students completed self-report measures of chronic stress, positive arousal (vigour) and negative arousal (anxiety) and measured heart-rate variability to quantify autonomic activity. Participants then completed a cognitive test battery that measured attention, decision-making, visual learning and working memory. Regression analyses demonstrated that Val/met participants performed better on attention and working memory tasks than Val/val participants, but no differences were seen in decision-making and visual learning. Further, Val/met participants were protected from stress-related differences in attention seen in Val/val participants. Val66met was not associated with physiological or psychological arousal. This study demonstrates that val66met plays an important but selective role in cognitive performance.
Collapse
Affiliation(s)
- Michelle Corrone
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Aleshia Nanev
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Isabella Amato
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Rowena Bicknell
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Stefan Piantella
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Paul Maruff
- Cogstate Ltd, Melbourne, Victoria, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Bradley J Wright
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Elwyn R, Mitchell J, Kohn MR, Driver C, Hay P, Lagopoulos J, Hermens DF. Novel ketamine and zinc treatment for anorexia nervosa and the potential beneficial interactions with the gut microbiome. Neurosci Biobehav Rev 2023; 148:105122. [PMID: 36907256 DOI: 10.1016/j.neubiorev.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Anorexia nervosa (AN) is a severe illness with diverse aetiological and maintaining contributors including neurobiological, metabolic, psychological, and social determining factors. In addition to nutritional recovery, multiple psychological and pharmacological therapies and brain-based stimulations have been explored; however, existing treatments have limited efficacy. This paper outlines a neurobiological model of glutamatergic and γ-aminobutyric acid (GABA)-ergic dysfunction, exacerbated by chronic gut microbiome dysbiosis and zinc depletion at a brain and gut level. The gut microbiome is established early in development, and early exposure to stress and adversity contribute to gut microbial disturbance in AN, early dysregulation to glutamatergic and GABAergic networks, interoceptive impairment, and inhibited caloric harvest from food (e.g., zinc malabsorption, competition for zinc ions between gut bacteria and host). Zinc is a key part of glutamatergic and GABAergic networks, and also affects leptin and gut microbial function; systems dysregulated in AN. Low doses of ketamine in conjunction with zinc, could provide an efficacious combination to act on NMDA receptors and normalise glutamatergic, GABAergic and gut function in AN.
Collapse
Affiliation(s)
- Rosiel Elwyn
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia.
| | - Jules Mitchell
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Michael R Kohn
- AYA Medicine Westmead Hospital, CRASH (Centre for Research into Adolescent's Health) Western Sydney Local Health District, Sydney University, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Christina Driver
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Phillipa Hay
- Translational Health Research Institute (THRI) School of Medicine, Western Sydney University, Campbelltown, NSW, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
4
|
Chiu DT, Hamlat EJ, Leung CW, Epel ES, Laraia BA. Childhood stress and midlife depression in women: the influence of diet quality. Nutr Neurosci 2022; 25:2668-2679. [PMID: 34844523 PMCID: PMC9149146 DOI: 10.1080/1028415x.2021.2005994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE How does diet quality (DQ) moderate associations between serious childhood stress exposures and adult depression? METHODS We analyzed a cohort of Californian women at midlife (N=382; age 36-42). Serious childhood stress was defined as high perceived stress during childhood or adverse childhood experiences (ACEs) of physical abuse, sexual abuse, and/or household substance abuse. Women were dichotomized by current depression risk (high/low). The Healthy Eating Index (HEI)-2015 and Alternate Healthy Eating Index (AHEI)-2010 measured current DQ from 3-day food records. Interactions between childhood stress exposures and DQ indices were tested one-by-one in multivariable Poisson regression models. RESULTS Depression risks associated with endorsing all 3 ACEs differed by HEI and AHEI scores, as did risks associated with endorsing high perceived stress, physical abuse, and sexual abuse by AHEI. Where DQ moderated stress-depression associations, predicted prevalences of high depression risk did not vary with DQ among women endorsing the particular childhood stressors. However, among non-endorsing women, predicted high depression risk prevalences were significantly lower with higher DQ compared to in their stress-exposed counterparts - e.g. at the 90th AHEI percentile, depression prevalences were ∼20% among 'non-childhood-stressed' women versus 48.8% (high perceived stress, sexual abuse), 52.0% (physical abuse), and 73.0% (3 ACEs) in 'childhood-stressed' women. CONCLUSIONS Higher current DQ, particularly as aligned with chronic disease prevention guidelines, predicts lower depression risk in women with low childhood adversity. DQ did not buffer depression risk in women with high childhood stress. Further research is warranted to examine persistent pathways of depression risk and diet's role within.
Collapse
Affiliation(s)
- Dorothy T Chiu
- Community Health Sciences Division, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Elissa J Hamlat
- Department of Psychiatry, Weill Institute of Neurosciences, University of California, San Francisco, CA, USA
| | - Cindy W Leung
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Elissa S Epel
- Department of Psychiatry, Weill Institute of Neurosciences, University of California, San Francisco, CA, USA
- Center for Health and Community, University of California, San Francisco, CA, USA
| | - Barbara A Laraia
- Community Health Sciences Division, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
5
|
Di Benedetto MG, Scassellati C, Cattane N, Riva MA, Cattaneo A. Neurotrophic factors, childhood trauma and psychiatric disorders: A systematic review of genetic, biochemical, cognitive and imaging studies to identify potential biomarkers. J Affect Disord 2022; 308:76-88. [PMID: 35378148 DOI: 10.1016/j.jad.2022.03.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Exposure to traumatic experience represents one of the key environmental factors influencing the risk for several psychiatric disorders, in particular when suffered during childhood, a critical period for brain development, characterized by a high level of neuroplasticity. Abnormalities affecting neurotrophic factors might play a fundamental role in the link between childhood trauma (CT) and early life stress (ELS) and psychiatric disorders. METHODS A systematic review was conducted, considering genetic, biochemical and expression studies along with cognitive and brain structure imaging investigations, based on PubMed and Web of Science databases (available up until November 2021), to identify potential neuroplasticity related biomarkers associated both with CT/ELS and psychiatric disorders. The search was followed by data abstraction and study quality assessment (Newcastle-Ottawa Scale). RESULTS 103 studies met our eligibility criteria. Among them, 65 were available for genetic, 30 for biochemical and 3 for mRNA data; 45 findings were linked to specific symptomatology/pathologies, 16 with various cognitive functions, 19 with different brain areas, 6 on methylation and 36 performed on control subjects for the Brain Derived Neurotrophic Factor (BDNF); whereas 4 expression/biochemical studies covered Neurotrophin 4 (NT-4), Vascular Endothelium Growth Factor (VEGF), Epidermal Growth Factor (EGF), Fibroblast Growth Factor (FGF), and Transforming Growth Factor β1 (TGF-β1). LIMITATIONS Heterogeneity of assessments (biological, psychological, of symptomatology, and CT/ELS), age range and ethnicity of samples for BDNF studies; limited studies for other neurotrophins. CONCLUSIONS Results support the key role of BDNF (in form of Met allele) as biomarker, both at genetic and biochemical level, in mediating the effect of CT/ELS in psychiatric disorders, passing through specific cognitive functions and specific brain region architecture.
Collapse
Affiliation(s)
- Maria Grazia Di Benedetto
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
6
|
de Mendonça Filho EJ, Barth B, Bandeira DR, de Lima RMS, Arcego DM, Dalmaz C, Pokhvisneva I, Sassi RB, Hall GBC, Meaney MJ, Silveira PP. Cognitive Development and Brain Gray Matter Susceptibility to Prenatal Adversities: Moderation by the Prefrontal Cortex Brain-Derived Neurotrophic Factor Gene Co-expression Network. Front Neurosci 2021; 15:744743. [PMID: 34899157 PMCID: PMC8652300 DOI: 10.3389/fnins.2021.744743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Previous studies focused on the relationship between prenatal conditions and neurodevelopmental outcomes later in life, but few have explored the interplay between gene co-expression networks and prenatal adversity conditions on cognitive development trajectories and gray matter density. Methods: We analyzed the moderation effects of an expression polygenic score (ePRS) for the Brain-derived Neurotrophic Factor gene network (BDNF ePRS) on the association between prenatal adversity and child cognitive development. A score based on genes co-expressed with the prefrontal cortex (PFC) BDNF was created, using the effect size of the association between the individual single nucleotide polymorphisms (SNP) and the BDNF expression in the PFC. Cognitive development trajectories of 157 young children from the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) cohort were assessed longitudinally in 4-time points (6, 12, 18, and 36 months) using the Bayley-II mental scales. Results: Linear mixed-effects modeling indicated that BDNF ePRS moderates the effects of prenatal adversity on cognitive growth. In children with high BDNF ePRS, higher prenatal adversity was associated with slower cognitive development in comparison with those exposed to lower prenatal adversity. Parallel-Independent Component Analysis (pICA) suggested that associations of expression-based SNPs and gray matter density significantly differed between low and high prenatal adversity groups. The brain IC included areas involved in visual association processes (Brodmann area 19 and 18), reallocation of attention, and integration of information across the supramodal cortex (Brodmann area 10). Conclusion: Cognitive development trajectories and brain gray matter seem to be influenced by the interplay of prenatal environmental conditions and the expression of an important BDNF gene network that guides the growth and plasticity of neurons and synapses.
Collapse
Affiliation(s)
- Euclides José de Mendonça Filho
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
| | - Barbara Barth
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Denise Ruschel Bandeira
- Programa de Pós-Graduação em Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Randriely Merscher Sobreira de Lima
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
- Programa de Pós-Graduação em Bioquímica e Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Danusa Mar Arcego
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
| | - Carla Dalmaz
- Programa de Pós-Graduação em Bioquímica e Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
| | | | - Geoffrey B. C. Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Michael J. Meaney
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Patricia Pelufo Silveira
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
| |
Collapse
|
7
|
Harb M, Jagusch J, Durairaja A, Endres T, Leßmann V, Fendt M. BDNF haploinsufficiency induces behavioral endophenotypes of schizophrenia in male mice that are rescued by enriched environment. Transl Psychiatry 2021; 11:233. [PMID: 33888685 PMCID: PMC8062437 DOI: 10.1038/s41398-021-01365-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 02/02/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is implicated in a number of processes that are crucial for healthy functioning of the brain. Schizophrenia is associated with low BDNF levels in the brain and blood, however, not much is known about BDNF's role in the different symptoms of schizophrenia. Here, we used BDNF-haploinsufficient (BDNF+/-) mice to investigate the role of BDNF in different mouse behavioral endophenotypes of schizophrenia. Furthermore, we assessed if an enriched environment can prevent the observed changes. In this study, male mature adult wild-type and BDNF+/- mice were tested in mouse paradigms for cognitive flexibility (attentional set shifting), sensorimotor gating (prepulse inhibition), and associative emotional learning (safety and fear conditioning). Before these tests, half of the mice had a 2-month exposure to an enriched environment, including running wheels. After the tests, BDNF brain levels were quantified. BDNF+/- mice had general deficits in the attentional set-shifting task, increased startle magnitudes, and prepulse inhibition deficits. Contextual fear learning was not affected but safety learning was absent. Enriched environment housing completely prevented the observed behavioral deficits in BDNF+/- mice. Notably, the behavioral performance of the mice was negatively correlated with BDNF protein levels. These novel findings strongly suggest that decreased BDNF levels are associated with several behavioral endophenotypes of schizophrenia. Furthermore, an enriched environment increases BDNF protein to wild-type levels and is thereby able to rescue these behavioral endophenotypes.
Collapse
Affiliation(s)
- Mahmoud Harb
- grid.5807.a0000 0001 1018 4307Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Justina Jagusch
- grid.5807.a0000 0001 1018 4307Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Archana Durairaja
- grid.5807.a0000 0001 1018 4307Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas Endres
- grid.5807.a0000 0001 1018 4307Institute of Physiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
8
|
Corrone M, Nanev A, Amato I, Bicknell R, Wundersitz DWT, van den Buuse M, Wright BJ. Brain-derived Neurotropic Factor val66met is a Strong Predictor of Decision Making and Attention Performance on the CONVIRT Virtual Reality Cognitive Battery. Neuroscience 2020; 455:19-29. [PMID: 33340609 DOI: 10.1016/j.neuroscience.2020.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 10/24/2022]
Abstract
The val66met polymorphism of the brain-derived neurotrophic factor gene has been associated with changes in components of executive functioning such as decision making; however, this relationship remains unclear. Val66met-related changes in attention and visual processing speed may explain potential changes in decision making. Furthermore, chronic stress disrupts executive functions and alters autonomic activity. Because the relationship between val66met and cognition has not been investigated in the context of chronic stress or stress-related autonomic changes, in this study 55 healthy university students completed self-report measures of chronic stress and mental health. Participants then completed a virtual reality cognitive test battery (CONVIRT) measuring decision making, attention, and visual processing reaction times. To measure autonomic activity, saliva alpha amylase and heart rate variability (HRV) were assessed at baseline and after CONVIRT testing. Saliva samples were used to identify val66met genotype. Regression analyses demonstrated that val66met was the strongest predictor of decision making and attention, but not visual processing, where valine/methionine (Val/met) participants had faster reaction times than Val/val participants. Val/met participants also had higher perceived chronic stress and heightened increases in sympathetic activity, but not parasympathetic activity. Neither stress nor autonomic activity moderated the effect of val66met on decision making or attention. This study is the first to investigate the role of val66met in decision making, attention, and visual processing while taking into account chronic stress and autonomic activity. This multifactorial approach revealed that carriers of the Val/met genotype may have better decision making and attention than Val/val carriers.
Collapse
Affiliation(s)
- Michelle Corrone
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Aleshia Nanev
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Isabella Amato
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Rowena Bicknell
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Bradley James Wright
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
9
|
Abstract
Shift work is an inconsistent and atypical work schedule. This study aimed to investigate the influence of shift work on the Quality of Sleep (QOS) and Executive Functions (EF). Thirty shift workers and thirty day workers first completed a demographic questionnaire. They then were tested using the Pittsburgh Sleep Quality Index (PSQI) and EF tests, including the Corsi Block-Tapping Task (CBTT), Berg's Card Sorting Task (BCST), and the Continuous Performance Task (CPT). Results were subjected to non-parametric Chi-Square Tests, the Mann-Whitney U Test, and Independent T-Tests. Shift workers had significantly poorer sleep quality than day workers, which was shown in PSQI global scale (p = 0.001), sleep duration (p = 0.042), habitual sleep efficiency (p = 0.021), and sleep disturbance (p = 0.021). Concerning EF tests, shift workers performed significantly poorer on CBTT (p = 0.019) and BCST (p = 0.015, 0.047) compared with day workers. Significant differences were also observed between shift workers and day workers in terms of variables of omission errors (p = 0.037) and commission errors (p = 0.041) on CPT, but no significant difference was found between shift workers and day workers in reaction time (p = 0.561). Shift work impaired EF. These findings are related to shift workers' poorer sleep and its detrimental effects on areas of the brain, which are critical for EF, such as the prefrontal area. Our results suggest the evaluation and implication of practices and policies to assuage the consequences of working in shifts.
Collapse
|
10
|
Nassan M, Veldic M, Winham S, Frye MA, Larrabee B, Colby C, Biernacka J, Bellia F, Pucci M, Terenius L, Vukojevic V, D'Addario C. Methylation of Brain Derived Neurotrophic Factor (BDNF) Val66Met CpG site is associated with early onset bipolar disorder. J Affect Disord 2020; 267:96-102. [PMID: 32063579 DOI: 10.1016/j.jad.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/21/2020] [Accepted: 02/01/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The brain-derived neurotrophic factor (BDNF) rs6265 (Val66Met) Met allele is associated with early onset (≤ 19 years old) bipolar disorder (BD). Val66Met (G196A) creates a CpG site when the Val/G allele is present. We sought to study the methylation of the BDNF promoter and its interaction with Val66Met genotype in BD. METHODS Sex/age-matched previously genotyped DNA samples from BD-Type 1 cases [N = 166: early onset (≤ 19 years old) n = 79, late onset (> 20 years old) n = 87] and controls (N = 162) were studied. Pyrosequencing of four CpGs in Promoter-I, four CpGs in promoter-IV, and two CpGs in Promoter-IX (CpG2 includes G= Val allele) was performed. Logistic regression adjusting for batch effect was used to compare cases vs. controls. Analyses also included stratification by disease onset and adjustment for Val66Met genotype. Secondary exploratory analyses for the association of life stressors, comorbid substance abuse, and psychotropic use with methylation patterns were performed. RESULTS Comparing all BD cases vs. controls and adjusting for Val66Met genotype, BD cases had significantly higher methylation in promoter -IX/CPG-2 (p = 0.0074). This was driven by early onset cases vs. controls (p = 0.00039) and not late onset cases vs. controls (p = 0.2). LIMITATION Relatively small sample size. CONCLUSION Early onset BD is associated with increased methylation of CpG site created by Val=G allele of the Val66Met variance. Further studies could include larger sample size and postmortem brain samples in an attempt to replicate these findings.
Collapse
Affiliation(s)
- Malik Nassan
- Mayo Clinic, Psychiatry & Psychology, Rochester, MN, USA
| | - Marin Veldic
- Mayo Clinic, Psychiatry & Psychology, Rochester, MN, USA
| | - Stacey Winham
- Mayo Clinic, Psychiatry & Psychology, Rochester, MN, USA
| | - Mark A Frye
- Mayo Clinic, Psychiatry & Psychology, Rochester, MN, USA
| | - Beth Larrabee
- Mayo Clinic, Psychiatry & Psychology, Rochester, MN, USA
| | - Colin Colby
- Mayo Clinic, Psychiatry & Psychology, Rochester, MN, USA
| | | | | | | | - Lars Terenius
- Karolinska Institute, Clinical Neuroscience, Solna, Sweden
| | | | | |
Collapse
|
11
|
Yao ZF, Hsieh S. Neurocognitive Mechanism of Human Resilience: A Conceptual Framework and Empirical Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16245123. [PMID: 31847467 PMCID: PMC6950690 DOI: 10.3390/ijerph16245123] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Resilience is an innate human capacity that holds the key to uncovering why some people rebound after trauma and others never recover. Various theories have debated the mechanisms underlying resilience at the psychological level but have not yet incorporated neurocognitive concepts/findings. In this paper, we put forward the idea that cognitive flexibility moderates how well people adapt to adverse experiences, by shifting attention resources between cognition–emotion regulation and pain perception. We begin with a consensus on definitions and highlight the role of cognitive appraisals in mediating this process. Shared concepts among appraisal theories suggest that cognition–emotion, as well as pain perception, are cognitive mechanisms that underlie how people respond to adversity. Frontal brain circuitry sub-serves control of cognition and emotion, connecting the experience of physical pain. This suggests a substantial overlap between these phenomena. Empirical studies from brain imaging support this notion. We end with a discussion of how the role of the frontal brain network in regulating human resilience, including how the frontal brain network interacts with cognition–emotion–pain perception, can account for cognitive theories and why cognitive flexibilities’ role in these processes can create practical applications, analogous to the resilience process, for the recovery of neural plasticity.
Collapse
Affiliation(s)
- Zai-Fu Yao
- Brain and Cognition, Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands;
- Cognitive Electrophysiology Laboratory: Control, Aging, Sleep, & Emotion (CASE), National Cheng Kung University, Tainan 701, Taiwan
| | - Shulan Hsieh
- Cognitive Electrophysiology Laboratory: Control, Aging, Sleep, & Emotion (CASE), National Cheng Kung University, Tainan 701, Taiwan
- Department of Psychology, College of Social Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department and Institute of Public Health, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: ; Tel.: +886-6275-7575 (ext. 56506)
| |
Collapse
|