1
|
Spirrison AN, Lannigan DA. RSK1 and RSK2 as therapeutic targets: an up-to-date snapshot of emerging data. Expert Opin Ther Targets 2024; 28:1047-1059. [PMID: 39632509 PMCID: PMC11801519 DOI: 10.1080/14728222.2024.2433123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION The four members of the p90 ribosomal S6 kinase (RSK) family are serine/threonine protein kinases, which are phosphorylated and activated by ERK1/2. RSK1/2/3 are further phosphorylated by PDK1. Receiving inputs from two major signaling pathways places RSK as a key signaling node in numerous pathologies. A plethora of RSK1/2 substrates have been identified, and in the majority of cases the causative roles these RSK substrates play in the pathology are unknown. AREAS COVERED The majority of studies have focused on RSK1/2 and their functions in a diverse group of cancers. However, RSK1/2 are known to have important functions in cardiovascular disease and neurobiological disorders. Based on the literature, we identified substrates that are common in these pathologies with the goal of identifying fundamental physiological responses to RSK1/2. EXPERT OPINION The core group of targets in pathologies driven by RSK1/2 are associated with the immune response. However, there is a paucity of the literature addressing RSK function in inflammation, which is critical to know as the pan RSK inhibitor, PMD-026, is entering phase II clinical trials for metastatic breast cancer. A RSK inhibitor has the potential to be used in numerous diverse diseases and disorders.
Collapse
Affiliation(s)
| | - Deborah A. Lannigan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
2
|
Xueqing S, Delong L, Guizhi W, Yunhan F, Liuxu Y, Tianle C. Effect of fluvalinate on the expression profile of circular RNA in brain tissue of Apis mellifera ligustica workers. Front Genet 2023; 14:1185952. [PMID: 37252656 PMCID: PMC10213878 DOI: 10.3389/fgene.2023.1185952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Fluvalinate is widely used in apiculture as an acaricide for removing Varroa mites, but there have been growing concerns about the negative effects of fluvalinate on honeybees in recent years. Previous research revealed changes in the miRNA and mRNA expression profiles of Apis mellifera ligustica brain tissues during fluvalinate exposure, as well as key genes and pathways. The role of circRNAs in this process, however, is unknown. The goal of this study was to discover the fluvalinate-induced changes in circular RNA (circRNA) expression profiles of brain tissue of A. mellifera ligustica workers. A total of 10,780 circRNAs were detected in A. mellifera ligustica brain tissue, of which eight were differentially expressed between at least two of the four time periods before and after fluvalinate administration, and six circRNAs were experimentally verified to be structurally correct, and their expression patterns were consistent with transcriptome sequencing results. Furthermore, ceRNA analysis revealed that five differentially expressed circRNAs (DECs) (novel_circ_012139, novel_circ_011690, novel_circ_002628, novel_circ_004765, and novel_circ_010008) were primarily involved in apoptosis-related functions by competitive binding with miRNAs. This study discovered changes in the circRNA expression profile of A. mellifera ligustica brain tissue caused by fluvalinate exposure, and it provides a useful reference for the biological function study of circRNAs in A. mellifera ligustica.
Collapse
Affiliation(s)
- Shan Xueqing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Lou Delong
- Comprehensive Testing and Inspection Center, Shandong Provincial Animal Husbandry and Veterinary Bureau, Jinan, Shandong, China
| | - Wang Guizhi
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Fan Yunhan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yang Liuxu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
| | - Chao Tianle
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
3
|
Koutsougianni F, Alexopoulou D, Uvez A, Lamprianidou A, Sereti E, Tsimplouli C, Ilkay Armutak E, Dimas K. P90 ribosomal S6 kinases: A bona fide target for novel targeted anticancer therapies? Biochem Pharmacol 2023; 210:115488. [PMID: 36889445 DOI: 10.1016/j.bcp.2023.115488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
The 90 kDa ribosomal S6 kinase (RSK) family of proteins is a group of highly conserved Ser/Thr kinases. They are downstream effectors of the Ras/ERK/MAPK signaling cascade. ERK1/2 activation directly results in the phosphorylation of RSKs, which further, through interaction with a variety of different downstream substrates, activate various signaling events. In this context, they have been shown to mediate diverse cellular processes like cell survival, growth, proliferation, EMT, invasion, and metastasis. Interestingly, increased expression of RSKs has also been demonstrated in various cancers, such as breast, prostate, and lung cancer. This review aims to present the most recent advances in the field of RSK signaling that have occurred, such as biological insights, function, and mechanisms associated with carcinogenesis. We additionally present and discuss the recent advances but also the limitations in the development of pharmacological inhibitors of RSKs, in the context of the use of these kinases as putative, more efficient targets for novel anticancer therapeutic approaches.
Collapse
Affiliation(s)
- Fani Koutsougianni
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Dimitra Alexopoulou
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Ayca Uvez
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
| | - Andromachi Lamprianidou
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Evangelia Sereti
- Dept of Translational Medicine, Medical Faculty, Lund University and Center for Molecular Pathology, Skäne University Hospital, Jan Waldenströms gata 59, SE 205 02 Malmö, Sweden
| | - Chrisiida Tsimplouli
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Elif Ilkay Armutak
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece.
| |
Collapse
|
4
|
Abstract
Signaling via extracellular regulated kinase 1/2 (ERK1/2) and p90 ribosomal S6 kinase (RSK), a downstream effector, mediates numerous processes. For example, ERK1/2-RSK signaling is essential for estrogen homeostasis in the mammary gland and uterus to maintain physiological responsiveness. This review will focus on the coordination of ERK1/2-RSK2 and estrogen signaling through estrogen receptor alpha (ERα). The interrelationship and the feedback mechanisms between these pathways occurs at the level of transcription, translation, and posttranslational modification. Identifying how ERK1/2-RSK2 and estrogen signaling cooperate in homeostasis and disease may lead to novel therapeutic approaches in estrogen-dependent disorders.
Collapse
Affiliation(s)
- Deborah A Lannigan
- Correspondence: Deborah A. Lannigan, PhD, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
5
|
Cong Y, Jin H, Wu K, Wang H, Wang D. Case Report: Chinese female patients with a heterozygous pathogenic RPS6KA3 gene variant c.898C>T and distal 22q11.2 microdeletion. Front Genet 2022; 13:900226. [PMID: 36046249 PMCID: PMC9420874 DOI: 10.3389/fgene.2022.900226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Coffin–Lowry syndrome (CLS) [OMIM#303600] is a rare X-linked dominant syndrome. CLS is caused by highly heterogeneous loss-of-function mutations in the RPS6KA3 gene (OMIM*300,075). CLS is characterized by intellectual disability (ID), short stature, tapered fingers, characteristic facial features, and progressive skeletal changes. Distal 22q11.2 microdeletion syndrome (OMIM#611867) is an autosomal dominant and recurrent genomic disorder. It mainly includes three types [distal type I (D–E/F), type II (E–F), and type III (F–G)] and exhibits variable clinical phenotypes (mild, moderate, or even normal): preterm birth, pre- and/or postnatal growth restriction, development delay, ID, behavioral problems, cardiovascular defects, skeletal anomalies, and dysmorphic facial features. We investigated the genetic etiology of a Chinese pedigree with ID, short stature, digit abnormalities, facial dysmorphism, and menstrual disorder. A heterozygous RPS6KA3 gene variant c.898C>T (p.R300X) was identified in this familial case. Two female CLS patients with distal 22q11.2 microdeletion presented with more severe clinical phenotypes. We provided clinical characteristics of these Chinese female CLS patients. Case presentation: We described a Chinese family with three affected females (the mother, the elder sister, and the proband). The mother and the elder sister had more severe clinical phenotypes (moderate facial dysmorphism, more severe cognitive impairment, and shorter stature). The common characteristic phenotypes are ID, short stature, facial dysmorphism, irregular menstruation, and cardiovascular disorders. Peripheral blood samples were collected from the pedigree. Whole-exome sequencing (WES) identified a heterozygous nonsense RPS6KA3 gene variant c.898C>T (p.R300X). It was verified by Sanger sequencing. Copy number variation sequencing (CNV-seq) showed that both the mother and the elder sister carried a CNVseq [hg19] del (22) (q11.22-q11.23) (22997582–23637176)×0.5. RNA from peripheral blood samples was used for measuring the relative quantification of mRNA (expressed by exon 14 of RPS6KA3). The levels of mRNA relative expressions were significantly lower in the mother’s and the elder sister’s blood samples. The levels of mRNA relative expressions were significantly higher in the proband’s blood sample. X-chromosome inactivation (XCI) studies demonstrated that the proband showed extremely skewed XCI, and the XCI pattern of the elder sister was random. Conclusion: Herein, we reported three Chinese female patients with a heterozygous nonsense RPS6KA3 gene variant c.898C>T. Further genetic studies were performed. To our knowledge, Chinese patients with this variant have not been previously reported in the literature. The three female patients presented with variable degrees of severity. The clinical characteristics of these Chinese female CLS patients could expand the phenotypic spectrum of CLS. We helped physicians to understand the genotype–phenotype correlation further.
Collapse
Affiliation(s)
- Yan Cong
- Rehabilitation Department, Yiwu Maternity and Child Health Care Hospital, Yiwu, China
| | - Hongxing Jin
- Pediatric Department, Yiwu Maternity and Child Health Care Hospital, Yiwu, China
| | - Ke Wu
- Prenatal Diganosis Center, Yiwu Maternity and Child Health Care Hospital, Yiwu, China
- *Correspondence: Ke Wu,
| | - Hao Wang
- Rehabilitation Department, Yiwu Maternity and Child Health Care Hospital, Yiwu, China
| | - Dong Wang
- Rehabilitation Department, Yiwu Maternity and Child Health Care Hospital, Yiwu, China
| |
Collapse
|
6
|
Osteoblast-specific inactivation of p53 results in locally increased bone formation. PLoS One 2021; 16:e0249894. [PMID: 34793446 PMCID: PMC8601510 DOI: 10.1371/journal.pone.0249894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/28/2021] [Indexed: 12/27/2022] Open
Abstract
Inactivation of the tumor suppressor p53 (encoded by the Trp53 gene) is relevant for development and growth of different cancers, including osteosarcoma, a primary bone tumor mostly affecting children and young adolescents. We have previously shown that deficiency of the ribosomal S6 kinase 2 (Rsk2) limits osteosarcoma growth in a transgenic mouse model overexpressing the proto-oncogene c-Fos. Our initial aim for the present study was to address the question, if Rsk2 deficiency would also influence osteosarcoma growth in another mouse model. For that purpose, we took advantage of Trp53fl/fl mice, which were crossed with Runx2Cre transgenic mice in order to inactivate p53 specifically in osteoblast lineage cells. However, since we unexpectedly identified Runx2Cre-mediated recombination also in the thymus, the majority of 6-month-old Trp53fl/fl;Runx2-Cre (thereafter termed Trp53Cre) animals displayed thymic lymphomas, similar to what has been described for Trp53-deficient mice. Since we did not detect osteosarcoma formation at that age, we could not follow our initial aim, but we studied the skeletal phenotype of Trp53Cre mice, with or without additional Rsk2 deficiency. Here we unexpectedly observed that Trp53Cre mice display a unique accumulation of trabecular bone in the midshaft region of the femur and the humerus, consistent with its previously established role as a negative regulator of osteoblastogenesis. Since this local bone mass increase in Trp53Cre mice was significantly reduced by Rsk2 deficiency, we isolated bone marrow cells from the different groups of mice and analyzed their behavior ex vivo. Here we observed a remarkable increase of colony formation, osteogenic differentiation and proliferation in Trp53Cre cultures, which was unaffected by Rsk2 deficiency. Our data thereby confirm a critical and tumorigenesis-independent function of p53 as a key regulator of mesenchymal cell differentiation.
Collapse
|