1
|
Zhu C, Liu X. Behavioral and pathological characteristics of 5xFAD female mice in the early stage. Sci Rep 2025; 15:6924. [PMID: 40011556 DOI: 10.1038/s41598-025-90335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/12/2025] [Indexed: 02/28/2025] Open
Abstract
Alzheimer's disease (AD) is a central nervous system degenerative disease with insidious onset and gradual development caused by selective and progressive loss of neurons. The 5xFAD mouse is a relatively mature disease model of AD. However, the behavioral research on 5xFAD female mouse is more focused on the changes of late memory function, and the exploration of its early behavioral and pathological changes is still incomplete. This research aims to explore the changes in memory function, emotional function (including anxiety and depression), motor ability, amyloid plaques, glial cell response and neurogenesis in the hippocampus of female 5xFAD mice in the early stage, laying a foundation for a comprehensive exploration of the disease mechanism of AD. The results of this study found that early 4-month-old female 5xFAD mice mainly showed a decline in memory function without other dysfunction. Accompanied by a large amount of amyloid protein plaques deposited in the hippocampus, it induced the response of microglia and astrocytes, and neurogenesis decreased significantly with age, especially in early female 5xFAD mice, which resulted in a decrease in the number of new neurons. This may be an important reason for the decline in memory function of female 5xFAD mice in the early stage.
Collapse
Affiliation(s)
- Chenlu Zhu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| | - Xuejiao Liu
- Department of Hyperbaric Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
2
|
Ko YS, Ryu YK, Han S, Park HJ, Choi M, Kim BC, Jeong HS, Jang S, Jo J, Lee S, Choi WS, Cho HH. Hearing modulation affects Alzheimer's disease progression linked to brain inflammation: a study in mouse models. Mol Med 2024; 30:276. [PMID: 39725872 PMCID: PMC11670416 DOI: 10.1186/s10020-024-01040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Recent studies have identified hearing loss (HL) as a primary risk factor for Alzheimer's disease (AD) onset. However, the mechanisms linking HL to AD are not fully understood. This study explored the effects of drug-induced hearing loss (DIHL) on the expression of proteins associated with AD progression in mouse models. METHODS DIHL was induced in 5xFAD and Tg2576 mice aged 3 to 3.5 weeks using kanamycin (700 mg/kg, subcutaneous) and furosemide (600 mg/kg, intraperitoneal). The accumulation and expression of beta-amyloid (Aβ), ionized calcium-binding adaptor molecule 1 (Iba1), and glial fibrillary acidic protein (GFAP) were measured through immunohistochemistry and immunoblotting. Additionally, the expression of proteins involved in the mammalian target of rapamycin (mTOR) pathway, including downstream effectors p70 ribosomal S6 kinase (p70S6K) and S6, as well as proinflammatory cytokines, was analyzed. RESULTS Compared to control conditions, HL led to a significant increase in the accumulation of Aβ in the hippocampus and cortex. Elevated levels of neuroinflammatory markers, including Iba1 and GFAP, as well as proinflammatory cytokines such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α), were observed. Moreover, DIHL enhanced phosphorylation of mTOR, p70S6K, and S6, indicating activation of the mTOR pathway. CONCLUSIONS HL significantly increases Aβ accumulation in the brain. Furthermore, HL activates astrocytes and microglia, leading to increased neuroinflammation and thereby accelerating AD progression. These findings strongly suggest that HL contributes autonomously to neuroinflammation, highlighting the potential for early intervention in HL to reduce AD risk.
Collapse
Affiliation(s)
- Yoo-Seung Ko
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea
| | - Young-Kyoung Ryu
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea
| | - Sujin Han
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea
| | - Hyung Joon Park
- Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Munyoung Choi
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School & Hospital, Gwangju, 61469, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
| | - Jihoon Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea
| | - Won-Seok Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea.
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
3
|
Jie S, Wenying G, Lebo S. Dehydroevodiamine Alleviates Doxorubicin-Induced Cardiomyocyte Injury by Regulating Neuregulin-1/ErbB Signaling. Cardiovasc Ther 2024; 2024:5538740. [PMID: 39742014 PMCID: PMC11646148 DOI: 10.1155/cdr/5538740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025] Open
Abstract
Background: Doxorubicin (DOX) is a widely used antitumor drug; however, its use is limited by the risk of serious cardiotoxicity. Dehydroevodiamine (DHE) is a quinazoline alkaloid which has antiarrhythmic effects. The aim of this study was to investigate the protective effect of DHE on doxorubicin-induced cardiotoxicity (DIC) and its potential mechanism. Materials and Methods: Rat H9c2 cardiomyocytes were exposed to DOX for 24 h to establish a DOX-induced cardiomyocyte injury model. DHE and ErbB inhibitor AG1478 were used to treat H9c2 cells to investigate their effects. Cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assays were used to evaluate cell viability. Flow cytometry and caspase-3 activity assay were used to detect apoptosis. Western blot was used to detect the expression levels of apoptosis-related proteins and neuregulin-1 (NRG1)/ErbB pathway-related proteins. The levels of proinflammatory cytokines and markers of oxidative stress were also detected, respectively. Quantitative polymerase chain reaction (qPCR) was used to detect mRNA expression levels of hub genes. Results: DHE enhanced cardiomyocyte viability and decreased LDH release in a concentration- and time-dependent manner. DHE also significantly inhibited DOX-induced cardiomyocyte apoptosis, inflammation, and oxidative stress. Bioinformatics analysis showed that the protective mechanism of DHE against DIC was related to ErbB signaling pathway. DOX treatment significantly reduced NRG1, p-ErbB2, and p-ErbB4 protein expression levels in cardiomyocytes, while DHE pretreatment reversed this effect. ErbB inhibitor AG1478 reversed the protective effect of DHE on cardiomyocytes. Conclusion: DHE protects cardiomyocytes against DOX by regulating NRG1/ErbB pathway. DHE may be a potential agent for the prevention and treatment of DIC.
Collapse
Affiliation(s)
- Song Jie
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital of Ningbo University, No. 57, Xingning Rd, Ningbo City 315041, Zhejiang Province, China
| | - Guo Wenying
- Department of Digestive, Ningbo Medical Center Lihuili Hospital of Ningbo University, No. 57, Xingning Rd, Ningbo City 315041, Zhejiang Province, China
| | - Sun Lebo
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital of Ningbo University, No. 57, Xingning Rd, Ningbo City 315041, Zhejiang Province, China
| |
Collapse
|
4
|
Zhu C, Ren X, Liu C, Liu Y, Wang Y. Rbm8a regulates neurogenesis and reduces Alzheimer's disease-associated pathology in the dentate gyrus of 5×FAD mice. Neural Regen Res 2024; 19:863-871. [PMID: 37843222 PMCID: PMC10664127 DOI: 10.4103/1673-5374.382254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer's disease is a prevalent and debilitating neurodegenerative condition that profoundly affects a patient's daily functioning with progressive cognitive decline, which can be partly attributed to impaired hippocampal neurogenesis. Neurogenesis in the hippocampal dentate gyrus is likely to persist throughout life but declines with aging, especially in Alzheimer's disease. Recent evidence indicated that RNA-binding protein 8A (Rbm8a) promotes the proliferation of neural progenitor cells, with lower expression levels observed in Alzheimer's disease patients compared with healthy people. This study investigated the hypothesis that Rbm8a overexpression may enhance neurogenesis by promoting the proliferation of neural progenitor cells to improve memory impairment in Alzheimer's disease. Therefore, Rbm8a overexpression was induced in the dentate gyrus of 5×FAD mice to validate this hypothesis. Elevated Rbm8a levels in the dentate gyrus triggered neurogenesis and abated pathological phenotypes (such as plaque formation, gliosis reaction, and dystrophic neurites), leading to ameliorated memory performance in 5×FAD mice. RNA sequencing data further substantiated these findings, showing the enrichment of differentially expressed genes involved in biological processes including neurogenesis, cell proliferation, and amyloid protein formation. In conclusion, overexpressing Rbm8a in the dentate gyrus of 5×FAD mouse brains improved cognitive function by ameliorating amyloid-beta-associated pathological phenotypes and enhancing neurogenesis.
Collapse
Affiliation(s)
- Chenlu Zhu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xiao Ren
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Chen Liu
- Department of Neurology, Xiaogan City Central Hospital, Xiaogan, Hubei Province, China
| | - Yawei Liu
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, Beijing, China
| | - Yonggang Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Kourti M, Metaxas A. A systematic review and meta-analysis of tau phosphorylation in mouse models of familial Alzheimer's disease. Neurobiol Dis 2024; 192:106427. [PMID: 38307366 DOI: 10.1016/j.nbd.2024.106427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Transgenic models of familial Alzheimer's disease (AD) serve as valuable tools for probing the molecular mechanisms associated with amyloid-beta (Aβ)-induced pathology. In this meta-analysis, we sought to evaluate levels of phosphorylated tau (p-tau) and explore potential age-related variations in tau hyperphosphorylation, within mouse models of AD. The PubMed and Scopus databases were searched for studies measuring soluble p-tau in 5xFAD, APPswe/PSEN1de9, J20 and APP23 mice. Data were extracted and analyzed using standardized procedures. For the 5xFAD model, the search yielded 36 studies eligible for meta-analysis. Levels of p-tau were higher in 5xFAD mice relative to control, a difference that was evident in both the carboxy-terminal (CT) and proline-rich (PR) domains of tau. Age negatively moderated the relationship between genotype and CT phosphorylated tau in studies using hybrid mice, female mice, and preparations from the neocortex. For the APPswe/PSEN1de9 model, the search yielded 27 studies. Analysis showed tau hyperphosphorylation in transgenic vs. control animals, evident in both the CT and PR regions of tau. Age positively moderated the relationship between genotype and PR domain phosphorylated tau in the neocortex of APPswe/PSEN1de9 mice. A meta-analysis was not performed for the J20 and APP23 models, due to the limited number of studies measuring p-tau levels in these mice (<10 studies). Although tau is hyperphosphorylated in both 5xFAD and APPswe/PSEN1de9 mice, the effects of ageing on p-tau are contingent upon the model being examined. These observations emphasize the importance of tailoring model selection to the appropriate disease stage when considering the relationship between Aβ and tau, and suggest that there are optimal intervention points for the administration of both anti-amyloid and anti-tau therapies.
Collapse
Affiliation(s)
- Malamati Kourti
- School of Sciences, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus; Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Centre, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus.
| | - Athanasios Metaxas
- School of Sciences, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus; Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
6
|
Cao Q, Dong P, Han H. Therapeutic Effects of the major alkaloid constituents of Evodia rutaecarpa in Alzheimer's disease. Psychogeriatrics 2024; 24:443-457. [PMID: 38173117 DOI: 10.1111/psyg.13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Since the report of Alzheimer's disease (AD) in 1907, it has garnered widespread attention due to its intricate pathogenic mechanisms, significant impact on patients' lives, and the substantial burden it places on society. Presently, effective treatments for AD remain elusive. Recent pharmacological studies on the traditional East Asian herb, Evodia rutaecarpa, have revealed that the bioactive alkaloid components within it can ameliorate AD-related cognitive impairments and neurological damage through various pathways, including anti-inflammatory, antioxidant, and anti-acetylcholinesterase activities. Consequently, this article provides an overview of the pharmacological effects and research status of the four main alkaloid components found in Evodia concerning AD. We hope this article will serve as a valuable reference for experimental and clinical research on the use of Evodia in AD prevention and treatment.
Collapse
Affiliation(s)
- Qingyu Cao
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Peiliang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Han
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Lin W, Li Z, Liang G, Zhou R, Zheng X, Tao R, Huo Q, Su C, Li M, Xu N, Tang C, Song JX. TNEA therapy promotes the autophagic degradation of NLRP3 inflammasome in a transgenic mouse model of Alzheimer's disease via TFEB/TFE3 activation. J Neuroinflammation 2023; 20:21. [PMID: 36732771 PMCID: PMC9896717 DOI: 10.1186/s12974-023-02698-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The impairment in the autophagy-lysosomal pathway (ALP) and the activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome represent two molecular events leading to neurodegeneration and neuroinflammation in Alzheimer's disease (AD), a devastating neurodegenerative disorder without a cure. Previously we demonstrated the cognitive-enhancing effect of a combined electroacupuncture (EA) therapy termed TNEA in a transgenic mouse model of AD, involving activation of transcription factor EB (TFEB), a master regulator of ALP. However, whether and how TNEA inhibits NLRP3 inflammasome via TFEB-mediated ALP in AD remains to be investigated. METHODS 5xFAD mice overexpressing amyloid-β (Aβ) were treated with TNEA or EA on its composing acupoints (GB13 and GV24). The changes in the signaling pathways regulating NLRP3 inflammasome, the association of NLRP3 inflammasome with ALP, and the roles of TFEB/TFE3 in mice brains were determined by immunoblots, immunohistochemistry and AAV-mediated knockdown assays. RESULTS TNEA inhibits the activation of NLRP3 inflammasome and the release of active interleukin 1β (IL1B) in the hippocampi of 5xFAD mice. Mechanistically, TNEA promoted the autophagic degradation of inflammasome components via activating both TFEB and TFE3 by modulating kinases including AMPK and AKT. The composing acupoints in TNEA showed synergistic effects on regulating these molecular events and memory improvement. CONCLUSION Our findings suggest that TNEA attenuates AD-associated memory impairment via promoting TFEB/TFE3-mediated autophagic clearance of Aβ and NLRP3 inflammasome, and partially reveal the molecular basis of combined acupoints therapy originated from ancient wisdom.
Collapse
Affiliation(s)
- Wenjia Lin
- grid.411866.c0000 0000 8848 7685Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China ,grid.410737.60000 0000 8653 1072Department of Acupuncture and Moxibustion, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhao Li
- grid.411866.c0000 0000 8848 7685Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangfeng Liang
- grid.411866.c0000 0000 8848 7685Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Runjin Zhou
- grid.411866.c0000 0000 8848 7685Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Zheng
- grid.411866.c0000 0000 8848 7685Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China ,grid.284723.80000 0000 8877 7471School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Rongrong Tao
- grid.411866.c0000 0000 8848 7685Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingwei Huo
- grid.411866.c0000 0000 8848 7685Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengfu Su
- grid.221309.b0000 0004 1764 5980Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Min Li
- grid.221309.b0000 0004 1764 5980Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Nenggui Xu
- grid.411866.c0000 0000 8848 7685Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunzhi Tang
- grid.411866.c0000 0000 8848 7685Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ju-Xian Song
- grid.411866.c0000 0000 8848 7685Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China ,grid.221309.b0000 0004 1764 5980Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
8
|
Fu S, Liao L, Yang Y, Bai Y, Zeng Y, Wang H, Wen J. The pharmacokinetics profiles, pharmacological properties, and toxicological risks of dehydroevodiamine: A review. Front Pharmacol 2022; 13:1040154. [PMID: 36467053 PMCID: PMC9715618 DOI: 10.3389/fphar.2022.1040154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/03/2022] [Indexed: 01/10/2024] Open
Abstract
Dehydroevodiamine (DHE) is a quinazoline alkaloid isolated from Evodiae Fructus (EF, Wuzhuyu in Chinese, Rutaceae family), a well-known traditional Chinese medicine (TCM) which is clinically applied to treat headache, abdominal pain, menstrual pain, abdominal distension, vomiting, acid regurgitation, etc. Modern research demonstrates that DHE is one of the main components of EF. In recent years, DHE has received extensive attention due to its various pharmacological activities. This review is the first to comprehensively summarize the current studies on pharmacokinetics profiles, pharmacological properties, and toxicological risks of DHE in diverse diseases. Pharmacokinetic studies have shown that DHE has a relatively good oral absorption effect in the mean concentration curves in rat plasma and high absorption in the gastrointestinal tract. In addition, distribution re-absorption and enterohepatic circulation may lead to multiple blood concentration peaks of DHE in rat plasma. DHE possesses a wide spectrum of pharmacological properties in the central nervous system, cardiovascular system, and digestive system. Moreover, DHE has anti-inflammatory effects via downregulating pro-inflammatory cytokines and inflammatory mediators. Given the favorable pharmacological activity, DHE is expected to be a potential drug candidate for the treatment of Alzheimer's disease, chronic stress, amnesia, chronic atrophic gastritis, gastric ulcers, and rheumatoid arthritis. In addition, toxicity studies have suggested that DHE has proarrhythmic effects and can impair bile acid homeostasis without causing hepatotoxicity. However, further rigorous and well-designed studies are needed to elucidate the pharmacokinetics, pharmacological effects, potential biological mechanisms, and toxicity of DHE.
Collapse
Affiliation(s)
- Shubin Fu
- Jiujiang Inspection and Testing Certification Center, Jiujiang, China
| | - Liying Liao
- Jiujiang Inspection and Testing Certification Center, Jiujiang, China
| | - Yi Yang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yan Bai
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yan Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Haoyu Wang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| |
Collapse
|
9
|
Quinn JF, Kelly MJ, Harris CJ, Hack W, Gray NE, Kulik V, Bostick Z, Brumbach BH, Copenhaver PF. The novel estrogen receptor modulator STX attenuates Amyloid-β neurotoxicity in the 5XFAD mouse model of Alzheimer's disease. Neurobiol Dis 2022; 174:105888. [PMID: 36209948 PMCID: PMC10108899 DOI: 10.1016/j.nbd.2022.105888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
Based on previous evidence that the non-steroidal estrogen receptor modulator STX mitigates the effects of neurotoxic Amyloid-β (Aβ) in vitro, we have evaluated its neuroprotective benefits in a mouse model of Alzheimer's disease. Cohorts of 5XFAD mice, which begin to accumulate cerebral Aβ at two months of age, were treated with orally-administered STX starting at 6 months of age for two months. After behavioral testing to evaluate cognitive function, biochemical and immunohistochemical assays were used to analyze key markers of mitochondrial function and synaptic integrity. Oral STX treatment attenuated Aβ-associated mitochondrial toxicity and synaptic toxicity in the brain, as previously documented in cultured neurons. STX also moderately improved spatial memory in 5XFAD mice. In addition, STX reduced markers for reactive astrocytosis and microgliosis surrounding amyloid plaques, and also unexpectedly reduced overall levels of cerebral Aβ in the brain. The neuroprotective effects of STX were more robust in females than in males. These results suggest that STX may have therapeutic potential in Alzheimer's Disease.
Collapse
Affiliation(s)
- Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America; Parkinson's Disease Research, Education, and Clinical Center, Portland Veterans Affairs Medical Center, Portland, OR, United States of America.
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, OHSU, Portland, OR, United States of America
| | - Christopher J Harris
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
| | - Wyatt Hack
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
| | - Veronika Kulik
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
| | - Zoe Bostick
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR, United States of America
| | - Barbara H Brumbach
- Biostatistics and Design Program, OHSU-PSU School of Public Health, Portland, OR, United States of America
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR, United States of America
| |
Collapse
|
10
|
Effect of cx-DHED on Abnormal Glucose Transporter Expression Induced by AD Pathologies in the 5xFAD Mouse Model. Int J Mol Sci 2022; 23:ijms231810602. [PMID: 36142509 PMCID: PMC9505457 DOI: 10.3390/ijms231810602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a form of dementia associated with abnormal glucose metabolism resulting from amyloid-beta (Aβ) plaques and intracellular neurofibrillary tau protein tangles. In a previous study, we confirmed that carboxy-dehydroevodiamine∙HCl (cx-DHED), a derivative of DHED, was effective at improving cognitive impairment and reducing phosphorylated tau levels and synaptic loss in an AD mouse model. However, the specific mechanism of action of cx-DHED is unclear. In this study, we investigated how the cx-DHED attenuates AD pathologies in the 5xFAD mouse model, focusing particularly on abnormal glucose metabolism. We analyzed behavioral changes and AD pathologies in mice after intraperitoneal injection of cx-DHED for 2 months. As expected, cx-DHED reversed memory impairment and reduced Aβ plaques and astrocyte overexpression in the brains of 5xFAD mice. Interestingly, cx-DHED reversed the abnormal expression of glucose transporters in the brains of 5xFAD mice. In addition, otherwise low O-GlcNac levels increased, and the overactivity of phosphorylated GSK-3β decreased in the brains of cx-DHED-treated 5xFAD mice. Finally, the reduction in synaptic proteins was found to also improve by treatment with cx-DHED. Therefore, we specifically demonstrated the protective effects of cx-DHED against AD pathologies and suggest that cx-DHED may be a potential therapeutic drug for AD.
Collapse
|
11
|
Paidi RK, Sarkar S, Ambareen N, Biswas SC. Medha Plus - A novel polyherbal formulation ameliorates cognitive behaviors and disease pathology in models of Alzheimer's disease. Biomed Pharmacother 2022; 151:113086. [PMID: 35617801 DOI: 10.1016/j.biopha.2022.113086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Abstract
Alzheimer's disease (AD) is a multi-faceted neurodegenerative disorder that leads to drastic cognitive impairments culminating in death. Pathologically, it is characterized by amyloid-β (Aβ) plaques, neurofibrillary tangles and neurodegeneration in brain. Complete cure of AD remains elusive to date. Available synthetic drugs only provide symptomatic reliefs targeting single molecule, hence, are unable to address the multi-factorial aspects in AD pathogenesis. It is imperative to develop combinatorial drugs that address the multiple molecular targets in AD. We show a unique polyherbal formulation of Brahmi, Mandukaparni, Shankhpushpi, Yastimadhu, Kokilaksha and Shunthi called 'Medha Plus' (MP), conventionally used for improving memory and reducing anxiety, was able to ameliorate cognitive deficits and associated pathological hallmarks of AD. Viability assays revealed that MP prevented Aβ-induced loss of neurites as well as neuronal apoptosis in cellular models. An array of behavioral studies showed that MP was able to recover AD-associated memory deficits in both Aβ-injected rats and 5XFAD mice. Immunohistochemical studies further revealed that MP treatment reduced Aβ depositshpi and decreased apoptotic cell death in the hippocampus. Enzymatic assays demonstrated anti-oxidative and anti-acetyl cholinesterase properties of MP especially in hippocampus of Aβ-injected rats. An underlying improvement in synaptic plasticity was observed with MP treatment in 5XFAD mice along with an increased expression of phospho-Akt at serine 473 indicating a role of PI3K/Akt signaling in correcting these synaptic deficits. Thus, our strong experiment-driven approach shows that MP is an incredible combinatorial drug that targets multiple molecular targets with exemplary neuroprotective properties and is proposed for clinical trial.
Collapse
Affiliation(s)
- Ramesh Kumar Paidi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Sukanya Sarkar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Naqiya Ambareen
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Headquarters, CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Subhas Chandra Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Headquarters, CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, India.
| |
Collapse
|
12
|
MicroPET Imaging Assessment of Brain Tau and Amyloid Deposition in 6 × Tg Alzheimer’s Disease Model Mice. Int J Mol Sci 2022; 23:ijms23105485. [PMID: 35628296 PMCID: PMC9146140 DOI: 10.3390/ijms23105485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the deposition of extracellular amyloid plaques and intracellular accumulation of neurofibrillary tangles (NFT). Amyloid beta (Aβ) and tau imaging are widely used for diagnosing and monitoring AD in clinical settings. We evaluated the pathology of a recently developed 6 × Tg − AD (6 × Tg) mouse model by crossbreeding 5 × FAD mice with mice expressing mutant (P301L) tau protein using micro-positron emission tomography (PET) image analysis. PET studies were performed in these 6 × Tg mice using [18F]Flutemetamol, which is an amyloid PET radiotracer; [18F]THK5351 and [18F]MK6240, which are tau PET radiotracers; moreover, [18F]DPA714, which is a translocator protein (TSPO) radiotracer, and comparisons were made with age-matched mice of their respective parental strains. We compared group differences in standardized uptake value ratio (SUVR), kinetic parameters, biodistribution, and histopathology. [18F]Flutemetamol images showed prominent cortical uptake and matched well with 6E10 staining images from 2-month-old 6 × Tg mice. [18F]Flutemetamol images showed a significant correlation with [18F]DPA714 in the cortex and hippocampus. [18F]THK5351 images revealed prominent hippocampal uptake and matched well with AT8 immunostaining images in 4-month-old 6 × Tg mice. Moreover, [18F]THK5351 images were confirmed using [18F]MK6240, which revealed significant correlations in the cortex and hippocampus. Uptake of [18F]THK5351 or [18F]MK6240 was highly correlated with [18F]Flutemetamol in 4-month-old 6 × Tg mice. In conclusion, PET imaging revealed significant age-related uptake of Aβ, tau, and TSPO in 6 × Tg mice, which was highly correlated with age-dependent pathology.
Collapse
|
13
|
Lee EC, Hong DY, Lee DH, Park SW, Lee JY, Jeong JH, Kim EY, Chung HM, Hong KS, Park SP, Lee MR, Oh JS. Inflammation and Rho-Associated Protein Kinase-Induced Brain Changes in Vascular Dementia. Biomedicines 2022; 10:biomedicines10020446. [PMID: 35203655 PMCID: PMC8962349 DOI: 10.3390/biomedicines10020446] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Patients with vascular dementia, caused by cerebral ischemia, experience long-term cognitive impairment due to the lack of effective treatment. The mechanisms of and treatments for vascular dementia have been investigated in various animal models; however, the insufficient information on gene expression changes that define pathological conditions hampers progress. To investigate the underlying mechanism of and facilitate treatment development for vascular dementia, we established a mouse model of chronic cerebral hypoperfusion, including bilateral carotid artery stenosis, by using microcoils, and elucidated the molecular pathway underlying vascular dementia development. Rho-associated protein kinase (ROCK) 1/2, which regulates cellular structure, and inflammatory cytokines (IL-1 and IL-6) were upregulated in the vascular dementia model. However, expression of claudin-5, which maintains the blood–brain barrier, and MAP2 as a nerve cell-specific factor, was decreased in the hippocampal region of the vascular dementia model. Thus, we revealed that ROCK pathway activation loosens the tight junction of the blood–brain barrier and increases the influx of inflammatory cytokines into the hippocampal region, leading to neuronal death and causing cognitive and emotional dysfunction. Our vascular dementia model allows effective study of the vascular dementia mechanism. Moreover, the ROCK pathway may be a target for vascular dementia treatment development in the future.
Collapse
Affiliation(s)
- Eun Chae Lee
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-Y.H.); (D.-H.L.); (S.-W.P.); (J.Y.L.)
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
| | - Dong-Yong Hong
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-Y.H.); (D.-H.L.); (S.-W.P.); (J.Y.L.)
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
| | - Dong-Hun Lee
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-Y.H.); (D.-H.L.); (S.-W.P.); (J.Y.L.)
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
| | - Sang-Won Park
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-Y.H.); (D.-H.L.); (S.-W.P.); (J.Y.L.)
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
| | - Ji Young Lee
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-Y.H.); (D.-H.L.); (S.-W.P.); (J.Y.L.)
| | - Ji Hun Jeong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
| | - Eun-Young Kim
- Mireacellbio Co., Ltd., Seoul 04795, Korea; (E.-Y.K.); (H.-M.C.); (K.-S.H.); (S.-P.P.)
| | - Hyung-Min Chung
- Mireacellbio Co., Ltd., Seoul 04795, Korea; (E.-Y.K.); (H.-M.C.); (K.-S.H.); (S.-P.P.)
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Ki-Sung Hong
- Mireacellbio Co., Ltd., Seoul 04795, Korea; (E.-Y.K.); (H.-M.C.); (K.-S.H.); (S.-P.P.)
| | - Se-Pill Park
- Mireacellbio Co., Ltd., Seoul 04795, Korea; (E.-Y.K.); (H.-M.C.); (K.-S.H.); (S.-P.P.)
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
- Correspondence: (M.R.L.); (J.S.O.)
| | - Jae Sang Oh
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-Y.H.); (D.-H.L.); (S.-W.P.); (J.Y.L.)
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
- Correspondence: (M.R.L.); (J.S.O.)
| |
Collapse
|
14
|
An SSA, Shim KH, Kang S, Kim YK, Subedi L, Cho H, Hong SM, Tan MA, Jeon R, Chang KA, Kim SY. The potential anti-amyloidogenic candidate, SPA1413, for Alzheimer's disease. Br J Pharmacol 2021; 179:1033-1048. [PMID: 34610141 DOI: 10.1111/bph.15691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Recently, isoflavone derivatives have been shown to have neuroprotective effects against neurological disorders. For instance, genistein attenuated the neuroinflammation and amyloid-β accumulation in Alzheimer's disease animal models, suggesting the potential for use to prevent and treat Alzheimer's disease. EXPERIMENTAL APPROACH Here, 50 compounds, including isoflavone derivatives, were constructed and screened for the inhibitory effects on amyloid-β42 fibrilization and oligomerization using the high-throughput screening formats of thioflavin T assay and multimer detection system, respectively. The potential neuroprotective effect of t3-(4-hydroxyphenyl)-2H-chromen-7-ol (SPA1413), also known as dehydroequol, idronoxil or phenoxodiol, was evaluated in cells and in 5xFAD (B6SJL) transgenic mouse, a model of Alzheimer's disease. KEY RESULTS SPA1413 had a potent inhibitory action on both amyloid-β fibrilization and oligomerization. In the cellular assay, SPA1413 prevented amyloid-β-induced cytotoxicity and reduced neuroinflammation. Remarkably, the oral administration of SPA1413 ameliorated cognitive impairment, decreased amyloid-β plaques and activated microglia in the brain of 5xFAD (B6SJL) transgenic mouse. CONCLUSION AND IMPLICATIONS Our results strongly support the repurposing of SPA1413, which has already received fast-track status from the US Food and Drug Administration (FDA) for cancer treatment, for the treatment of Alzheimer's disease due to its potent anti-amyloidogenic and anti-neuroinflammatory actions.
Collapse
Affiliation(s)
- Seong Soo A An
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - Kyu Hwan Shim
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea.,Department of Neurology, Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Shinwoo Kang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea.,Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Young Kyo Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Lalita Subedi
- Department of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hyewon Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Seong-Min Hong
- Department of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Mario A Tan
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea.,College of Science, University of Santo Tomas, Manila, Philippines
| | - Raok Jeon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea.,Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Sun Yeou Kim
- Department of Pharmacy, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
15
|
Wen JX, Tong YL, Ma X, Wang RL, Li RS, Song HT, Zhao YL. Therapeutic effects and potential mechanism of dehydroevodiamine on N-methyl-N'-nitro-N-nitrosoguanidine-induced chronic atrophic gastritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153619. [PMID: 34320422 DOI: 10.1016/j.phymed.2021.153619] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/27/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUNDS Dehydroevodiamine (DHE) is a quinazoline alkaloid isolated from a Chinese herbal medicine, named Euodiae Fructus (Wu-Zhu-Yu in Chinese). This study aimed to investigate the therapeutic effects and potential mechanism of DHE on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced chronic atrophic gastritis (CAG) based on integrated approaches. METHODS Therapeutic effects of DHE on serum biochemical indices and histopathology of gastric tissue in MNNG-induced CAG rats were analyzed. MNNG-induced GES-1 human gastric epithelial cell injury model was established. Cell viability and proliferation was quantified by a cell counting kit-8 assay. Cell morphology and mitochondrial membrane potential (MMP) were detected by a high content screening (HCS) assay. Cell migration and invasion were detected by a Transwell chamber. Moreover, UHPLC-Q-TOF/MS was performed to investigate the potential metabolites and signaling pathway affecting the protective effects of DHE on MNNG-induced cell migration and invasion of GES-1. Furthermore, in view of the key role of angiogenesis in the transformation of inflammation and cancer, this study explored relative mRNA and protein expression levels of HIF-1α-mediated VEGF pathway in vivo and in vitro by RT-PCR and Western Blotting, respectively. RESULTS The results showed that the therapeutic effects of DHE on CAG rats were presented in down-regulation serum biochemical indices and alleviating histological damage of gastric tissue. Besides, DHE has an effect on increasing cell proliferation of GES-1 cells, ameliorating MNNG-induced gastric epithelial cell damage and mitochondrial dysfunction. In addition, DHE could inhibit MNNG induced migration and invasion of GES-1 cells. Cell metabolomics analyses showed that the protective effect of DHE on GES-1 cells is mainly associated with the regulation of inflammation metabolites and energy metabolism related pathways. It was found that DHE has a regulating effect on tumor angiogenesis and can inhibit the relative gene and protein expression of HIF-1α-mediated VEGF signaling pathway. CONCLUSIONS The present work highlighted the role of DHE ameliorated gastric injury in MNNG-induced CAG rats in vivo and GES-1 cell migration in vitro by inhibiting HIF-1α/VEGF angiogenesis pathway. These results suggest that DHE may be the effective components of Euodiae Fructus, which provides a new agent for the treatment of CAG.
Collapse
Affiliation(s)
- Jian-Xia Wen
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Yu-Ling Tong
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui-Lin Wang
- Department of Integrative Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Rui-Sheng Li
- Research Center for Clinical and Translational Medicine, Chinese PLA General Hospital, Beijing, China
| | - Hong-Tao Song
- Department of Pharmacy, 900 Hospital of the Joint Logistics Team, Fuzhou, China.
| | - Yan-Ling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
16
|
Kiris I, Basar MK, Sahin B, Gurel B, Coskun J, Mroczek T, Baykal AT. Evaluation of the Therapeutic Effect of Lycoramine on Alzheimer's Disease in Mouse Model. Curr Med Chem 2021; 28:3449-3473. [PMID: 33200692 DOI: 10.2174/0929867327999201116193126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease is one of the leading health problems characterized by the accumulation of Aβ and hyperphosphorylated tau that account for the senile plaque formations causing extensive cognitive decline. Many of the clinical diagnoses of Alzheimer's disease are made in the late stages, when the pathological changes have already progressed. OBJECTIVE The objective of this study is to evaluate the promising therapeutic effects of a natural compound, lycoramine, which has been shown to have therapeutic potential in several studies and to understand its mechanism of action on the molecular level via differential protein expression analyses. METHODS Lycoramine and galantamine, an FDA approved drug used in the treatment of mild to moderate AD, were administered to 12 month-old 5xFAD mice. Effects of the compounds were investigated by Morris water maze, immunohistochemistry and label- free differential protein expression analyses. RESULTS Here we demonstrated the reversal of cognitive decline via behavioral testing and the clearance of Aβ plaques. Proteomics analysis provided in-depth information on the statistically significant protein perturbations in the cortex, hippocampus and cerebellum sections to hypothesize the possible clearance mechanisms of the plaque formation and the molecular mechanism of the reversal of cognitive decline in a transgenic mouse model. Bioinformatics analyses showed altered molecular pathways that can be linked with the reversal of cognitive decline observed after lycoramine administration but not with galantamine. CONCLUSION Lycoramine shows therapeutic potential to halt and reverse cognitive decline at the late stages of disease progression, and holds great promise for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Irem Kiris
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Merve Karayel Basar
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Betul Sahin
- Acibadem Labmed Clinical Laboratories, R&D Center, Istanbul, Turkey
| | - Busra Gurel
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Julide Coskun
- Acibadem Labmed Clinical Laboratories, R&D Center, Istanbul, Turkey
| | - Tomasz Mroczek
- Department of Pharmacognosy, Medical University of Lublin, Lublin, Poland
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
17
|
Zheng X, Lin W, Jiang Y, Lu K, Wei W, Huo Q, Cui S, Yang X, Li M, Xu N, Tang C, Song JX. Electroacupuncture ameliorates beta-amyloid pathology and cognitive impairment in Alzheimer disease via a novel mechanism involving activation of TFEB (transcription factor EB). Autophagy 2021; 17:3833-3847. [PMID: 33622188 DOI: 10.1080/15548627.2021.1886720] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is the most prevalent neurodegenerative disorder leading to dementia in the elderly. Unfortunately, no cure for AD is available to date. Increasing evidence has proved the roles of misfolded protein aggregation due to impairment of the macroautophagy/autophagy-lysosomal pathway (ALP) in the pathogenesis of AD, and thus making TFEB (transcription factor EB), which orchestrates ALP, as a promising target for treating AD. As a complementary therapy, acupuncture or electroacupuncture (EA) has been commonly used for treating human diseases. Although the beneficial effects of acupuncture for AD have been primarily studied both pre-clinically and clinically, the real efficacy of acupuncture on AD remains inconclusive and the underlying mechanisms are largely unexplored. In this study, we demonstrated the cognitive-enhancing effect of three-needle EA (TNEA) in an animal model of AD with beta-amyloid (Aβ) pathology (5xFAD). TNEA reduced APP (amyloid beta (A4) precursor protein), C-terminal fragments (CTFs) of APP and Aβ load, and inhibited glial cell activation in the prefrontal cortex and hippocampus of 5xFAD. Mechanistically, TNEA activated TFEB via inhibiting the AKT-MAPK1-MTORC1 pathway, thus promoting ALP in the brains. Therefore, TNEA represents a promising acupuncture therapy for AD, via a novel mechanism involving TFEB activation.Abbreviations Aβ: β-amyloid; AD: Alzheimer disease; AIF1/IBA1: allograft inflammatory factor 1; AKT1: thymoma viral proto-oncogene 1; ALP: autophagy-lysosomal pathway; APP: amyloid beta (A4) precursor protein; BACE1: beta-site APP cleaving enzyme 1; CQ: chloroquine; CTFs: C-terminal fragments; CTSD: cathepsin D; EA: electroacupuncture; FC: fear conditioning; GFAP: glial fibrillary acidic protein; HI: hippocampus; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPT: microtubule-associated protein tau; MTORC1: mechanistic target of rapamycin kinase complex 1; MWM: Morris water maze; NFT: neurofibrillary tangles; PFC: prefrontal cortex; PSEN1: presenilin 1; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TNEA: three-needle electroacupuncture.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjia Lin
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yimin Jiang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kejia Lu
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjing Wei
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingwei Huo
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaoyang Cui
- Department of Rehabilitation, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Nenggui Xu
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunzhi Tang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ju-Xian Song
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
18
|
Spatial memory deficiency early in 6xTg Alzheimer's disease mouse model. Sci Rep 2021; 11:1334. [PMID: 33446720 PMCID: PMC7809274 DOI: 10.1038/s41598-020-79344-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/08/2020] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is mainly characterized by the deposition of extracellular amyloid plaques and intracellular accumulation of neurofibrillary tangles (NFTs). While the recent 5xFAD AD mouse model exhibits many AD-related phenotypes and a relatively early and aggressive amyloid β production, it does not show NFTs. Here, we developed and evaluated a novel AD mouse model (6xTg-AD, 6xTg) by crossbreeding 5xFAD mice with mice expressing mutant (P301L) tau protein (MAPT). Through behavioral and histopathological tests, we analyzed cognitive changes and neuropathology in 6xTg mice compared to their respective parental strains according to age. Spatial memory deficits occurred in 6xTg mice at 2 months of age, earlier than they occurred in 5xFAD mice. Histopathological data revealed aggressive Aβ42 and p-tau accumulation in 6xTg mice. Microglial activation occurred in the cortex and hippocampus of 6xTg mice beginning at 2 months. In 6xTg model mice, the synaptic loss was observed in the cortex from 4 months of age and in the hippocampus from 6 months of age, and neuronal loss appeared in the cortex from 4 months of age and in the hippocampus 6 months of age, earlier than it is observed in the 5xFAD and JNPL3 models. These results showed that each pathological symptom appeared much faster than in their parental animal models. In conclusion, these novel 6xTg-AD mice might be an advanced animal model for studying AD, representing a promising approach to developing effective therapy.
Collapse
|
19
|
Huang GD, Jiang LX, Su F, Wang HL, Zhang C, Yu X. A novel paradigm for assessing olfactory working memory capacity in mice. Transl Psychiatry 2020; 10:431. [PMID: 33319773 PMCID: PMC7738675 DOI: 10.1038/s41398-020-01120-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023] Open
Abstract
A decline in working memory (WM) capacity is suggested to be one of the earliest symptoms observed in Alzheimer's disease (AD). Although WM capacity is widely studied in healthy subjects and neuropsychiatric patients, few tasks are developed to measure this variation in rodents. The present study describes a novel olfactory working memory capacity (OWMC) task, which assesses the ability of mice to remember multiple odours. The task was divided into five phases: context adaptation, digging training, rule-learning for non-matching to a single-sample odour (NMSS), rule-learning for non-matching to multiple sample odours (NMMS) and capacity testing. During the capacity-testing phase, the WM capacity (number of odours that the mice could remember) remained stable (average capacity ranged from 6.11 to 7.00) across different testing sessions in C57 mice. As the memory load increased, the average errors of each capacity level increased and the percent correct gradually declined to chance level, which suggested a limited OWMC in C57 mice. Then, we assessed the OWMC of 5 × FAD transgenic mice, an animal model of AD. We found that the performance displayed no significant differences between young adult (3-month-old) 5 × FAD mice and wild-type (WT) mice during the NMSS phase and NMMS phase; however, during the capacity test with increasing load, we found that the OWMC of young adult 5 × FAD mice was significantly decreased compared with WT mice, and the average error was significantly increased while the percent correct was significantly reduced, which indicated an impairment of WM capacity at the early stage of AD in the 5 × FAD mice model. Finally, we found that FOS protein levels in the medial prefrontal cortex and entorhinal cortex after the capacity test were significantly lower in 5 × FAD than WT mice. In conclusion, we developed a novel paradigm to assess the capacity of olfactory WM in mice, and we found that OWMC was impaired in the early stage of AD.
Collapse
Affiliation(s)
- Geng-Di Huang
- grid.459847.30000 0004 1798 0615Peking University Sixth Hospital, 100191 Beijing, China ,grid.11135.370000 0001 2256 9319Peking University Institute of Mental Health, 100191 Beijing, China ,grid.11135.370000 0001 2256 9319NHC Key Laboratory of Mental Health (Peking University), 100191 Beijing, China ,grid.459847.30000 0004 1798 0615National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China ,Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, 100191 Beijing, China
| | - Li-Xin Jiang
- grid.459847.30000 0004 1798 0615Peking University Sixth Hospital, 100191 Beijing, China ,grid.11135.370000 0001 2256 9319Peking University Institute of Mental Health, 100191 Beijing, China ,grid.11135.370000 0001 2256 9319NHC Key Laboratory of Mental Health (Peking University), 100191 Beijing, China ,grid.459847.30000 0004 1798 0615National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China ,Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, 100191 Beijing, China
| | - Feng Su
- grid.452723.50000 0004 7887 9190Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China ,grid.24696.3f0000 0004 0369 153XSchool of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100069 Beijing, China
| | - Hua-Li Wang
- grid.459847.30000 0004 1798 0615Peking University Sixth Hospital, 100191 Beijing, China ,grid.11135.370000 0001 2256 9319Peking University Institute of Mental Health, 100191 Beijing, China ,grid.11135.370000 0001 2256 9319NHC Key Laboratory of Mental Health (Peking University), 100191 Beijing, China ,grid.459847.30000 0004 1798 0615National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China ,Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, 100191 Beijing, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100069, Beijing, China.
| | - Xin Yu
- Peking University Sixth Hospital, 100191, Beijing, China. .,Peking University Institute of Mental Health, 100191, Beijing, China. .,NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China. .,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China. .,Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, 100191, Beijing, China.
| |
Collapse
|
20
|
Franke TN, Irwin C, Bayer TA, Brenner W, Beindorff N, Bouter C, Bouter Y. In vivo Imaging With 18F-FDG- and 18F-Florbetaben-PET/MRI Detects Pathological Changes in the Brain of the Commonly Used 5XFAD Mouse Model of Alzheimer's Disease. Front Med (Lausanne) 2020; 7:529. [PMID: 33043029 PMCID: PMC7522218 DOI: 10.3389/fmed.2020.00529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Imaging biomarkers of Alzheimer's disease (AD) that are able to detect molecular changes in vivo and transgenic animal models mimicking AD pathologies are essential for the evaluation of new therapeutic strategies. Positron-emission tomography (PET) using either 18F-Fluorodeoxyglucose (18F-FDG) or amyloid-tracers is a well-established, non-invasive tool in the clinical diagnostics of AD assessing two major pathological hallmarks. 18F-FDG-PET is able to detect early changes in cerebral glucose metabolism and amyloid-PET shows cerebral amyloid load. However, the suitability of 18F-FDG- and amyloid-PET in the widely used 5XFAD mouse model of AD is unclear as only a few studies on the use of PET biomarkers are available showing some conflicting results. The aim of this study was the evaluation of 18F-FDG-PET and amyloid-PET in 5XFAD mice in comparison to neurological deficits and neuropathological changes. Seven- and 12-month-old male 5XFAD mice showed a significant reduction in brain glucose metabolism in 18F-FDG-PET and amyloid-PET with 18F-Florbetaben demonstrated an increased cerebral amyloid deposition (n = 4-6 per group). Deficits in spatial reference memory were detected in 12-month-old 5XFAD mice in the Morris Water Maze (n = 10-12 per group). Furthermore, an increased plaque load and gliosis could be proven immunohistochemically in 5XFAD mice (n = 4-6 per group). PET biomarkers 18F-FDG and 18F-Florbetaben detected cerebral hypometabolism and increased plaque load even before the onset of severe memory deficits. Therefore, the 5XFAD mouse model of AD is well-suited for in vivo monitoring of AD pathologies and longitudinal testing of new therapeutic approaches.
Collapse
Affiliation(s)
- Timon N Franke
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Caroline Irwin
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Thomas A Bayer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
21
|
Magnolol Ameliorates Behavioral Impairments and Neuropathology in a Transgenic Mouse Model of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5920476. [PMID: 32714487 PMCID: PMC7354664 DOI: 10.1155/2020/5920476] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/13/2020] [Indexed: 12/02/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive memory loss. Magnolol (MN), the main active ingredient of Magnolia officinalis, possesses anti-AD effects in several experimental models of AD. In this study, we aimed to explore whether MN could ameliorate the cognitive deficits in TgCRND8 transgenic mice and to elucidate its molecular mechanisms. Male TgCRND8 mice were orally administered with MN (20 and 40 mg/kg) daily for 4 consecutive months, followed by assessing the spatial learning and memory functions using the open-field, radial arm maze, and novel object recognition tests. The results demonstrated that MN (20 and 40 mg/kg) could markedly ameliorate the cognitive deficits in TgCRND8 mice. In addition, MN significantly increased the expression of postsynaptic density protein 93 (PSD93), PSD-95, synapsin-1, synaptotagmin-1, synaptophysin (SYN), and interleukin-10 (IL-10), while markedly reduced the protein levels of tumor necrosis factor alpha (TNF-α), IL-6, IL-1β, Aβ40, and Aβ42, and modulated the amyloid precursor protein (APP) processing and phosphorylation. Immunofluorescence showed that MN significantly suppressed the activation of microglia (Iba-1) and astrocytes (GFAP) in the hippocampus and cerebral cortex of TgCRND8 mice. Mechanistic studies revealed that MN could significantly increase the ratios of p-GSK-3β (Ser9)/GSK-3β, p-Akt (Ser473)/Akt, and p-NF-κB p65/NF-κB p65. These findings indicate that MN exerted cognitive deficits improving effects via suppressing neuroinflammation, amyloid pathology, and synaptic dysfunction through regulating the PI3K/Akt/GSK-3β and NF-κB pathways, suggesting that MN is a promising naturally occurring polyphenol worthy of further developing into a therapeutic agent for AD treatment.
Collapse
|
22
|
El Gaamouch F, Audrain M, Lin WJ, Beckmann N, Jiang C, Hariharan S, Heeger PS, Schadt EE, Gandy S, Ehrlich ME, Salton SR. VGF-derived peptide TLQP-21 modulates microglial function through C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice. Mol Neurodegener 2020; 15:4. [PMID: 31924226 PMCID: PMC6954537 DOI: 10.1186/s13024-020-0357-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiomic studies by several groups in the NIH Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) identified VGF as a major driver of Alzheimer's disease (AD), also finding that reduced VGF levels correlate with mean amyloid plaque density, Clinical Dementia Rating (CDR) and Braak scores. VGF-derived peptide TLQP-21 activates the complement C3a receptor-1 (C3aR1), predominantly expressed in the brain on microglia. However, it is unclear how mouse or human TLQP-21, which are not identical, modulate microglial function and/or AD progression. METHODS We performed phagocytic/migration assays and RNA sequencing on BV2 microglial cells and primary microglia isolated from wild-type or C3aR1-null mice following treatment with TLQP-21 or C3a super agonist (C3aSA). Effects of intracerebroventricular TLQP-21 delivery were evaluated in 5xFAD mice, a mouse amyloidosis model of AD. Finally, the human HMC3 microglial cell line was treated with human TLQP-21 to determine whether specific peptide functions are conserved from mouse to human. RESULTS We demonstrate that TLQP-21 increases motility and phagocytic capacity in murine BV2 microglial cells, and in primary wild-type but not in C3aR1-null murine microglia, which under basal conditions have impaired phagocytic function compared to wild-type. RNA sequencing of primary microglia revealed overlapping transcriptomic changes induced by treatment with TLQP-21 or C3a super agonist (C3aSA). There were no transcriptomic changes in C3aR1-null or wild-type microglia exposed to the mutant peptide TLQP-R21A, which does not activate C3aR1. Most of the C3aSA- and TLQP-21-induced differentially expressed genes were linked to cell migration and proliferation. Intracerebroventricular TLQP-21 administration for 28 days via implanted osmotic pump resulted in a reduction of amyloid plaques and associated dystrophic neurites and restored expression of subsets of Alzheimer-associated microglial genes. Finally, we found that human TLQP-21 activates human microglia in a fashion similar to activation of murine microglia by mouse TLQP-21. CONCLUSIONS These data provide molecular and functional evidence suggesting that mouse and human TLQP-21 modulate microglial function, with potential implications for the progression of AD-related neuropathology.
Collapse
Affiliation(s)
- Farida El Gaamouch
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
- Medical Research Center of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Noam Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Cheng Jiang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Siddharth Hariharan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Peter S. Heeger
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Sema4, Stamford, CT 06902 USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| |
Collapse
|