1
|
Song Y, Zhang H, Wang X, Huang L, Kang Y, Feng Z, Zhao F, Zhuang H, Zhang J. Acute high-intensity noise exposure exacerbates anxiety-like behavior via neuroinflammation and blood brain barrier disruption of hippocampus in male rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:11. [PMID: 40264210 PMCID: PMC12016381 DOI: 10.1186/s12993-025-00275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
The health risks associated with acute noise exposure are increasing, particularly the risk of mental health. This study aims to identify the association between acute high-intensity noise exposure and anxiety behavior in male rats, and to explore the associated neurobiological mechanisms. Male rats were subjected to different levels of acute high-intensity noise to determine the intensity that causes long-lasting anxiety-like behaviors. Anxiety-like behaviors were evaluated using the open field test (OFT) and the elevated plus maze test (EPMT) on the third day and 1month post-exposure, respectively. A range of techniques, including immunofluorescence staining, western blot, ELISA, and real-time quantitative PCR, were used to investigate neuronal apoptosis, glial cell activation, neuroinflammation, and blood-brain barrier (BBB) disruption in the hippocampus. Upon exposure to 135 dB of acute noise, male rats exhibited enduring anxiety-like behaviors. Subsequent investigations discovered that this noise intensity not only activated glial cells and triggered neuroinflammation within the hippocampus but also decreased the expression levels of ZO-1, claudin-5, and occludin, suggesting a disruption of the BBB. Additionally, this exposure was associated with the induction of neuronal apoptosis in the hippocampal region. In conclusion, acute exposure to 135 dB noise may cause persistent anxiety in male rats through a cyclical interaction between neuroinflammation and BBB disruption, potentially leading to neuronal apoptosis.
Collapse
Affiliation(s)
- Yifei Song
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 711049, Shaanxi, China
| | - Haoyu Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 711049, Shaanxi, China
| | - Xiaoni Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 711049, Shaanxi, China
| | - Lei Huang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 711049, Shaanxi, China
| | - Yiting Kang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 711049, Shaanxi, China
| | - Zeguo Feng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 711049, Shaanxi, China
| | - Fadong Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 711049, Shaanxi, China
- Equipment Management and Support College, Engineering University of People's Armed Police, Xi'an, China
| | - Hongwei Zhuang
- Equipment Management and Support College, Engineering University of People's Armed Police, Xi'an, China
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 711049, Shaanxi, China.
| |
Collapse
|
2
|
Song Y, Wang X, Zhang H, Ma R, Kang Y, Di X, Feng Z, Ni C, Zhao F, Zhuang H, Zhang J. High-intensity acute noise exposure causes anxiety in female rats by inducing hippocampal neuron apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117833. [PMID: 39908868 DOI: 10.1016/j.ecoenv.2025.117833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND The increasing prevalence of acute noise exposure poses a significant threat to mental health. Identifying the intensity of noise that impair health is crucial for developing effective interventions. The study aimed to determine the acute noise intensity thresholds that elicit anxiety-like behaviors and brain damage in female rats, and then to elucidate the underlying neurobiological mechanisms. METHODS Female rats were subjected to acute noise exposure at levels of 105, 115, 125, and 135 dB to determine the intensity thresholds that elicit anxiety-like behaviors and brain damage were assessed at the 3th day and 1 month post-exposure. RESULTS We found that acute noise exposure at 135 dB induced significant anxiety-like behaviors and hippocampal neuron apoptosis on the third day, with these effects persisting up to one month after exposure. KEGG enrichment analysis of differentially expressed genes (DEGs) revealed alterations in the PI3K-AKT signaling pathway, as confirmed by Western blot analysis. CONCLUSIONS Our findings indicate that acute noise exposure at 135 dB elicits anxiety-like behaviors in female rats on the third day post-exposure, with these effects persisting up to one month. This sustained anxiety is attributed to the inhibition of the PI3K-AKT signaling pathway and the subsequent activation of the apoptotic Caspase-3/BCL-2/BAX pathway, culminating in hippocampal neuron apoptosis.
Collapse
Affiliation(s)
- Yifei Song
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoni Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Haoyu Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Rui Ma
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yiting Kang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaohui Di
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zeguo Feng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Can Ni
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fadong Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Equipment Management and Support College, Chinese People's Armed Police Force Engineering University, Xi'an, China
| | - Hongwei Zhuang
- Equipment Management and Support College, Chinese People's Armed Police Force Engineering University, Xi'an, China
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Buján GE, D'Alessio L, Serra HA, Guelman LR, Molina SJ. Assessment of Hippocampal-Related Behavioral Changes in Adolescent Rats of both Sexes Following Voluntary Intermittent Ethanol Intake and Noise Exposure: A Putative Underlying Mechanism and Implementation of a Non-pharmacological Preventive Strategy. Neurotox Res 2024; 42:29. [PMID: 38856796 DOI: 10.1007/s12640-024-00707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Ethanol (EtOH) intake and noise exposure are particularly concerning among human adolescents because the potential to harm brain. Unfortunately, putative underlying mechanisms remain to be elucidated. Moreover, implementing non-pharmacological strategies, such as enriched environments (EE), would be pertinent in the field of neuroprotection. This study aims to explore possible underlying triggering mechanism of hippocampus-dependent behaviors in adolescent animals of both sexes following ethanol intake, noise exposure, or a combination of both, as well as the impact of EE. Adolescent Wistar rats of both sexes were subjected to an intermittent voluntary EtOH intake paradigm for one week. A subgroup of animals was exposed to white noise for two hours after the last session of EtOH intake. Some animals of both groups were housed in EE cages. Hippocampal-dependent behavioral assessment and hippocampal oxidative state evaluation were performed. Results show that different hippocampal-dependent behavioral alterations might be induced in animals of both sexes after EtOH intake and sequential noise exposure, that in some cases are sex-specific. Moreover, hippocampal oxidative imbalance seems to be one of the potential underlying mechanisms. Additionally, most behavioral and oxidative alterations were prevented by EE. These findings suggest that two frequently found environmental agents may impact behavior and oxidative pathways in both sexes in an animal model. In addition, EE resulted a partially effective neuroprotective strategy. Therefore, it could be suggested that the implementation of a non-pharmacological approach might also potentially provide neuroprotective advantages against other challenges. Finally, considering its potential for translational human benefit might be worth.
Collapse
Affiliation(s)
- G E Buján
- Facultad de Medicina, Departamento de Toxicología y Farmacología, 1ª Cátedra de Farmacología, Buenos Aires, Universidad de Buenos Aires (UBA), Paraguay 2155, piso 15, 1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - L D'Alessio
- Facultad de Medicina, Departamento de Toxicología y Farmacología, 1ª Cátedra de Farmacología, Buenos Aires, Universidad de Buenos Aires (UBA), Paraguay 2155, piso 15, 1121, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Biología Celular y Neurociencias (IBCN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - H A Serra
- Facultad de Medicina, Departamento de Toxicología y Farmacología, 1ª Cátedra de Farmacología, Buenos Aires, Universidad de Buenos Aires (UBA), Paraguay 2155, piso 15, 1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - L R Guelman
- Facultad de Medicina, Departamento de Toxicología y Farmacología, 1ª Cátedra de Farmacología, Buenos Aires, Universidad de Buenos Aires (UBA), Paraguay 2155, piso 15, 1121, Ciudad Autónoma de Buenos Aires, Argentina.
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - S J Molina
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Buján GE, D'Alessio L, Serra HA, Molina SJ, Guelman LR. Behavioral alterations induced by intermittent ethanol intake and noise exposure in adolescent rats. Eur J Neurosci 2022; 55:1756-1773. [PMID: 35342999 DOI: 10.1111/ejn.15657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
Abstract
Alcohol intake and exposure to noise are common activities of human adolescents performed in entertainment contexts worldwide that can induce behavioral disturbances. Therefore, the aim of the present work was to investigate in an experimental model of adolescent animals whether noise exposure and intermittent ethanol intake, when present individually or sequentially, might be able to modify different behaviors. Adolescent Wistar rats of both sexes were subjected to voluntary intermittent ethanol intake for 1 week followed by exposure to noise for 2 h and tested in a battery of behavioral tasks. Data show that males exposed to noise experienced a deficit in associative memory (AM), increase in anxiety-like behaviors (ALB) and altered reaction to novelty (RN) when compared with sham animals, whereas females also showed an increase in risk assessment behaviors (RAB) and a decrease in exploratory activity (EA). In contrast, ethanol intake induced an increase in RAB and RN in males and females, whereas females also showed a deficit in AM and EA as well as an increase in ALB. When ethanol was ingested before noise exposure, most parameters were counteracted both in male and females, but differed among sexes. In consequence, it could be hypothesized that an environmental acute stressor like noise might trigger a behavioral counteracting induced by a previous repeated exposure to a chemical agent such as ethanol, leading to a compensation of a non-adaptive behavior and reaching a better adjustment to the environment.
Collapse
Affiliation(s)
- Gustavo Ezequiel Buján
- Universidad de Buenos Aires. Facultad de Medicina. 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - Luciana D'Alessio
- Universidad de Buenos Aires. Facultad de Medicina. 1ª Cátedra de Farmacología, Buenos Aires, Argentina.,Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología Celular y Neurociencias (IBCN, UBA-CONICET). Facultad de Medicina, Buenos Aires, Argentina
| | - Héctor Alejandro Serra
- Universidad de Buenos Aires. Facultad de Medicina. 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - Sonia Jazmín Molina
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET). Facultad de Medicina, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires. Facultad de Medicina. 1ª Cátedra de Farmacología, Buenos Aires, Argentina.,Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET). Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
5
|
Macartney EL, Lagisz M, Nakagawa S. The Relative Benefits of Environmental Enrichment on Learning and Memory are Greater When Stressed: A Meta-analysis of Interactions in Rodents. Neurosci Biobehav Rev 2022; 135:104554. [PMID: 35149103 DOI: 10.1016/j.neubiorev.2022.104554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 12/11/2022]
Abstract
Environmental enrichment ("EE") is expected to alleviate the negative effects of stress on cognitive performance. However, there are complexities associated with interpreting interactions that obscure determining the benefit EE may play in mitigating the negative effects of stress. To clarify these complexities, we conducted a systematic review with meta-analysis on the main and interactive effects of EE and stress on learning and memory in rodents. We show that EE and stress interact 'synergistically' where EE provides a greater relative benefit to stressed individuals compared to those reared in conventional housing. Importantly, EE can fully-compensate for the negative effects of stress where stressed individuals with EE performed equally to enriched individuals without a stress manipulation. Additionally, we show the importance of other mediating factors, including the order of treatment exposure, duration and type of stress, type of EE, and type of cognitive assays used. This study not only quantifies the interactions between EE and stress, but also provides a clear example for how to conduct and interpret meta-analysis of interactions.
Collapse
Affiliation(s)
- Erin L Macartney
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia Kensington Campus, UNSW, Sydney, NSW 2052.
| | - Malgorzata Lagisz
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia Kensington Campus, UNSW, Sydney, NSW 2052
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia Kensington Campus, UNSW, Sydney, NSW 2052
| |
Collapse
|
6
|
Affiliation(s)
- Sonia Jazmín Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina; Universidad de Buenos Aires, Facultad de Medicina, 1a Cátedra de Farmacología, Buenos Aires, Argentina
| |
Collapse
|
7
|
Molina SJ, Lietti ÁE, Carreira Caro CS, Buján GE, Guelman LR. Effects of early noise exposure on hippocampal-dependent behaviors during adolescence in male rats: influence of different housing conditions. Anim Cogn 2021; 25:103-120. [PMID: 34322771 DOI: 10.1007/s10071-021-01540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Central nervous system (CNS) development is a very complex process that can be altered by environmental stimuli such as noise, which can generate long-term auditory and/or extra-auditory impairments. We have previously reported that early noise exposure can induce hippocampus-related behavioral alterations in postnatal day (PND) 28 adolescent rats. Furthermore, we recently found biochemical modifications in the hippocampus (HC) of these animals that seemed to endure even in more mature animals (i.e. PND35) and that have not been studied along with behavioral correlates. Thus, the aim of this work was to reveal novel data about the effects of early noise exposure on hippocampal-dependent behaviors in more mature animals. Additionally, extended enriched environment (EE) housing was evaluated to determine its capacity to induce behavioral modifications, either by its neuroprotective ability or the greater stimulation that it generates. Male Wistar rats were exposed to different noise schemes at PND7 or PND15. Upon weaning, some animals were transferred to EE whereas others were kept in standard cages. At PND35, different hippocampal-dependent behavioral assessments were performed. Results showed noise-induced behavioral changes that differed according to the scheme and age of exposure used. In addition, housing in an EE was effective either in preventing some of these changes or in inducing the appearance of new behavioral modifications. These findings suggest that CNS development would be sensitive to the effects of different type of environmental stimuli such as noise or enriched housing, leading to maladaptive behavioral changes that last even until adolescence.
Collapse
Affiliation(s)
- Sonia Jazmín Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Paraguay 2155, Piso 15, 1121, Buenos Aires, Argentina.
| | - Ángel Emanuel Lietti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Paraguay 2155, Piso 15, 1121, Buenos Aires, Argentina
| | - Candela Sofía Carreira Caro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Paraguay 2155, Piso 15, 1121, Buenos Aires, Argentina
| | - Gustavo Ezequiel Buján
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Paraguay 2155, Piso 15, 1121, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| |
Collapse
|
8
|
Molina SJ, Buján GE, Guelman LR. Noise-induced hippocampal oxidative imbalance and aminoacidergic neurotransmitters alterations in developing male rats: Influence of enriched environment during adolescence. Dev Neurobiol 2021; 81:164-188. [PMID: 33386696 DOI: 10.1002/dneu.22806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 12/21/2022]
Abstract
Living in big cities might involuntarily expose people to high levels of noise causing auditory and/or extra-auditory impairments, including adverse effects on central nervous system (CNS) areas such as the hippocampus. In particular, CNS development is a very complex process that can be altered by environmental stimuli. We have previously shown that noise exposure of developing rats can induce hippocampal-related behavioral alterations. However, noise-induced biochemical alterations had not been studied yet. Thus, the aim of this work was to assess whether early noise exposure can affect rat hippocampal oxidative state and aminoacidergic neurotransmission tone. Additionally, the effectiveness of an enriched environment (EE) as a neuroprotective strategy was evaluated. Male Wistar rats were exposed to different noise schemes at 7 or 15 days after birth. Upon weaning, some animals were transferred to an EE whereas others were kept in standard cages. Short- and long-term measurements were performed to evaluate reactive oxygen species, thioredoxins levels and catalase activity as indicators of hippocampal oxidative status as well as glutamic acid decarboxylase and a subtype of glutamate transporter to evaluate aminoacidergic neurotransmission tone. Results showed noise-induced changes in hippocampal oxidative state and aminoacidergic neurotransmission markers that lasted until adolescence and differed according to the scheme and the age of exposure. Finally, EE housing was effective in preventing some of these changes. These findings suggest that CNS development seems to be sensitive to the effects of stressors such as noise, as well as those of an environmental stimulation, favoring prompt and lasting molecular changes.
Collapse
Affiliation(s)
- Sonia Jazmín Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Gustavo Ezequiel Buján
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| |
Collapse
|
9
|
Lee CH, Kim KW, Lee SM, Kim SY. Effect of acute noise trauma on the gene expression profile of the hippocampus. BMC Neurosci 2020; 21:45. [PMID: 33160313 PMCID: PMC7648995 DOI: 10.1186/s12868-020-00599-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/30/2020] [Indexed: 01/24/2023] Open
Abstract
Background This study aimed to investigate the changes in the expression of hippocampal genes upon acute noise exposure. Methods Three-week-old Sprague–Dawley rats were assigned to control (n = 15) and noise (n = 15) groups. White noise (2–20 kHz, 115 dB sound pressure level [SPL]) was delivered for 4 h per day for 3 days to the noise group. All rats were sacrificed on the last day of noise exposure, and gene expression in the hippocampus was analyzed using a microarray. Pathway analyses were conducted for genes that showed differential expression ≥ 1.5-fold and P ≤ 0.05 compared to the control group. The genes included in the putative pathways were measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results Thirty-eight upregulated genes and 81 downregulated genes were identified. The pathway analyses revealed that upregulated genes were involved in the cellular responses to external stimuli and immune system pathways. qRT-PCR confirmed the upregulation of the involved genes. The downregulated genes were involved in neuronal systems and synapse-related pathways, and qRT-PCR confirmed the downregulation of the involved genes. Conclusions Acute noise exposure upregulated the expression of immune-related genes and downregulated the expression of neurotransmission-related genes in the hippocampus.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Otorhinolaryngology, CHA University College of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Gyeonggi-do, Korea
| | - Kyung Woon Kim
- Department of Otorhinolaryngology, CHA University College of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Gyeonggi-do, Korea
| | - So Min Lee
- Department of Otorhinolaryngology, CHA University College of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Gyeonggi-do, Korea
| | - So Young Kim
- Department of Otorhinolaryngology, CHA University College of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Gyeonggi-do, Korea.
| |
Collapse
|