1
|
Wong AHK. Spreading the reduction of fear: A narrative review of generalization of extinction learning in human fear conditioning. Clin Psychol Rev 2025; 118:102580. [PMID: 40184732 DOI: 10.1016/j.cpr.2025.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/14/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Extinction learning refers to a reduction in fear to a conditioned stimulus (CS) that previously signaled a threat, but now occurs without the expected threat. This mechanism is core to exposure-based treatments for anxiety-related disorders. Enhancing the generalization of extinction learning is crucial for improving treatment outcomes, as it helps reduce fear across a range of generalization stimuli (GSs) resembling the original fear-evoking CS. This narrative review identifies and covers three generalization of extinction learning models: 1) generalization of CS extinction learning, examining how extinction learning to the CS generalizes to novel GSs, 2) generalization of GS extinction learning, assessing how extinction learning to a GS generalizes to other novel GSs or the original CS, and 3) generalization of multiple stimuli extinction learning, where extinction learning involves multiple GSs (and sometimes the CS) and its effect on other novel stimuli. While extinction learning to the CS effectively generalizes to other stimuli, extinction learning to a GS or multiple GSs showed limited generalization to other novel GSs or the original CS. Since real-life exposure-based treatment rarely reproduces the CS, extinction learning involving only the GS(s) may better reflect clinical practice; poor generalization of GS(s) extinction learning may constitute another pathway of return of fear. This review also highlights various factors that influence generalization of extinction learning and call for future research to develop strategies for improving these processes, which can help inform exposure-based treatments.
Collapse
Affiliation(s)
- Alex H K Wong
- Department of Psychology, Education, and Child studies, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Pan DN, Hoid D, Wolf OT, Merz CJ, Li X. Conflict Dynamics of Post-Retrieval Extinction: A Comparative Analysis of Unconditional and Conditional Reminders Using Skin Conductance Responses and EEG. Brain Topogr 2024; 37:834-848. [PMID: 38635017 DOI: 10.1007/s10548-024-01051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
The post-retrieval extinction paradigm, rooted in reconsolidation theory, holds promise for enhancing extinction learning and addressing anxiety and trauma-related disorders. This study investigates the impact of two reminder types, mild US-reminder (US-R) and CS-reminder (CS-R), along with a no-reminder extinction, on fear recovery prevention in a categorical fear conditioning paradigm. Scalp EEG recordings during reminder and extinction processes were conducted in a three-day design. Results show that the US-R group exhibits a distinctive extinction learning pattern, characterized by a slowed-down yet successful process and pronounced theta-alpha desynchronization (source-located in the prefrontal cortex) during CS processing, followed by enhanced synchronization (source-located in the anterior cingulate) after shock cancellation in extinction trials. These neural dynamics correlate with the subtle advantage of US-R in the Day 3 recovery test, presenting faster spontaneous recovery fading and generally lower fear reinstatement responses. Conversely, the CS reminder elicits CS-specific effects in later episodic tests. The unique neural features of the US-R group suggest a larger prediction error and subsequent effortful conflict learning processes, warranting further exploration.
Collapse
Affiliation(s)
- Dong-Ni Pan
- School of Psychology, Beijing Language and Culture University, Beijing, 100083, China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, No 16 Lincui Rd Chaoyang District, Beijing, 100101, China
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Delhii Hoid
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, No 16 Lincui Rd Chaoyang District, Beijing, 100101, China
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, 100083, China
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Xuebing Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, No 16 Lincui Rd Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
3
|
Battaglia S, Di Fazio C, Mazzà M, Tamietto M, Avenanti A. Targeting Human Glucocorticoid Receptors in Fear Learning: A Multiscale Integrated Approach to Study Functional Connectivity. Int J Mol Sci 2024; 25:864. [PMID: 38255937 PMCID: PMC10815285 DOI: 10.3390/ijms25020864] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Fear extinction is a phenomenon that involves a gradual reduction in conditioned fear responses through repeated exposure to fear-inducing cues. Functional brain connectivity assessments, such as functional magnetic resonance imaging (fMRI), provide valuable insights into how brain regions communicate during these processes. Stress, a ubiquitous aspect of life, influences fear learning and extinction by changing the activity of the amygdala, prefrontal cortex, and hippocampus, leading to enhanced fear responses and/or impaired extinction. Glucocorticoid receptors (GRs) are key to the stress response and show a dual function in fear regulation: while they enhance the consolidation of fear memories, they also facilitate extinction. Accordingly, GR dysregulation is associated with anxiety and mood disorders. Recent advancements in cognitive neuroscience underscore the need for a comprehensive understanding that integrates perspectives from the molecular, cellular, and systems levels. In particular, neuropharmacology provides valuable insights into neurotransmitter and receptor systems, aiding the investigation of mechanisms underlying fear regulation and potential therapeutic targets. A notable player in this context is cortisol, a key stress hormone, which significantly influences both fear memory reconsolidation and extinction processes. Gaining a thorough understanding of these intricate interactions has implications in terms of addressing psychiatric disorders related to stress. This review sheds light on the complex interactions between cognitive processes, emotions, and their neural bases. In this endeavor, our aim is to reshape the comprehension of fear, stress, and their implications for emotional well-being, ultimately aiding in the development of therapeutic interventions.
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Chiara Di Fazio
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Matteo Mazzà
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Marco Tamietto
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Neuropsicology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
4
|
Deng J, Shi L, Yuan K, Yao P, Chen S, Que J, Gong Y, Bao Y, Shi J, Han Y, Sun H, Lu L. Propranolol-induced inhibition of unconditioned stimulus-reactivated fear memory prevents the return of fear in humans. Transl Psychiatry 2020; 10:345. [PMID: 33051441 PMCID: PMC7555531 DOI: 10.1038/s41398-020-01023-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 09/09/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Fear memories can be reactivated by a fear-associated conditioned stimulus (CS) or unconditioned stimulus (US) and then undergo reconsolidation. Propranolol administration during CS retrieval-induced reconsolidation can impair fear memory that is specific to the reactivated CS. However, from a practical perspective, the US is often associated with multiple CSs, and each CS can induce a fear response. The present study sought to develop and test a US-based memory retrieval interference procedure with propranolol to disrupt the original fear memory and eliminate all CS-associated fear responses in humans. We recruited 127 young healthy volunteers and conducted three experiments. All of the subjects acquired fear conditioning, after which they received the β-adrenergic receptor antagonist propranolol (40 mg) or placebo (vitamin C) and were exposed to the US or CS to reactivate the original fear memory. Fear responses were measured. Oral propranolol administration 1 h before US retrieval significantly decreased subsequent fear responses and disrupted associations between all CSs and the US. However, propranolol administration before CS retrieval only inhibited the fear memory that was related to the reactivated CS. Moreover, the propranolol-induced inhibition of fear memory reconsolidation that was retrieved by the US had a relatively long-lasting effect (at least 2 weeks) and was also effective for remote fear memory. These findings indicate that the US-based memory retrieval interference procedure with propranolol can permanently decrease the fear response and prevent the return of fear for all CSs in humans. This procedure may open new avenues for treating fear-related disorders.
Collapse
Affiliation(s)
- Jiahui Deng
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China
| | - Le Shi
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China
| | - Kai Yuan
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China
| | - Ping Yao
- grid.410612.00000 0004 0604 6392Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Sijing Chen
- grid.10784.3a0000 0004 1937 0482Faculty of Medicine, Department of Psychiatry, Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Jianyu Que
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China
| | - Yimiao Gong
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China
| | - Yanping Bao
- grid.11135.370000 0001 2256 9319National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, China
| | - Jie Shi
- grid.11135.370000 0001 2256 9319National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, China.
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China. .,National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, China. .,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
| |
Collapse
|
5
|
Lonsdorf TB, Klingelhöfer-Jens M, Andreatta M, Beckers T, Chalkia A, Gerlicher A, Jentsch VL, Meir Drexler S, Mertens G, Richter J, Sjouwerman R, Wendt J, Merz CJ. Navigating the garden of forking paths for data exclusions in fear conditioning research. eLife 2019; 8:e52465. [PMID: 31841112 PMCID: PMC6989118 DOI: 10.7554/elife.52465] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
In this report, we illustrate the considerable impact of researcher degrees of freedom with respect to exclusion of participants in paradigms with a learning element. We illustrate this empirically through case examples from human fear conditioning research, in which the exclusion of 'non-learners' and 'non-responders' is common - despite a lack of consensus on how to define these groups. We illustrate the substantial heterogeneity in exclusion criteria identified in a systematic literature search and highlight the potential problems and pitfalls of different definitions through case examples based on re-analyses of existing data sets. On the basis of these studies, we propose a consensus on evidence-based rather than idiosyncratic criteria, including clear guidelines on reporting details. Taken together, we illustrate how flexibility in data collection and analysis can be avoided, which will benefit the robustness and replicability of research findings and can be expected to be applicable to other fields of research that involve a learning element.
Collapse
Affiliation(s)
- Tina B Lonsdorf
- Department of Systems NeuroscienceUniversity Medical Center Hamburg EppendorfHamburgGermany
| | | | - Marta Andreatta
- Department of Psychology, Biological Psychology, Clinical Psychology and PsychotherapyUniversity of WürzburgWürzburgGermany
- Instutute of Psychology, Education & Child StudiesErasmus University RotterdamRotterdamNetherlands
| | - Tom Beckers
- Centre for the Psychology of Learning and Experimental Psychopathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Anastasia Chalkia
- Centre for the Psychology of Learning and Experimental Psychopathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Anna Gerlicher
- Faculty of Social and Behavioural Sciences, Programme group Clinical PsychologyUniversity of AmsterdamAmsterdamNetherlands
| | - Valerie L Jentsch
- Institute of Cognitive Neuroscience, Department of Cognitive PsychologyRuhr University BochumBochumGermany
| | - Shira Meir Drexler
- Institute of Cognitive Neuroscience, Department of Cognitive PsychologyRuhr University BochumBochumGermany
| | - Gaetan Mertens
- Department of PsychologyUtrecht UniversityUtrechtNetherlands
| | - Jan Richter
- Department of Physiological and Clinical Psychology/PsychotherapyUniversity of GreifswaldGreifswaldGermany
| | - Rachel Sjouwerman
- Department of Systems NeuroscienceUniversity Medical Center Hamburg EppendorfHamburgGermany
| | - Julia Wendt
- Biological Psychology and Affective ScienceUniversity of PotsdamPotsdamGermany
| | - Christian J Merz
- Institute of Cognitive Neuroscience, Department of Cognitive PsychologyRuhr University BochumBochumGermany
| |
Collapse
|