1
|
Irving ZR, Greiner EM, Indriolo M, Liu Z, Petrovich GD. Activation patterns in male and female forebrain areas during habituation to food and context novelty. Brain Struct Funct 2025; 230:73. [PMID: 40402337 DOI: 10.1007/s00429-025-02927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/27/2025] [Indexed: 05/23/2025]
Abstract
Novelty has significant effects on feeding behavior. New foods and unfamiliar environments suppress consumption, and adaptation to novelty is fundamental to survival. Yet, little is known about habituation to eating in a novel environment. The aim of the current study was to determine if context familiarity impacts habituation to novel food and to identify underlying neural substrates. Adult male and female rats were tested for consumption of a novel, palatable food in a novel or familiar environment across four habituation sessions and a final test session. Test-induced Fos expression was measured in amygdalar, thalamic, prefrontal, and hippocampal regions known to be recruited during the first exposure to novelty. Rats in the novel context ate less compared to rats in the familiar context during each habituation session and test, and females ate less than males during the first session. Habituation to eating in the novel context robustly induced Fos in the majority of regions analyzed, including the central, basolateral, and basomedial nuclei of the amygdala, thalamic paraventricular and reuniens nuclei, and the hippocampal field CA1. Females had overall higher Fos induction in most regions analyzed and higher in the novel condition in the reuniens nucleus. Bivariate correlation analyses of Fos induction between regions found a large number of correlations in the novel context condition. Females tested in the novel context had uniquely large number of correlations between all regions analyzed, except for one thalamic subregion. These results suggest that novelty from context remains relevant late in habituation and recruits a distinct and more interactive network in females than in males.
Collapse
Affiliation(s)
- Zoe R Irving
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Eliza M Greiner
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Mark Indriolo
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Zhe Liu
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Gorica D Petrovich
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
2
|
Li D, Li YC, Zhu ZY, Zhang FC, Zhao QY, Jiang JH, Shen B, Tang Y, Xu GY. The paraventricular thalamus mediates visceral pain and anxiety-like behaviors via two distinct pathways. Neuron 2025:S0896-6273(25)00302-2. [PMID: 40345185 DOI: 10.1016/j.neuron.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/06/2025] [Accepted: 04/18/2025] [Indexed: 05/11/2025]
Abstract
Chronic visceral pain (CVP) often accompanies emotional disorders. However, the lack of suitable animal models has hindered research into their underlying molecular and neural circuitry mechanisms. Early-life stress is a key factor in developing both visceral hypersensitivity and emotional disorders, yet its pathological mechanisms are not well understood. This study showed that adult offspring of prenatal maternal stress (PMS)-exposed mice exhibited visceral hypersensitivity and anxiety-like behaviors. Glutamatergic neurons in the anterior paraventricular thalamus (aPVT) responded to visceral pain, while those in the posterior PVT (pPVT) were more responsive to anxiety. The aPVT-basolateral amygdala (BLA) and pPVT-central amygdala (CeA) circuits regulated CVP and anxiety, respectively. Notably, increased Cacna1e expression in aPVT enhanced both visceral pain and anxiety, while Grin2a upregulation in pPVT facilitated only anxiety. These findings highlight the distinct roles of aPVTGlu-BLAGlu-CeAGABA and pPVTGlu-CeAGABA circuits, providing insights for therapeutic approaches in CVP and anxiety comorbidity.
Collapse
Affiliation(s)
- Di Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China
| | - Yong-Chang Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China
| | - Zheng-Yan Zhu
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China
| | - Fu-Chao Zhang
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China
| | - Qiu-Ying Zhao
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China
| | - Jia-Hui Jiang
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China
| | - Biyu Shen
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China; Department of Nursing, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University School of Nursing, Shanghai 200127, P.R. China
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan, P.R. China
| | - Guang-Yin Xu
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu, P.R. China.
| |
Collapse
|
3
|
Kapphahn C, Peet B, Gao J, Chan A, Farhadian B, Ma M, Silverman M, Tran P, Schlenk N, Thienemann M, Frankovich J. Sudden Onset Disordered Eating Behaviors and Appetite Issues in a Local Clinical Cohort of Children With Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS). Int J Eat Disord 2025. [PMID: 40165330 DOI: 10.1002/eat.24388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVE Abrupt onset restrictive food intake can be a cardinal symptom of pediatric acute-onset neuropsychiatric syndrome (PANS). However, few reports detail eating restriction patterns and baseline eating behaviors in patients with PANS, which we aim to address. Additionally, we aim to compare PANS eating restriction with ARFID. METHODS Retrospective chart review of 130 patients with PANS, aged 4-18 years, presenting for initial assessment at Stanford's PANS/Immune Behavioral Health (IBH) Clinic. Data were abstracted from electronic medical records (EMR) and parent/child questionnaires which included symptom ratings and psychometric scores. Baseline eating restriction and abrupt onset changes in eating associated with PANS flares were studied. RESULTS Over half (56%) of the PANS patients developed abrupt-onset restricted food intake during flare prompting clinic entry. Of youth with restricted intake, 48% had selective eating, 41% had low appetite/interest in food, 37% feared aversive consequences (26% swallowing/choking/vomiting concerns, 16% feared contamination), and 4% overweight concerns. Youth with restricted intake had high levels of emotional lability and/or depression (96%), irritability, aggression, or oppositional behaviors (89%), behavioral/developmental regression (60%), cognitive impairment (69%), and sensory amplification (64%). Baseline eating restriction was noted in 16 (12%), with 9 altering eating behaviors during flare. CONCLUSIONS Eating restriction is common during PANS flares, reasons align with 3 main presentations of ARFID: Selective eating, low appetite/interest, and fear of aversive consequences. High levels of other neuropsychiatric symptoms are noted in youth with PANS and eating restriction during flares. Twelve percent of PANS patients have baseline eating restriction; over half of whom alter eating behaviors during the flare.
Collapse
Affiliation(s)
- Cynthia Kapphahn
- Division of Adolescent Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Brianna Peet
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
- Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Menlo Park, California, USA
| | - Jaynelle Gao
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
- Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Menlo Park, California, USA
| | - Avis Chan
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
- Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Menlo Park, California, USA
| | - Bahare Farhadian
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
- Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Menlo Park, California, USA
| | - Meiqian Ma
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
- Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Menlo Park, California, USA
| | - Melissa Silverman
- Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Menlo Park, California, USA
- Division of Child and Adolescent Psychiatry and Child Development, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Paula Tran
- Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Menlo Park, California, USA
- Division of Child and Adolescent Psychiatry and Child Development, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Noelle Schlenk
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
- Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Menlo Park, California, USA
| | - Margo Thienemann
- Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Menlo Park, California, USA
- Division of Child and Adolescent Psychiatry and Child Development, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Jennifer Frankovich
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
- Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Menlo Park, California, USA
| |
Collapse
|
4
|
Kirouac GJ. Update on the connectivity of the paraventricular nucleus of the thalamus and its position within limbic corticostriatal circuits. Neurosci Biobehav Rev 2025; 169:105989. [PMID: 39730100 DOI: 10.1016/j.neubiorev.2024.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
The paraventricular nucleus of the thalamus (PVT) is generating interest because evidence establishes a role for this midline thalamic nucleus in behavior. Early tracing studies demonstrated that afferent fibers from the PVT and limbic cortex converge with dopamine fibers within subcompartments of the ventral striatum. Subsequent tracing studies expanded on these observations by establishing that the PVT provides a dense projection to a continuum of striatal-like regions that include the nucleus accumbens and the extended amygdala. These findings have been complemented by recent tracing evidence examining the organization of the PVT's efferent and afferent connections. An updated view of the organization of projection neurons in PVT is provided with a focus on the input-output relationship of these neurons. The review emphasizes recent findings demonstrating that the PVT is composed of intermixed populations of neurons with axons that collateralize to densely innervate limbic striatal regions while being reciprocally connected with limbic cortical areas that innervate the same regions of the striatum. An updated perspective of the PVT's anatomical relationship with limbic corticostriatal circuits is presented to stimulate research on how the PVT regulates behavioral responses associated with emotion and motivation.
Collapse
Affiliation(s)
- Gilbert J Kirouac
- Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada.
| |
Collapse
|
5
|
Cobbaert L, Millichamp AR, Elwyn R, Silverstein S, Schweizer K, Thomas E, Miskovic-Wheatley J. Neurodivergence, intersectionality, and eating disorders: a lived experience-led narrative review. J Eat Disord 2024; 12:187. [PMID: 39568093 PMCID: PMC11580580 DOI: 10.1186/s40337-024-01126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024] Open
Abstract
Autistic people and those with attention deficit hyperactivity disorder are at a high risk of developing an eating disorder. While there is limited evidence on the relationship between other forms of neurodivergence and eating disorders, research suggests associations between giftedness, intellectual disability, obsessive-compulsive disorder, psychosis, Tourette's syndrome, and disordered eating. Factors underlying disordered eating and/or eating disorder risk for neurodivergent people are multifaceted and complex, encompassing a wide range of intertwined psychosocial, environmental, and biological processes. Moreover, research shows that neurodivergent individuals experience poorer treatment outcomes compared to neurotypical individuals. However, there is a paucity of research in this area overall. More specifically, lived experience-led research remains rare, despite its critical role for improving individualised eating disorder care, as well as mental healthcare more broadly. Indeed, the importance of eating disorder care individuation is increasingly being recognised, particularly within the context of neurodivergence, given the heterogeneous experiences and support needs of neurodivergent people affected by disordered eating and/or eating disorders. Furthermore, despite documented overlaps between various forms of neurodivergence (e.g., co-occurring autism and attention deficit hyperactivity disorder), research looking at eating disorders in the context of neurodivergence through a transdiagnostic perspective is scarce. This lived experience-led narrative review aims to shed light on the intersectional factors underlying elevated disordered eating and/or eating disorder risk for neurodivergent individuals. First, an overview of prevalence data is provided, followed by a thematic framework identifying factors underlying disordered eating and/or eating disorder risk in relation to neurodivergence. A critical appraisal of current eating disorder research and care is then offered before suggestions for neurodiversity-affirming eating disorder care are made. In this view, this paper offers a foundation for future empirical work in this nascent field of inquiry by providing a lived experience-led, transdiagnostic, and intersectional account of eating disorders in the context of neurodivergence.
Collapse
Affiliation(s)
- Laurence Cobbaert
- University of New South Wales, Sydney, NSW, Australia.
- Eating Disorders Neurodiversity Australia, Sydney, NSW, Australia.
| | | | - Rosiel Elwyn
- Thompson Institute, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | | | - Kai Schweizer
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Elysia Thomas
- Eating Disorders Neurodiversity Australia, Sydney, NSW, Australia
- Independent Researcher, Melbourne, VIC, Australia
| | | |
Collapse
|
6
|
Chesters RA, Zhu J, Coull BM, Baidoe-Ansah D, Baumer L, Palm L, Klinghammer N, Chen S, Hahm A, Yagoub S, Cantacorps L, Bernardi D, Ritter K, Lippert RN. Fasting-induced activity changes in MC3R neurons of the paraventricular nucleus of the thalamus. Life Sci Alliance 2024; 7:e202402754. [PMID: 39107065 PMCID: PMC11303869 DOI: 10.26508/lsa.202402754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024] Open
Abstract
The brain controls energy homeostasis by regulating food intake through signaling within the melanocortin system. Whilst we understand the role of the hypothalamus within this system, how extra-hypothalamic brain regions are involved in controlling energy balance remains unclear. Here we show that the melanocortin 3 receptor (MC3R) is expressed in the paraventricular nucleus of the thalamus (PVT). We tested whether fasting would change the activity of MC3R neurons in this region by assessing the levels of c-Fos and pCREB as neuronal activity markers. We determined that overnight fasting causes a significant reduction in pCREB levels within PVT-MC3R neurons. We then questioned whether perturbation of MC3R signaling, during fasting, would result in altered refeeding. Using chemogenetic approaches, we show that modulation of MC3R activity, during the fasting period, does not impact body weight regain or total food intake in the refeeding period. However, we did observe significant differences in the pattern of feeding-related behavior. These findings suggest that the PVT is a region where MC3R neurons respond to energy deprivation and modulate refeeding behavior.
Collapse
Affiliation(s)
- Robert A Chesters
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Jiajie Zhu
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - Bethany M Coull
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - David Baidoe-Ansah
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - Lea Baumer
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Lydia Palm
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Niklas Klinghammer
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Seve Chen
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Anneke Hahm
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Selma Yagoub
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Lídia Cantacorps
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Daniel Bernardi
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Nuthetal, Germany
| | - Katrin Ritter
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Nuthetal, Germany
| | - Rachel N Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
7
|
Li SH, Li S, Kirouac GJ. Analysis of Monosynaptic Inputs to Thalamic Paraventricular Nucleus Neurons Innervating the Shell of the Nucleus Accumbens and Central Extended Amygdala. Neuroscience 2024; 537:151-164. [PMID: 38056620 DOI: 10.1016/j.neuroscience.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The paraventricular nucleus of the thalamus (PVT) sends dense projections to the shell of the nucleus accumbens (NAcSh), dorsolateral region of the bed nucleus of the stria terminalis (BSTDL) and the lateral region of central nucleus of the amygdala (CeL). Projection specific modulation of these pathways has been shown to regulate appetitive and aversive behavioral responses. The present investigation applied an intersectional monosynaptic rabies tracing approach to quantify the brain-wide sources of afferent input to PVT neurons that primarily project to the NAcSh, BSTDL and CeL. The results demonstrate that these projection neurons receive monosynaptic input from similar brain regions. The prefrontal cortex and the ventral subiculum of the hippocampus were major sources of input to the PVT projection neurons. In addition, the lateral septal nucleus, thalamic reticular nucleus and the hypothalamic medial preoptic area, dorsomedial, ventromedial, and arcuate nuclei were sources of input. The subfornical organ, parasubthalamic nucleus, periaqueductal gray matter, lateral parabrachial nucleus, and nucleus of the solitary tract were consistent but lesser sources of input. This input-output relationship is consistent with recent observations that PVT neurons have axons that bifurcate extensively to divergently innervate the NAcSh, BSTDL and CeL.
Collapse
Affiliation(s)
- Shuang Hong Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada
| | - Sa Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada
| | - Gilbert J Kirouac
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada; Department of Psychiatry, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada.
| |
Collapse
|
8
|
Fan S, Guo W, Xiao D, Guan M, Liao T, Peng S, Feng A, Wang Z, Yin H, Li M, Chen J, Xiong W. Microbiota-gut-brain axis drives overeating disorders. Cell Metab 2023; 35:2011-2027.e7. [PMID: 37794596 DOI: 10.1016/j.cmet.2023.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Overeating disorders (ODs), usually stemming from dieting history and stress, remain a pervasive issue in contemporary society, with the pathological mechanisms largely unresolved. Here, we show that alterations in intestinal microbiota are responsible for the excessive intake of palatable foods in OD mice and patients with bulimia nervosa (BN). Stress combined with a history of dieting causes significant changes in the microbiota and the intestinal metabolism, which disinhibit the vagus nerve terminals in the gut and thereby lead to a subsequent hyperactivation of the gut-brain axis passing through the vagus, the solitary tract nucleus, and the paraventricular nucleus of the thalamus. The transplantation of a probiotic Faecalibacterium prausnitzii or dietary supplement of key metabolites restores the activity of the gut-to-brain pathway and thereby alleviates the OD symptoms. Thus, our study delineates how the microbiota-gut-brain axis mediates energy balance, unveils the underlying pathogenesis of the OD, and provides potential therapeutic strategies.
Collapse
Affiliation(s)
- Sijia Fan
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Weiwei Guo
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Dan Xiao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Mengyuan Guan
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Tiepeng Liao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Sufang Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Airong Feng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Ziyi Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Hao Yin
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Min Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230026, China.
| | - Jue Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Wei Xiong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230026, China.
| |
Collapse
|
9
|
Gao C, Gohel CA, Leng Y, Ma J, Goldman D, Levine AJ, Penzo MA. Molecular and spatial profiling of the paraventricular nucleus of the thalamus. eLife 2023; 12:81818. [PMID: 36867023 PMCID: PMC10014079 DOI: 10.7554/elife.81818] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/02/2023] [Indexed: 03/04/2023] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) is known to regulate various cognitive and behavioral processes. However, while functional diversity among PVT circuits has often been linked to cellular differences, the molecular identity and spatial distribution of PVT cell types remain unclear. To address this gap, here we used single nucleus RNA sequencing (snRNA-seq) and identified five molecularly distinct PVT neuronal subtypes in the mouse brain. Additionally, multiplex fluorescent in situ hybridization of top marker genes revealed that PVT subtypes are organized by a combination of previously unidentified molecular gradients. Lastly, comparing our dataset with a recently published single-cell sequencing atlas of the thalamus yielded novel insight into the PVT's connectivity with the cortex, including unexpected innervation of auditory and visual areas. This comparison also revealed that our data contains a largely non-overlapping transcriptomic map of multiple midline thalamic nuclei. Collectively, our findings uncover previously unknown features of the molecular diversity and anatomical organization of the PVT and provide a valuable resource for future investigations.
Collapse
Affiliation(s)
- Claire Gao
- National Institute of Mental HealthBethesdaUnited States
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Chiraag A Gohel
- National Institute on Alcohol Abuse and AlcoholismRockvilleUnited States
| | - Yan Leng
- National Institute of Mental HealthBethesdaUnited States
| | - Jun Ma
- National Institute of Mental HealthBethesdaUnited States
| | - David Goldman
- National Institute on Alcohol Abuse and AlcoholismRockvilleUnited States
| | - Ariel J Levine
- National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Mario A Penzo
- National Institute of Mental HealthBethesdaUnited States
| |
Collapse
|
10
|
Li L, Zhang H, Zheng Z, Ma N, Zhang Y, Liu Y, Zhang J, Su S, Zang W, Shao J, Cao J. Perioperative sleep deprivation activates the paraventricular thalamic nucleus resulting in persistent postoperative incisional pain in mice. Front Neuroanat 2022; 16:1074310. [PMID: 36620195 PMCID: PMC9813598 DOI: 10.3389/fnana.2022.1074310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background The duration of postsurgical pain is closely correlated with perioperative stress. Most patients suffer short-term sleep disorder/deprivation before and/or after surgery, which leads to extended postsurgical pain by an undetermined mechanism. The paraventricular thalamus (PVT) is a critical area that contributes to the regulation of feeding, awakening, and emotional states. However, whether the middle PVT is involved in postoperative pain or the extension of postoperative pain caused by perioperative sleep deprivation has not yet been investigated. Methods We established a model of postoperative pain by plantar incision with perioperative rapid eye movement sleep deprivation (REMSD) 6 h/day for 3 consecutive days in mice. The excitability of the CaMKIIα+ neurons in the middle PVT (mPVTCaMKIIα) was detected by immunofluorescence and fiber photometry. The activation/inhibition of mPVTCaMKIIα neurons was conducted by chemogenetics. Results REMSD prolonged the duration of postsurgical pain and increased the excitability of mPVTCaMKIIα neurons. In addition, mPVTCaMKIIα neurons showed increased excitability in response to nociceptive stimuli or painful conditions. However, REMSD did not delay postsurgical pain recovery following the ablation of CaMKIIα neurons in the mPVT. The activation of mPVTCaMKIIα neurons prolonged the duration of postsurgical pain and elicited anxiety-like behaviors. In contrast, inhibition of mPVTCaMKIIα neurons reduced the postsurgical pain after REMSD. Conclusion Our data revealed that the CaMKIIα neurons in the mPVT are involved in the extension of the postsurgical pain duration induced by REMSD, and represented a novel potential target to treat postoperative pain induced by REMSD.
Collapse
Affiliation(s)
- Lei Li
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Huijie Zhang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenli Zheng
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,Department of Medical Record Management, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Nan Ma
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yidan Zhang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yaping Liu
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jingjing Zhang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Songxue Su
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Weidong Zang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan, China
| | - Jinping Shao
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan, China,*Correspondence: Jinping Shao,
| | - Jing Cao
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan, China,Jing Cao,
| |
Collapse
|
11
|
Parsons W, Greiner E, Buczek L, Migliaccio J, Corbett E, Madden AMK, Petrovich GD. Sex differences in activation of extra-hypothalamic forebrain areas during hedonic eating. Brain Struct Funct 2022; 227:2857-2878. [PMID: 36258044 PMCID: PMC9724631 DOI: 10.1007/s00429-022-02580-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022]
Abstract
Palatable foods can stimulate appetite without hunger, and unconstrained overeating underlies obesity and binge eating disorder. Women are more prone to obesity and binge eating than men but the neural causes of individual differences are unknown. In an animal model of hedonic eating, a prior study found that females were more susceptible than males to eat palatable food when sated and that the neuropeptide orexin/hypocretin (ORX) was crucial in both sexes. The current study examined potential extra-hypothalamic forebrain targets of ORX signaling during hedonic eating. We measured Fos induction in the cortical, thalamic, striatal, and amygdalar areas that receive substantial ORX inputs and contain their receptors in hungry and sated male and female rats during palatable (high-sucrose) food consumption. During the test, hungry rats of both sexes ate substantial amounts, and while sated males ate much less than hungry rats, sated females ate as much as hungry rats. The Fos induction analysis identified sex differences in recruitment of specific areas of the medial prefrontal cortex, paraventricular nucleus of the thalamus (PVT), nucleus accumbens (ACB), and central nucleus of the amygdala (CEA), and similar patterns across sexes in the insular cortex. There was a striking activation of the infralimbic cortex in sated males, who consumed the least amount food and unique correlations between the insular cortex, PVT, and CEA, as well as the prelimbic cortex, ACB, and CEA in sated females but not sated males. The study identified key functional circuits that may drive hedonic eating in a sex-specific manner.
Collapse
Affiliation(s)
- William Parsons
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Eliza Greiner
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Laura Buczek
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Jennifer Migliaccio
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Erin Corbett
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Amanda M K Madden
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Gorica D Petrovich
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
12
|
Gómez-Martínez DG, Ramos F, Ramos M, Robles F. A bioinspired model for the generation of a motivational state from energy homeostasis. COGN SYST RES 2022. [DOI: 10.1016/j.cogsys.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Vertes RP, Linley SB, Rojas AKP. Structural and functional organization of the midline and intralaminar nuclei of the thalamus. Front Behav Neurosci 2022; 16:964644. [PMID: 36082310 PMCID: PMC9445584 DOI: 10.3389/fnbeh.2022.964644] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
The midline and intralaminar nuclei of the thalamus form a major part of the "limbic thalamus;" that is, thalamic structures anatomically and functionally linked with the limbic forebrain. The midline nuclei consist of the paraventricular (PV) and paratenial nuclei, dorsally and the rhomboid and nucleus reuniens (RE), ventrally. The rostral intralaminar nuclei (ILt) consist of the central medial (CM), paracentral (PC) and central lateral (CL) nuclei. We presently concentrate on RE, PV, CM and CL nuclei of the thalamus. The nucleus reuniens receives a diverse array of input from limbic-related sites, and predominantly projects to the hippocampus and to "limbic" cortices. The RE participates in various cognitive functions including spatial working memory, executive functions (attention, behavioral flexibility) and affect/fear behavior. The PV receives significant limbic-related afferents, particularly the hypothalamus, and mainly distributes to "affective" structures of the forebrain including the bed nucleus of stria terminalis, nucleus accumbens and the amygdala. Accordingly, PV serves a critical role in "motivated behaviors" such as arousal, feeding/consummatory behavior and drug addiction. The rostral ILt receives both limbic and sensorimotor-related input and distributes widely over limbic and motor regions of the frontal cortex-and throughout the dorsal striatum. The intralaminar thalamus is critical for maintaining consciousness and directly participates in various sensorimotor functions (visuospatial or reaction time tasks) and cognitive tasks involving striatal-cortical interactions. As discussed herein, while each of the midline and intralaminar nuclei are anatomically and functionally distinct, they collectively serve a vital role in several affective, cognitive and executive behaviors - as major components of a brainstem-diencephalic-thalamocortical circuitry.
Collapse
Affiliation(s)
- Robert P. Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
| | - Stephanie B. Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychological Science, University of North Georgia, Dahlonega, GA, United States
| | - Amanda K. P. Rojas
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
14
|
Herzallah MM, Amir A, Paré D. Influence of Rat Central Thalamic Neurons on Foraging Behavior in a Hazardous Environment. J Neurosci 2022; 42:6053-6068. [PMID: 35772968 PMCID: PMC9351640 DOI: 10.1523/jneurosci.0461-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 02/05/2023] Open
Abstract
Foraging entails a complex balance between approach and avoidance alongside sensorimotor and homeostatic processes under the control of multiple cortical and subcortical areas. Recently, it has become clear that several thalamic nuclei located near the midline regulate motivated behaviors. However, one midline thalamic nucleus that projects to key nodes in the foraging network, the central medial thalamic nucleus (CMT), has received little attention so far. Therefore, the present study examined CMT contributions to foraging behavior using inactivation and unit recording techniques in male rats. Inactivation of CMT or the basolateral amygdala (BLA) with muscimol abolished the normally cautious behavior of rats in the foraging task. Moreover, CMT neurons showed large but heterogeneous activity changes during the foraging task, with many neurons decreasing or increasing their discharge rates, with a modest bias for the latter. A generalized linear model revealed that the nature (inhibitory vs excitatory) and relative magnitude of the activity modulations seen in CMT neurons differed markedly from those of principal BLA cells but were very similar to those of fast-spiking BLA interneurons. Together, these findings suggest that CMT is an important regulator of foraging behavior. In the Discussion, we consider how CMT is integrated into the network of structures that regulate foraging.SIGNIFICANCE STATEMENT Foraging entails a complex balance between approach and avoidance alongside sensorimotor and homeostatic processes under the control of multiple cortical and subcortical areas. Although the central medial thalamic nucleus (CMT) is connected to many nodes in this network, its role in the regulation of foraging behavior has not been investigated so far. Here, we examined CMT contributions to foraging behavior using inactivation and unit recording techniques. We found that CMT inactivation abolishes the normally cautious foraging behavior of rats and that CMT neurons show large but heterogeneous changes in firing rates during the foraging task. Together, these results suggest that CMT is an important regulator of foraging behavior.
Collapse
Affiliation(s)
- Mohammad M Herzallah
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
- Palestinian Neuroscience Initiative, Al-Quds University, Jerusalem, Palestine 20002
| | - Alon Amir
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102,
| |
Collapse
|
15
|
Kung PH, Soriano-Mas C, Steward T. The influence of the subcortex and brain stem on overeating: How advances in functional neuroimaging can be applied to expand neurobiological models to beyond the cortex. Rev Endocr Metab Disord 2022; 23:719-731. [PMID: 35380355 PMCID: PMC9307542 DOI: 10.1007/s11154-022-09720-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
Functional neuroimaging has become a widely used tool in obesity and eating disorder research to explore the alterations in neurobiology that underlie overeating and binge eating behaviors. Current and traditional neurobiological models underscore the importance of impairments in brain systems supporting reward, cognitive control, attention, and emotion regulation as primary drivers for overeating. Due to the technical limitations of standard field strength functional magnetic resonance imaging (fMRI) scanners, human neuroimaging research to date has focused largely on cortical and basal ganglia effects on appetitive behaviors. The present review draws on animal and human research to highlight how neural signaling encoding energy regulation, reward-learning, and habit formation converge on hypothalamic, brainstem, thalamic, and striatal regions to contribute to overeating in humans. We also consider the role of regions such as the mediodorsal thalamus, ventral striatum, lateral hypothalamus and locus coeruleus in supporting habit formation, inhibitory control of food craving, and attentional biases. Through these discussions, we present proposals on how the neurobiology underlying these processes could be examined using functional neuroimaging and highlight how ultra-high field 7-Tesla (7 T) fMRI may be leveraged to elucidate the potential functional alterations in subcortical networks. Focus is given to how interactions of these regions with peripheral endocannabinoids and neuropeptides, such as orexin, could be explored. Technical and methodological aspects regarding the use of ultra-high field 7 T fMRI to study eating behaviors are also reviewed.
Collapse
Affiliation(s)
- Po-Han Kung
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Carles Soriano-Mas
- Psychiatry and Mental Health Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Neuroscience Program, L'Hospitalet de Llobregat, Spain
- CIBERSAM, Carlos III Health Institute, Madrid, Spain
- Department of Social Psychology and Quantitative Psychology, University of Barcelona, Barcelona, Spain
| | - Trevor Steward
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
16
|
Giacomini JL, Sadeghian K, Baldo BA. Eating driven by the gustatory insula: contrasting regulation by infralimbic vs. prelimbic cortices. Neuropsychopharmacology 2022; 47:1358-1366. [PMID: 35091673 PMCID: PMC9117285 DOI: 10.1038/s41386-022-01276-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 11/09/2022]
Abstract
Subregions within insular cortex and medial prefrontal cortex (mPFC) have been implicated in eating disorders; however, the way these brain regions interact to produce dysfunctional eating is poorly understood. The present study explored how two mPFC subregions, the infralimbic (IL) and prelimbic (PRL) cortices, regulate sucrose hyperphagia elicited specifically by a neurochemical manipulation of the agranular/dysgranular region of gustatory insula (AI/DI). Using intra-AI/DI infusion of the mu-opioid receptor (µ-OR) agonist, DAMGO (1 µg), sucrose hyperphagia was generated in ad-libitum-maintained rats, while in the same rat, either the IL or prelimbic (PRL) subregion of mPFC was inactivated bilaterally with muscimol (30 ng). Intra-IL muscimol markedly potentiated AI/DI DAMGO-induced sucrose hyperphagia by increasing eating bout duration and food consumption per bout. In contrast, PRL attenuated intra-AI/DI DAMGO-driven sucrose intake and feeding duration and eliminated the small DAMGO-induced increase in feeding bout initiation. Intra-IL or -PRL muscimol alone (i.e., without intra-AI/DI DAMGO) did not alter feeding behavior, but slightly reduced exploratory-like rearing in both mPFC subregions. These results reveal anatomical heterogeneity in mPFC regulation of the intense feeding-motivational state engendered by µ-OR signaling in the gustatory insula: IL significantly curtails consummatory activity, while PRL modestly contributes to feeding initiation. Results are discussed with regard to potential circuit-based mechanisms that may underlie the observed results.
Collapse
Affiliation(s)
- Juliana L. Giacomini
- grid.14003.360000 0001 2167 3675Graduate Program in Cellular and Molecular Biology, Physiology Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Ken Sadeghian
- grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| | - Brian A. Baldo
- grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
17
|
Gaspari S, Quenneville S, Rodriguez Sanchez‐Archidona A, Thorens B, Croizier S. Structural and molecular characterization of paraventricular thalamic glucokinase-expressing neuronal circuits in the mouse. J Comp Neurol 2022; 530:1773-1949. [PMID: 35303367 PMCID: PMC9542162 DOI: 10.1002/cne.25312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/11/2022]
Abstract
The thalamic paraventricular nucleus (PVT) is a structure highly interconnected with several nuclei ranging from forebrain to hypothalamus and brainstem. Numerous rodent studies have examined afferent and efferent connections of the PVT and their contribution to behavior, revealing its important role in the integration of arousal cues. However, the majority of these studies used a region‐oriented approach, without considering the neuronal subtype diversity of the nucleus. In the present study, we provide the anatomical and transcriptomic characterization of a subpopulation of PVT neurons molecularly defined by the expression of glucokinase (Gck). Combining a genetically modified mouse model with viral tracing approaches, we mapped both the anterograde and the retrograde projections of Gck‐positive neurons of the anterior PVT (GckaPVT). Our results demonstrated that GckaPVT neurons innervate several nuclei throughout the brain axis. The strongest connections are with forebrain areas associated with reward and stress and with hypothalamic structures involved in energy balance and feeding regulation. Furthermore, transcriptomic analysis of the Gck‐expressing neurons revealed that they are enriched in receptors for hypothalamic‐derived neuropeptides, adhesion molecules, and obesity and diabetes susceptibility transcription factors. Using retrograde labeling combined with immunohistochemistry and in situ hybridization, we identify that GckaPVT neurons receive direct inputs from well‐defined hypothalamic populations, including arginine‐vasopressin‐, melanin‐concentrating hormone‐, orexin‐, and proopiomelanocortin‐expressing neurons. This detailed anatomical and transcriptomic characterization of GckaPVT neurons provides a basis for functional studies of the integration of homeostatic and hedonic aspects of energy homeostasis, and for deciphering the potential role of these neurons in obesity and diabetes development.
Collapse
Affiliation(s)
- Sevasti Gaspari
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Simon Quenneville
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | | | - Bernard Thorens
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Sophie Croizier
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| |
Collapse
|