1
|
Aggadi N, Krikawa S, Paine TA, Simen P, Howard CD. Rats and mice rapidly update timed behaviors. Anim Cogn 2025; 28:6. [PMID: 39849294 PMCID: PMC11759285 DOI: 10.1007/s10071-025-01930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
Keeping track of time intervals is a crucial aspect of behavior and cognition. Many theoretical models of how the brain times behavior make predictions for steady-state performance of well-learned intervals, but the rate of learning intervals in these models varies greatly, ranging from one-shot learning to learning over thousands of trials. Here, we explored how quickly rats and mice adapt to changes in interval durations using a serial fixed-interval task. In the first experiment, animals experienced randomly selected fixed-intervals of 12, 24, 36, 48, or 60 s, for blocks ranging from 13 to 21 trials. Consistent with previous work, animals abruptly increased lever pressing as reward availability approached, and these 'start times' scaled with the interval duration for both species. We then quantified the rate of updating to new trial durations and found that rodents consistently updated their start times within 2-3 trials following a change in interval duration, before stabilizing their behavior by the third or fourth trial. To account for repeated exposures to fixed-interval durations, a second set of animals was tested with new fixed-intervals after being trained on the serial fixed-interval task described above. Next, a third group was trained on fixed-interval durations that were generated de novo in each day. In each of these contexts, rodents rapidly increased or decreased their start times to mirror new FI durations following exposure to 1-2 trials of new intervals following block transitions. This work adds to growing evidence for rapid duration learning across species, highlighting the need for timing models to be capable of rapid updating in dynamic temporal scenarios.
Collapse
Affiliation(s)
- N Aggadi
- Neuroscience Department, Oberlin College, 173 Lorain St, Oberlin, OH, USA
| | - S Krikawa
- Neuroscience Department, Oberlin College, 173 Lorain St, Oberlin, OH, USA
| | - T A Paine
- Neuroscience Department, Oberlin College, 173 Lorain St, Oberlin, OH, USA
| | - P Simen
- Neuroscience Department, Oberlin College, 173 Lorain St, Oberlin, OH, USA
| | - C D Howard
- Neuroscience Department, Oberlin College, 173 Lorain St, Oberlin, OH, USA.
| |
Collapse
|
2
|
Doyère V, Droit-Volet S. When emotion and time meet from human and rodent perspectives: a central role for the amygdala? Cereb Cortex 2025; 35:34-41. [PMID: 39578977 DOI: 10.1093/cercor/bhae454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Initiated by a long stay of Valérie Doyère in the laboratory of Joseph LeDoux, a Franco-American collaborative group was formed around the topic of emotion and time perception in a comparative perspective between humans and non-human animals. Here, we discuss results from our studies on the mechanisms underlying time distortion under 2 conditions, timing of a threatening stimulus and timing of a neutral stimulus in the context of fear, with insights from neurodevelopment. Although the type of temporal distortion depends on the experimental situations, in both humans and rodents a high-arousal emotion automatically triggers acceleration of an "internal clock" system, an effect that may rely on the early maturing amygdala. Our studies, particularly in humans, also point to the role of attention and self-awareness in regulating the effect of fear on timing, relying on the prefrontal cortex, a late maturing structure. Thus, in line with LeDoux, while the amygdala may process all characteristics of events (including time) necessary to quickly trigger appropriate survival behaviors, some type of time distortions may rely on higher-order processing, some specific to humans. The extent of the network underlying threat-related time distortions remains to be explored, with species comparisons being a promising means of investigation.
Collapse
Affiliation(s)
- Valérie Doyère
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Paris-Saclay (NeuroPSI), UMR9197, Campus CEA Saclay, 151 route de la Rotonde, Bâtiment 151, 91400 Saclay, France
- New York University Child Study Center, Department of Child and Adolescent Psychiatry, New York University Langone School of Medicine, One Park Avenue, New York, NY 10016, USA
| | - Sylvie Droit-Volet
- Laboratoire de psychologie sociale et cognitive, CNRS, UMR 6024, 34 avenue Carnot, 63000, Clermont-Ferrand, France
| |
Collapse
|
3
|
Pang S, Ding S, Peng C, Chen Y. Temporal context modulates cross-modality time discrimination: Electrophysiological evidence for supramodal temporal representation. Cortex 2024; 179:143-156. [PMID: 39173580 DOI: 10.1016/j.cortex.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Although the peripheral nervous system lacks a dedicated receptor, the brain processes temporal information through different sensory channels. A critical question is whether temporal information from different sensory modalities at different times forms modality-specific representations or is integrated into a common representation in a supramodal manner. Behavioral studies on temporal memory mixing and the central tendency effect have provided evidence for supramodal temporal representations. We aimed to provide electrophysiological evidence for this proposal by employing a cross-modality time discrimination task combined with electroencephalogram (EEG) recordings. The task maintained a fixed auditory standard duration, whereas the visual comparison duration was randomly selected from the short and long ranges, creating two different audio-visual temporal contexts. The behavioral results showed that the point of subjective equality (PSE) in the short context was significantly lower than that in the long context. The EEG results revealed that the amplitude of the contingent negative variation (CNV) in the short context was significantly higher (more negative) than in the long context in the early stage, while it was lower (more positive) in the later stage. These results suggest that the audiovisual temporal context is integrated with the auditory standard duration to generate a subjective time criterion. Compared with the long context, the subjective time criterion in the short context was shorter, resulting in earlier decision-making and a preceding decrease in CNV. Our study provides electrophysiological evidence that temporal information from different modalities inputted into the brain at different times can form a supramodal temporal representation.
Collapse
Affiliation(s)
- Shufang Pang
- Key Laboratory of Cognition and Personality (Ministry of Education), Time Psychology Research Center, Center of Studies for Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Shaofan Ding
- Key Laboratory of Cognition and Personality (Ministry of Education), Time Psychology Research Center, Center of Studies for Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Chunhua Peng
- Chongqing Key Laboratory of Emotion and Mental Health, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Youguo Chen
- Key Laboratory of Cognition and Personality (Ministry of Education), Time Psychology Research Center, Center of Studies for Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Nishioka M, Hata T. Cholinergic interneurons in the dorsal striatum play an important role in the acquisition of duration memory. Eur J Neurosci 2024; 59:3061-3073. [PMID: 38576223 DOI: 10.1111/ejn.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/15/2024] [Accepted: 03/09/2024] [Indexed: 04/06/2024]
Abstract
The present study aimed to examine the effect of cholinergic interneuron lesions in the dorsal striatum on duration-memory formation. Cholinergic interneurons in the dorsal striatum may be involved in the formation of duration memory since they are among the main inputs to the dorsal striatal muscarinic acetylcholine-1 receptors, which play a role in the consolidation of duration memory. Rats were sufficiently trained using a peak-interval 20 s procedure and then infused with anti-choline acetyltransferase-saporin into the dorsal striatum to cause selective ablation of cholinergic interneurons. To make the rats acquire new duration-memories, we trained them with a peak interval 40 s after lesion. Before lesion, the peak times (an index of duration memory) for sham-lesioned and lesioned groups were similar at approximately 20 s. In the peak interval 40 s session, the peak times for the sham-lesioned and lesioned groups were approximately 30 and 20 s, respectively. After additional peak interval 40 s sessions, the peak times of both groups were shifted to approximately 40 s. Those results suggest that the cholinergic interneuron lesion delayed new duration-memory acquisition. Subsequent experiments showed that cholinergic interneuron lesions did not retard the shift of peak time to the original target time (20 s). Following experiment without changing the target time after lesion showed that cholinergic interneuron lesions did not change their peak times. Our findings suggest that cholinergic interneurons in the dorsal striatum are involved in new duration-memory acquisition but not in the utilization of already acquired duration memory and interval timing.
Collapse
Affiliation(s)
- Masahiko Nishioka
- Graduate School of Psychology, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Toshimichi Hata
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| |
Collapse
|
5
|
Banerjee A, Chen F, Druckmann S, Long MA. Temporal scaling of motor cortical dynamics reveals hierarchical control of vocal production. Nat Neurosci 2024; 27:527-535. [PMID: 38291282 DOI: 10.1038/s41593-023-01556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 12/13/2023] [Indexed: 02/01/2024]
Abstract
Neocortical activity is thought to mediate voluntary control over vocal production, but the underlying neural mechanisms remain unclear. In a highly vocal rodent, the male Alston's singing mouse, we investigate neural dynamics in the orofacial motor cortex (OMC), a structure critical for vocal behavior. We first describe neural activity that is modulated by component notes (~100 ms), probably representing sensory feedback. At longer timescales, however, OMC neurons exhibit diverse and often persistent premotor firing patterns that stretch or compress with song duration (~10 s). Using computational modeling, we demonstrate that such temporal scaling, acting through downstream motor production circuits, can enable vocal flexibility. These results provide a framework for studying hierarchical control circuits, a common design principle across many natural and artificial systems.
Collapse
Affiliation(s)
- Arkarup Banerjee
- NYU Neuroscience Institute, New York University Langone Health, New York, NY, USA.
- Department of Otolaryngology, New York University Langone Health, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Feng Chen
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Michael A Long
- NYU Neuroscience Institute, New York University Langone Health, New York, NY, USA.
- Department of Otolaryngology, New York University Langone Health, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
6
|
Balcı F, Simen P. Neurocomputational Models of Interval Timing: Seeing the Forest for the Trees. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:51-78. [PMID: 38918346 DOI: 10.1007/978-3-031-60183-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Extracting temporal regularities and relations from experience/observation is critical for organisms' adaptiveness (communication, foraging, predation, prediction) in their ecological niches. Therefore, it is not surprising that the internal clock that enables the perception of seconds-to-minutes-long intervals (interval timing) is evolutionarily well-preserved across many species of animals. This comparative claim is primarily supported by the fact that the timing behavior of many vertebrates exhibits common statistical signatures (e.g., on-average accuracy, scalar variability, positive skew). These ubiquitous statistical features of timing behaviors serve as empirical benchmarks for modelers in their efforts to unravel the processing dynamics of the internal clock (namely answering how internal clock "ticks"). In this chapter, we introduce prominent (neuro)computational approaches to modeling interval timing at a level that can be understood by general audience. These models include Treisman's pacemaker accumulator model, the information processing variant of scalar expectancy theory, the striatal beat frequency model, behavioral expectancy theory, the learning to time model, the time-adaptive opponent Poisson drift-diffusion model, time cell models, and neural trajectory models. Crucially, we discuss these models within an overarching conceptual framework that categorizes different models as threshold vs. clock-adaptive models and as dedicated clock/ramping vs. emergent time/population code models.
Collapse
Affiliation(s)
- Fuat Balcı
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Patrick Simen
- Department of Neuroscience, Oberlin College, Oberlin, OH, USA
| |
Collapse
|