1
|
Zeidler Z, Gomez MF, Gupta TA, Shari M, Wilke SA, DeNardo LA. Prefrontal dopamine activity is critical for rapid threat avoidance learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.02.592069. [PMID: 39803535 PMCID: PMC11722269 DOI: 10.1101/2024.05.02.592069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The medial prefrontal cortex (mPFC) is required for learning associations that determine whether animals approach or avoid potential threats in the environment. Dopaminergic (DA) projections from the ventral tegmental area (VTA) to the mPFC carry information, particularly about aversive outcomes, that may inform prefrontal computations. But the role of prefrontal DA in learning based on aversive outcomes remains poorly understood. Here, we used platform mediated avoidance (PMA) to study the role of mPFC DA in threat avoidance learning in mice. We show that activity in VTA-mPFC dopaminergic terminals is required for avoidance learning, but not for escape, conditioned fear, or to recall a previously learned avoidance strategy. mPFC DA is most dynamic in the early stages of learning, and encodes aversive outcomes, their omissions, and threat-induced behaviors. Computational models of PMA behavior and DA activity revealed that mPFC DA influences learning rates and encodes the predictive relationships between cues and adaptive behaviors. Taken together, these data indicate that mPFC DA is necessary to rapidly learn behaviors required to avoid signaled threats, but not for learning cue-threat associations.
Collapse
Affiliation(s)
- Zachary Zeidler
- Department of Physiology; David Geffen School of Medicine, University of California, Los Angeles, California
| | - Marta Fernandez Gomez
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Tanya A. Gupta
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California
| | | | - Scott A. Wilke
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Laura A. DeNardo
- Department of Physiology; David Geffen School of Medicine, University of California, Los Angeles, California
- Lead contact
| |
Collapse
|
2
|
Ding TH, Hu YY, Li JW, Sun C, Ma CL. Mediodorsal thalamus nucleus-medial prefrontal cortex circuitry regulates cost-benefit decision-making selections. Cereb Cortex 2024; 34:bhae476. [PMID: 39668425 DOI: 10.1093/cercor/bhae476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024] Open
Abstract
Value-based decision-making involves weighing costs and benefits. The activity of the medial prefrontal cortex reflects cost-benefit assessments, and the mediodorsal thalamus, reciprocally connected with the medial prefrontal cortex, has increasingly been recognized as an active partner in decision-making. However, the specific role of the interaction between the mediodorsal thalamus and the medial prefrontal cortex in regulating the neuronal activity underlying how costs and benefits influence decision-making remains largely unexplored. We investigated this by training the rats to perform a self-determined decision-making task, where longer nose poke durations resulted in correspondingly larger rewards. Our results showed that the inactivation of either the medial prefrontal cortex or the mediodorsal thalamus significantly impaired rat to invest more nose poke duration for larger rewards. Moreover, optogenetic stimulation of the mediodorsal thalamus-medial prefrontal cortex pathway enhanced rats' motivation for larger rewards, whereas inhibition of this pathway resulted in decreased motivation. Notably, we identified a specific population of neurons in the medial prefrontal cortex that exhibited firing patterns correlated with motivation, and these neurons were modulated by the mediodorsal thalamus-medial prefrontal cortex projection. These findings suggest that the motivation during decision-making is encoded primarily by activity of particular neurons in the medial prefrontal cortex and indicate the crucial role of the mediodorsal thalamus-medial prefrontal cortex pathway in maintaining motivation.
Collapse
Affiliation(s)
- Tong-Hao Ding
- Institute of Biomedical Innovation, Nanchang University, Nanchang 330031, China
| | - Yu-Ying Hu
- Institute of Biomedical Innovation, Nanchang University, Nanchang 330031, China
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Jia-Wen Li
- The Second Clinic Medicine School, Nanchang University, Nanchang 330031, China
| | - Chong Sun
- Institute of Biomedical Innovation, Nanchang University, Nanchang 330031, China
| | - Chao-Lin Ma
- Institute of Biomedical Innovation, Nanchang University, Nanchang 330031, China
| |
Collapse
|
3
|
Mori K, Sakano H. One respiratory cycle as a minimum time unit for making behavioral decisions in the mammalian olfactory system. Front Neurosci 2024; 18:1423694. [PMID: 39315076 PMCID: PMC11417025 DOI: 10.3389/fnins.2024.1423694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Voluntary behaviors such as sniffing, moving, and eating require decision-making accompanied by intentional respiration. Based on the study of respiration-coherent activity of rodent olfactory networks, we infer that during the inhalation phase of respiration, olfactory cortical areas process environmental odor information and transmit it to the higher multisensory cognitive areas via feedforward pathways to comprehensively evaluate the surrounding situation. We also infer that during the exhalation phase, the higher multisensory areas generate cognitive-signals and transmit them not only to the behavioral output system but also back to the olfactory cortical areas. We presume that the cortical mechanism couples the intentional respiration with the voluntary behaviors. Thus, in one respiratory cycle, the mammalian brain may transmit and process sensory information to cognize and evaluate the multisensory image of the external world, leading to one behavioral decision and one emotional expression. In this perspective article, we propose that one respiratory cycle provides a minimum time unit for decision making during wakefulness.
Collapse
Affiliation(s)
- Kensaku Mori
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Japan
| |
Collapse
|
4
|
Roberts AC, Mulvihill KG. Multiple faces of anxiety: a frontal lobe perspective. Trends Neurosci 2024; 47:708-721. [PMID: 39127569 DOI: 10.1016/j.tins.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
Marked dysregulation of the human prefrontal cortex (PFC) and anterior cingulate cortex (ACC) characterises a variety of anxiety disorders, and its amelioration is a key feature of treatment success. Overall treatment response, however, is highly variable, and about a third of patients are resistant to treatment. In this review we hypothesise that a major contributor to this variation in treatment response are the multiple faces of anxiety induced by distinct forms of frontal cortex dysregulation. Comparison of findings from humans and non-human primates reveals marked similarity in the functional organisation of threat regulation across the frontal lobes. This organisation is discussed in relation to the 'predatory imminence continuum' model of threat and the differential engagement of executive functions at the core of both emotion generation and regulation strategies.
Collapse
Affiliation(s)
- Angela C Roberts
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Kevin G Mulvihill
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Ge MJ, Chen G, Zhang ZQ, Yu ZH, Shen JX, Pan C, Han F, Xu H, Zhu XL, Lu YP. Chronic restraint stress induces depression-like behaviors and alterations in the afferent projections of medial prefrontal cortex from multiple brain regions in mice. Brain Res Bull 2024; 213:110981. [PMID: 38777132 DOI: 10.1016/j.brainresbull.2024.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION The medial prefrontal cortex (mPFC) forms output pathways through projection neurons, inversely receiving adjacent and long-range inputs from other brain regions. However, how afferent neurons of mPFC are affected by chronic stress needs to be clarified. In this study, the effects of chronic restraint stress (CRS) on the distribution density of mPFC dendrites/dendritic spines and the projections from the cortex and subcortical brain regions to the mPFC were investigated. METHODS In the present study, C57BL/6 J transgenic (Thy1-YFP-H) mice were subjected to CRS to establish an animal model of depression. The infralimbic (IL) of mPFC was selected as the injection site of retrograde AAV using stereotactic technique. The effects of CRS on dendrites/dendritic spines and afferent neurons of the mPFC IL were investigaed by quantitatively assessing the distribution density of green fluorescent (YFP) positive dendrites/dendritic spines and red fluorescent (retrograde AAV recombinant protein) positive neurons, respectively. RESULTS The results revealed that retrograde tracing virus labeled neurons were widely distributed in ipsilateral and contralateral cingulate cortex (Cg1), second cingulate cortex (Cg2), prelimbic cortex (PrL), infralimbic cortex, medial orbital cortex (MO), and dorsal peduncular cortex (DP). The effects of CRS on the distribution density of mPFC red fluorescence positive neurons exhibited regional differences, ranging from rostral to caudal or from top to bottom. Simultaneously, CRS resulted a decrease in the distribution density of basal, proximal and distal dendrites, as well as an increase in the loss of dendritic spines of the distal dendrites in the IL of mPFC. Furthermore, varying degrees of red retrograde tracing virus fluorescence signals were observed in other cortices, amygdala, hippocampus, septum/basal forebrain, hypothalamus, thalamus, mesencephalon, and brainstem in both ipsilateral and contralateral brain. CRS significantly reduced the distribution density of red fluorescence positive neurons in other cortices, hippocampus, septum/basal forebrain, hypothalamus, and thalamus. Conversely, CRS significantly increased the distribution density of red fluorescence positive neurons in amygdala. CONCLUSION Our results suggest a possible mechanism that CRS leads to disturbances in synaptic plasticity by affecting multiple inputs to the mPFC, which is characterized by a decrease in the distribution density of dendrites/dendritic spines in the IL of mPFC and a reduction in input neurons of multiple cortices to the IL of mPFC as well as an increase in input neurons of amygdala to the IL of mPFC, ultimately causing depression-like behaviors.
Collapse
Affiliation(s)
- Ming-Jun Ge
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Geng Chen
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Zhen-Qiang Zhang
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Zong-Hao Yu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Jun-Xian Shen
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Chuan Pan
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Fei Han
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Hui Xu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China; Anhui College of Traditional Chinese Medicine, No. 18 Wuxiashan West Road, Wuhu 241002, China
| | - Xiu-Ling Zhu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China; Department of Anatomy, Wannan Medical College, No. 22 Wenchang West Road, Wuhu 241002, China
| | - Ya-Ping Lu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China.
| |
Collapse
|
6
|
Yang BZ, Xiang B, Wang T, Ma S, Li CSR. Neurogenetic underpinnings of nicotine use severity: Integrating the brain transcriptomes and GWAS variants via network approaches. Psychiatry Res 2024; 334:115815. [PMID: 38422867 PMCID: PMC11017751 DOI: 10.1016/j.psychres.2024.115815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Our study focused on human brain transcriptomes and the genetic risks of cigarettes per day (CPD) to investigate the neurogenetic mechanisms of individual variation in nicotine use severity. We constructed whole-brain and intramodular region-specific coexpression networks using BrainSpan's transcriptomes, and the genomewide association studies identified risk variants of CPD, confirmed the associations between CPD and each gene set in the region-specific subnetworks using an independent dataset, and conducted bioinformatic analyses. Eight brain-region-specific coexpression subnetworks were identified in association with CPD: amygdala, hippocampus, medial prefrontal cortex (MPFC), orbitofrontal cortex (OPFC), dorsolateral prefrontal cortex, striatum, mediodorsal nucleus of the thalamus (MDTHAL), and primary motor cortex (M1C). Each gene set in the eight subnetworks was associated with CPD. We also identified three hub proteins encoded by GRIN2A in the amygdala, PMCA2 in the hippocampus, MPFC, OPFC, striatum, and MDTHAL, and SV2B in M1C. Intriguingly, the pancreatic secretion pathway appeared in all the significant protein interaction subnetworks, suggesting pleiotropic effects between cigarette smoking and pancreatic diseases. The three hub proteins and genes are implicated in stress response, drug memory, calcium homeostasis, and inhibitory control. These findings provide novel evidence of the neurogenetic underpinnings of smoking severity.
Collapse
Affiliation(s)
- Bao-Zhu Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
| | - Bo Xiang
- Department of Psychiatry, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China.
| | - Tingting Wang
- Department of Psychiatry, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Shuangge Ma
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Mohammadi S, Jahanshahi A, Salehi MA, Darvishi R, Seyedmirzaei H, Luna LP. White matter microstructural changes in internet addiction disorder: A systematic review of diffusion tensor imaging studies. Addict Behav 2023; 143:107690. [PMID: 36989701 DOI: 10.1016/j.addbeh.2023.107690] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Diffusion tensor imaging (DTI) is a kind of magnetic resonance imaging (MRI) modality that helps designate tracts with brain microstructural changes. Internet gaming disorder (IGD) is an internet addiction that can cause many social and personality problems, such as problems in social communication, anxiety, and depression. There are several pieces of evidence showing the impact of this condition on brain regions, and many studies have investigated DTI measurements in these individuals. Therefore, we decided to systematically review the studies that have reported DTI parameters in IGD individuals. We searched the PubMed and Scopus databases to find relevant articles. Two reviewers separately screened the studies, and finally, 14 articles, including diffusion and network studies, were found eligible for our systematic review. Most of the studies reported findings on FA, showing an increase in the thalamus, anterior thalamic radiation, corticospinal tract, and inferior longitudinal fasciculus (ILF), while other regions mentioned in the studies demonstrated inconsistent findings. Moreover, in network studies, IGD individuals showed a decrease in nodal and global efficiencies. In conclusion, our study illuminates the neuropsychological basis of this condition and suggests that internet gaming can correlate with microstructural abnormalities in the central nervous system. Some correlate with the characteristics of online gaming, the addiction state, and the illness's duration.
Collapse
|