1
|
Tsang B, Gerlai R. Nature versus laboratory: how to optimize housing conditions for zebrafish neuroscience research. Trends Neurosci 2024; 47:985-993. [PMID: 39307630 DOI: 10.1016/j.tins.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 12/12/2024]
Abstract
Although zebrafish (Danio rerio) neuroscience research is rapidly expanding, the fundamental question of how these fish should be maintained in research laboratories remains largely unstudied. This may explain the diverse practices and broad range of environmental parameters used in zebrafish facilities. Here, we provide examples of these parameters and practices, including housing density, tank size, and water chemistry. We discuss the principles of stochastic resonance versus homeostasis and provide hypothetical examples to explain why keeping zebrafish outside of their tolerated range of environmental parameters may increase phenotypical variance and reduce replicability. We call for systematic studies to establish the optimal maintenance conditions for zebrafish. Furthermore, we discuss why knowing more about the natural behavior and ecology of this species could be a guiding principle for these studies.
Collapse
Affiliation(s)
- Benjamin Tsang
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada; Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Muralidharan A, Swaminathan A, Poulose A. Deep learning dives: Predicting anxiety in zebrafish through novel tank assay analysis. Physiol Behav 2024; 287:114696. [PMID: 39293590 DOI: 10.1016/j.physbeh.2024.114696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Behavior is fundamental to neuroscience research, providing insights into the mechanisms underlying thoughts, actions and responses. Various model organisms, including mice, flies, and fish, are employed to understand these mechanisms. Zebrafish, in particular, serve as a valuable model for studying anxiety-like behavior, typically measured through the novel tank diving (NTD) assay. Traditional methods for analyzing NTD assays are either manually intensive or costly when using specialized software. To address these limitations, it is useful to develop methods for the automated analysis of zebrafish NTD assays using deep-learning models. In this study, we classified zebrafish based on their anxiety levels using DeepLabCut. Subsequently, based on a training dataset of image frames, we compared deep-learning models to identify the model best suited to classify zebrafish as anxious or non anxious and found that specific architectures, such as InceptionV3, are able to effectively perform this classification task. Our findings suggest that these deep learning models hold promise for automated behavioral analysis in zebrafish, offering an efficient and cost-effective alternative to traditional methods.
Collapse
Affiliation(s)
- Anagha Muralidharan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
| | - Amrutha Swaminathan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
| | - Alwin Poulose
- School of Data Science, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
| |
Collapse
|
3
|
Thapa H, Salahinejad A, Crane AL, Ghobeishavi A, Ferrari MCO. Background predation risk induces anxiety-like behaviour and predator neophobia in zebrafish. Anim Cogn 2024; 27:69. [PMID: 39441319 PMCID: PMC11499451 DOI: 10.1007/s10071-024-01908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Prey face a major challenge in balancing predator avoidance with other essential activities. In environments with high risk, prey may exhibit neophobia (fear of novelty) due to the increased likelihood of novel stimuli being dangerous. The zebrafish, Danio rerio, is an established model organism for many scientific studies. Although spatial and object neophobia in zebrafish have received previous attention, little is known about the role of background risk in inducing neophobia in zebrafish. Here, we present two experiments using zebrafish to explore whether background predation risk can induce anxiety-like behaviour in a novel environment and neophobic responses when exposed to a novel odour. Over five days, we repeatedly exposed zebrafish to either high background risk in the form of chemical alarm cues (i.e., injured conspecific cues that indicate a predator attack) or a low-risk water control stimulus. In Experiment 1, when tested in a novel tank, zebrafish exposed to high predation risk displayed anxiety-like responses (reduced activity and increased bottom time spent) compared to their low-risk counterparts. Moreover, high-risk individuals showed reduced intra-session habituation to the novel tank compared to low-risk individuals. In Experiment 2, high-risk individuals exhibited fear responses toward a novel odour, unlike low-risk individuals. These results reveal that short-term repeated exposures to high risk can induce anxiety-like behaviour and predator odour neophobia in zebrafish.
Collapse
Affiliation(s)
- Himal Thapa
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Adam L Crane
- School of Mathematical and Natural Sciences, University of Arkansas, Fayetteville, US
| | - Ahmad Ghobeishavi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Maud C O Ferrari
- Department of Veterinary Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
4
|
Hillman C, Fontana BD, Amstislavskaya TG, Gorbunova MA, Altenhofen S, Barthelson K, Bastos LM, Borba JV, Bonan CD, Brennan CH, Farias-Cea A, Cooper A, Corcoran J, Dondossola ER, Martinez-Duran LM, Gallas-Lopes M, Galstyan DS, Garcia EO, Gerken E, Hindges R, Kenney JW, Kleshchev MA, Kolesnikova TO, Leggieri A, Khatsko SL, Lardelli M, Lodetti G, Lombardelli G, Luchiari AC, Portela SM, Medan V, Moutinho LM, Nekhoroshev EV, Petersen BD, Petrunich-Rutherford ML, Piato A, Porfiri M, Read E, Resmim CM, Rico EP, Rosemberg DB, de Abreu MS, Salazar CA, Stahloher-Buss T, Teixeira JR, Valentim AM, Zhdanov AV, Iturriaga-Vásquez P, Wang X, Wong RY, Kalueff AV, Parker MO. Housing and Husbandry Factors Affecting Zebrafish ( Danio rerio) Novel Tank Test Responses: A Global Multi-Laboratory Study. RESEARCH SQUARE 2024:rs.3.rs-4849877. [PMID: 39483890 PMCID: PMC11527349 DOI: 10.21203/rs.3.rs-4849877/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The reproducibility crisis in bioscience, characterized by inconsistent study results, impedes our understanding of biological processes and global collaborative studies offer a unique solution. This study is the first global collaboration using the zebrafish (Danio rerio) novel tank test, a behavioral assay for anxiety-like responses. We analyzed data from 20 laboratories worldwide, focusing on housing conditions and experimental setups. Our study included 488 adult zebrafish, tested for 5 min, focusing on a variety of variables. Key findings show females exhibit more anxiety-like behavior than males, underscoring sex as a critical variable. Housing conditions, including higher stocking densities and specific feed types, influenced anxiety levels. Optimal conditions (5 fish/L) and nutritionally rich feeds (e.g., rotifers), mitigated anxiety-like behaviors. Environmental stressors, like noise and transportation, significantly impacted behavior. We recommend standardizing protocols to account for sex differences, optimal stocking densities, nutritionally rich feeds, and minimizing stressors to improve zebrafish behavioral study reliability.
Collapse
Affiliation(s)
- Courtney Hillman
- Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, School of Biosciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Barbara D. Fontana
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, 48202, USA
| | - Tamara G. Amstislavskaya
- Laboratory of experimental models of neuropsychiatric disorders, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk State University, Novosibirsk, Russia
| | | | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 90619-900, Porto Alegre, RS, BR
| | - Karissa Barthelson
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA, Australia 5005
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Leonardo M. Bastos
- Laboratório de Psicofarmacologia e Comportamento, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - João V. Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Carla D. Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 90619-900, Porto Alegre, RS, BR
| | - Caroline H. Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Amaury Farias-Cea
- Molecular Pharmacology and Medicinal Chemistry Lab, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco, Chile
| | - Austin Cooper
- Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, School of Biosciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Jamie Corcoran
- Department of Psychology, University of Nebraska at Omaha, Omaha, Nebraska, 68182 USA
| | - Eduardo R. Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Luis M. Martinez-Duran
- Molecular Pharmacology and Medicinal Chemistry Lab, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco, Chile
| | - Matheus Gallas-Lopes
- Laboratório de Psicofarmacologia e Comportamento, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | | | - Ella O. Garcia
- Department of Psychology, Indiana University Northwest, Gary, Indiana, 46408, USA
| | - Ewan Gerken
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA, Australia 5005
| | - Robert Hindges
- Centre for Developmental Neurobiology & MRC Centre for Neurodevelopmental Disorders, King’s College London, London, England, UK
| | - Justin W. Kenney
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, 48202, USA
| | - Maxim A. Kleshchev
- Laboratory of experimental models of neuropsychiatric disorders, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk State University, Novosibirsk, Russia
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | | | - Michael Lardelli
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA, Australia 5005
| | - Guilherme Lodetti
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Giulia Lombardelli
- Department of Mechanical and Aerospace Engineering, Department of Biomedical Engineering, Center for Urban Science and Progress, New York University, Tandon School of Engineering, New York, 11201, USA
| | - Ana C. Luchiari
- FishLab, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Stefani M. Portela
- Laboratório de Psicofarmacologia e Comportamento, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Violeta Medan
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Tecnológicas. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lirane M. Moutinho
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Tecnológicas. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Evgeny V. Nekhoroshev
- Laboratory of experimental models of neuropsychiatric disorders, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk State University, Novosibirsk, Russia
| | - Barbara D. Petersen
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 90619-900, Porto Alegre, RS, BR
| | | | - Angelo Piato
- Laboratório de Psicofarmacologia e Comportamento, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, Department of Biomedical Engineering, Center for Urban Science and Progress, New York University, Tandon School of Engineering, New York, 11201, USA
| | - Emily Read
- Centre for Developmental Neurobiology & MRC Centre for Neurodevelopmental Disorders, King’s College London, London, England, UK
| | - Cássio M. Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Eduardo P. Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Denis B. Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Murilo S. de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
- Western Caspian University, Baku, Azerbaijan
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA
| | - Catia A. Salazar
- Department of Psychology, Indiana University Northwest, Gary, Indiana, 46408, USA
| | - Thaliana Stahloher-Buss
- Laboratório de Psicofarmacologia e Comportamento, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Júlia R. Teixeira
- FishLab, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana M. Valentim
- Laboratory Animal Science, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, (i3S), 4200-135 Porto, Portugal
| | | | - Patricio Iturriaga-Vásquez
- Molecular Pharmacology and Medicinal Chemistry Lab, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco, Chile
| | - Xian Wang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Ryan Y. Wong
- Department of Psychology, University of Nebraska at Omaha, Omaha, Nebraska, 68182 USA
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182 USA
| | - Allan V. Kalueff
- Laboratory of experimental models of neuropsychiatric disorders, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk State University, Novosibirsk, Russia
- St. Petersburg State University, St. Petersburg, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
- Western Caspian University, Baku, Azerbaijan
| | - Matthew O. Parker
- Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, School of Biosciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
5
|
Pessoa R, Motta C, Araujo-Pessoa E, Gouveia A. Effects of housing density on anxiety-like behavior of zebrafish in the plus maze with ramp. Behav Processes 2024; 222:105114. [PMID: 39433167 DOI: 10.1016/j.beproc.2024.105114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Population density in experimental animals is a crucial factor in maintaining the wellbeing of the organisms. Inadequate housing conditions can compromise the validity and reliability of research results, making comparisons between studies difficult. In sociable species such as zebrafish (Danio rerio), which are housed in groups, overcrowding or undercrowding represents a variable that needs to be considered. In this study, we evaluated the effects of housing at different densities for different exposure times on the anxiety response measured in the Plus Maze with Ramp test in zebrafish. The subjects (144) were divided into three large groups according to the housing time (1, 7, and 30 days). Each group was divided into six subgroups based on the density of the fish (0.25, 0.5, 1, 2, 4, 6 fish/liter, n = 8) and housed in a 4-liter aquarium. After the housing conditions, each animal was tested individually in the PMR. Time and housing density altered the exploratory behavior of zebrafish. Increased housing time reduced the time spent in the ramp arms, with groups kept for 30 days spending less time in this compartment. Density increased the time spent in the flat arms in groups with 2 and 6 fish/liter and, conversely, reduced the exploration of the ramp arms. Isolation, on the other hand, increased the exploration of the ramp arms, indicating an anxiolytic effect. In this study, we demonstrate that housing conditions can act as low-intensity chronic stressors that alter anxiety-like behavior in zebrafish when tested in the PMR protocol.
Collapse
Affiliation(s)
- Rodrigo Pessoa
- Federal University of Pará, Postgraduate Program in Neurosciences and Cell Biology, Brazil.
| | - Carla Motta
- Federal University of Pará, Postgraduate Program in Behavior Theory and Research, Brazil
| | - Elen Araujo-Pessoa
- Federal Institute of Education, Sciences and Technology of Pará, Tucuruí Campus, Brazil
| | - Amauri Gouveia
- Federal University of Pará, Postgraduate Program in Neurosciences and Cell Biology, Brazil; Federal University of Pará, Postgraduate Program in Behavior Theory and Research, Brazil.
| |
Collapse
|
6
|
Romaguera ARDC, Vasconcelos JVA, Negreiros-Neto LG, Pessoa NL, Silva JFD, Cadena PG, Souza AJFD, Oliveira VMD, Barbosa ALR. Multifractal fluctuations in zebrafish (Danio rerio) polarization time series. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:29. [PMID: 38704810 DOI: 10.1140/epje/s10189-024-00423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
In this work, we study the polarization time series obtained from experimental observation of a group of zebrafish (Danio rerio) confined in a circular tank. The complex dynamics of the individual trajectory evolution lead to the appearance of multiple characteristic scales. Employing the Multifractal Detrended Fluctuation Analysis (MF-DFA), we found distinct behaviors according to the parameters used. The polarization time series are multifractal at low fish densities and their average scales with ρ - 1 / 4 . On the other hand, they tend to be monofractal, and their average scales with ρ - 1 / 2 for high fish densities. These two regimes overlap at critical density ρ c , suggesting the existence of a phase transition separating them. We also observed that for low densities, the polarization velocity shows a non-Gaussian behavior with heavy tails associated with long-range correlation and becomes Gaussian for high densities, presenting an uncorrelated regime.
Collapse
Affiliation(s)
- Antonio R de C Romaguera
- Departamento de Física, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil.
| | - João V A Vasconcelos
- Departamento de Física, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil
| | - Luis G Negreiros-Neto
- Departamento de Física, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil
| | - Nathan L Pessoa
- Centro de Apoio à Pesquisa, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil
| | - Jadson F da Silva
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil
| | - Pabyton G Cadena
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil
| | - Adauto J F de Souza
- Departamento de Física, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil
| | - Viviane M de Oliveira
- Departamento de Física, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil
| | - Anderson L R Barbosa
- Departamento de Física, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil
| |
Collapse
|
7
|
Canzian J, Borba JV, Ames J, Silva RM, Resmim CM, Pretzel CW, Duarte MCF, Storck TR, Mohammed KA, Adedara IA, Loro VL, Gerlai R, Rosemberg DB. The influence of acute dopamine transporter inhibition on manic-, depressive-like phenotypes, and brain oxidative status in adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110961. [PMID: 38325745 DOI: 10.1016/j.pnpbp.2024.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Functional changes in dopamine transporter (DAT) are related to various psychiatric conditions, including bipolar disorder (BD) symptoms. In experimental research, the inhibition of DAT induces behavioral alterations that recapitulate symptoms found in BD patients, including mania and depressive mood. Thus, developing novel animal models that mimic BD-related conditions by pharmacologically modulating the dopaminergic signaling is relevant. The zebrafish (Danio rerio) has been considered a suitable vertebrate system for modeling BD-like responses, due to the well-characterized behavioral responses and evolutionarily conservation of the dopaminergic system of this species. Here, we investigate whether GBR 12909, a selective inhibitor of DAT, causes neurobehavioral alterations in zebrafish similar to those observed in BD patients. Behaviors were recorded after a single intraperitoneal (i.p.) administration of GBR 12909 at different doses (3.75, 7.5, 15 and 30 mg/kg). To observe temporal effects on behavior, swim path parameters were measured immediately after the administration period during 30 min. Locomotion, anxiety-like behavior, social preference, aggression, despair-like behavior, and oxidative stress-related biomarkers in the brain were measured 30 min post administration. GBR 12909 induced prominent effects on locomotor activity and vertical exploration during the 30-min period. Hyperactivity was observed in GBR 30 group after 25 min, while all doses markedly reduced vertical drifts. GBR 12909 elicited hyperlocomotion, anxiety-like behavior, decreased social preference, aggression, and induced depressive-like behavior in a behavioral despair task. Depending on the dose, GBR 12909 also decreased SOD activity and TBARS levels, as well as increased GR activity and NPSH content. Collectively, our novel findings show that a single GBR 12909 administration evokes neurobehavioral changes that recapitulate manic- and depressive-like states observed in rodents, fostering the use of zebrafish models to explore BD-like responses in translational neuroscience research.
Collapse
Affiliation(s)
- Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil.
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Jaíne Ames
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Laboratory of Aquatic Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rossano M Silva
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Camilla W Pretzel
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Maria Cecília F Duarte
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Tamiris R Storck
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Khadija A Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Vania L Loro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Laboratory of Aquatic Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada; Department of Cell and System Biology, University of Toronto, Toronto, ON, Canada
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
8
|
Pietsch C, Konrad J, Wernicke von Siebenthal E, Pawlak P. Multiple faces of stress in the zebrafish ( Danio rerio) brain. Front Physiol 2024; 15:1373234. [PMID: 38711953 PMCID: PMC11070943 DOI: 10.3389/fphys.2024.1373234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
The changing expressions of certain genes as a consequence of exposure to stressors has not been studied in detail in the fish brain. Therefore, a stress trial with zebrafish was conducted, aiming at identifying relevant gene regulation pathways in different regions of the brain. As acute stressors within this trial, feed rewarding, feed restriction, and air exposure have been used. The gene expression data from the experimental fish brains have been analyzed by means of principal component analyses (PCAs), whereby the individual genes have been compiled according to the regulation pathways in the brain. The results did not indicate a mutual response across the treatment and gender groups. To evaluate whether a similar sample structure belonging to a large sample size would have allowed the classification of the gene expression patterns according to the treatments, the data have been bootstrapped and used for building random forest models. These revealed a high accuracy of the classifications, but different genes in the female and male zebrafish were found to have contributed to the classification algorithms the most. These analyses showed that less than eight genes are, in most cases, sufficient for an accurate classification. Moreover, mainly genes belonging to the stress axis, to the isotocin regulation pathways, or to the serotonergic pathways had the strongest influence on the outcome of the classification models.
Collapse
Affiliation(s)
- Constanze Pietsch
- School of Agricultural, Forest and Food Sciences (HAFL), University of Applied Sciences Bern (BFH), Zollikofen, Switzerland
| | - Jonathan Konrad
- School of Agricultural, Forest and Food Sciences (HAFL), University of Applied Sciences Bern (BFH), Zollikofen, Switzerland
| | - Elena Wernicke von Siebenthal
- School of Agricultural, Forest and Food Sciences (HAFL), University of Applied Sciences Bern (BFH), Zollikofen, Switzerland
| | - Paulina Pawlak
- School of Agricultural, Forest and Food Sciences (HAFL), University of Applied Sciences Bern (BFH), Zollikofen, Switzerland
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Lai NHY, Mohd Zahir IA, Liew AKY, Ogawa S, Parhar I, Soga T. Teleosts as behaviour test models for social stress. Front Behav Neurosci 2023; 17:1205175. [PMID: 37744951 PMCID: PMC10512554 DOI: 10.3389/fnbeh.2023.1205175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Stress is an important aspect of our everyday life and exposure to it is an unavoidable occurrence. In humans, this can come in the form of social stress or physical stress from an injury. Studies in animal models have helped researchers to understand the body's adaptive response to stress in human. Notably, the use of behavioural tests in animal models plays a pivotal role in understanding the neural, endocrine and behavioural changes induced by social stress. Under socially stressed conditions, behavioural parameters are often measured physiological and molecular parameters as changes in behaviour are direct responses to stress and are easily assessed by behavioural tests. Throughout the past few decades, the rodent model has been used as a well-established animal model for stress and behavioural changes. Recently, more attention has been drawn towards using fish as an animal model. Common fish models such as zebrafish, medaka, and African cichlids have the advantage of a higher rate of reproduction, easier handling techniques, sociability and most importantly, share evolutionary conserved genetic make-up, neural circuitry, neuropeptide molecular structure and function with mammalian species. In fact, some fish species exhibit a clear diurnal or seasonal rhythmicity in their stress response, similar to humans, as opposed to rodents. Various social stress models have been established in fish including but not limited to chronic social defeat stress, social stress avoidance, and social stress-related decision-making. The huge variety of behavioural patterns in teleost also aids in the study of more behavioural phenotypes than the mammalian species. In this review, we focus on the use of fish models as alternative models to study the effects of stress on different types of behaviours. Finally, fish behavioural tests against the typical mammalian model-based behavioural test are compared and discussed for their viability.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
10
|
Tsang B, Venditti V, Javier CM, Gerlai R. The ram cichlid (Mikrogeophagus ramirezi) learns an associative task: a new fish species for memory research. Sci Rep 2023; 13:13781. [PMID: 37612369 PMCID: PMC10447575 DOI: 10.1038/s41598-023-40739-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Fish are the most species rich and evolutionarily oldest vertebrate taxon. This represents opportunities for biologists who intend to employ laboratory animals in their comparative or translational research. Yet, the overwhelming majority of such studies use a single fish species, the zebrafish, a suboptimal strategy from the comparative standpoint. Neuronal plasticity (learning and memory) is perhaps one of the most complex biological phenomena from a mechanistic standpoint, and thus its analysis could benefit from the use of evolutionarily ancient and simple vertebrate model organisms, i.e., fish species. However, learning & memory research with the zebrafish has been replete with problems. Here, we employ a novel fish species, the ram cichlid, we argue will be particularly appropriate for this purpose for practical as well as ethological/ecological reasons. First, we investigate whether the ram cichlid exhibits innate preference for certain colours (red, blue, yellow or green) in a four-choice task, the plus maze. Subsequently, we pair the apparently least preferred colour (green, the conditioned stimulus or CS) with food reward (the unconditioned stimulus, US) in the plus maze, a CS-US associative learning task. After eight pairing trials, we run a probe trial during which only the CS is presented. At this trial, we find significant preference to the CS, i.e., acquisition of memory of CS-US association. We argue that our proof-of-concept study demonstrating fast acquisition of CS-US association in the ram cichlid, coupled with the universal utility of some genome editing methods, will facilitate the mechanistic analysis of learning and memory.
Collapse
Affiliation(s)
- Benjamin Tsang
- Cell and System Biology Department, University of Toronto, Toronto, ON, Canada.
| | - Veronica Venditti
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Celina Micaela Javier
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Robert Gerlai
- Cell and System Biology Department, University of Toronto, Toronto, ON, Canada.
- Department of Psychology, University of Toronto Mississauga, Rm CCT4004, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|