1
|
Ma Q, Chen G, Li Y, Guo Z, Zhang X. The molecular genetics of PI3K/PTEN/AKT/mTOR pathway in the malformations of cortical development. Genes Dis 2024; 11:101021. [PMID: 39006182 PMCID: PMC11245990 DOI: 10.1016/j.gendis.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 07/16/2024] Open
Abstract
Malformations of cortical development (MCD) are a group of developmental disorders characterized by abnormal cortical structures caused by genetic or harmful environmental factors. Many kinds of MCD are caused by genetic variation. MCD is the common cause of intellectual disability and intractable epilepsy. With rapid advances in imaging and sequencing technologies, the diagnostic rate of MCD has been increasing, and many potential genes causing MCD have been successively identified. However, the high genetic heterogeneity of MCD makes it challenging to understand the molecular pathogenesis of MCD and to identify effective targeted drugs. Thus, in this review, we outline important events of cortical development. Then we illustrate the progress of molecular genetic studies about MCD focusing on the PI3K/PTEN/AKT/mTOR pathway. Finally, we briefly discuss the diagnostic methods, disease models, and therapeutic strategies for MCD. The information will facilitate further research on MCD. Understanding the role of the PI3K/PTEN/AKT/mTOR pathway in MCD could lead to a novel strategy for treating MCD-related diseases.
Collapse
Affiliation(s)
- Qing Ma
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guang Chen
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Ying Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhenming Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
2
|
Wegiel J, Chadman K, London E, Wisniewski T, Wegiel J. Contribution of the serotonergic system to developmental brain abnormalities in autism spectrum disorder. Autism Res 2024; 17:1300-1321. [PMID: 38500252 PMCID: PMC11272444 DOI: 10.1002/aur.3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
This review highlights a key role of the serotonergic system in brain development and in distortions of normal brain development in early stages of fetal life resulting in cascades of abnormalities, including defects of neurogenesis, neuronal migration, neuronal growth, differentiation, and arborization, as well as defective neuronal circuit formation in the cortex, subcortical structures, brainstem, and cerebellum of autistic subjects. In autism, defects in regulation of neuronal growth are the most frequent and ubiquitous developmental changes associated with impaired neuron differentiation, smaller size, distorted shape, loss of spatial orientation, and distortion of cortex organization. Common developmental defects of the brain in autism include multiregional focal dysplastic changes contributing to local neuronal circuit distortion, epileptogenic activity, and epilepsy. There is a discrepancy between more than 500 reports demonstrating the contribution of the serotonergic system to autism's behavioral anomalies, highlighted by lack of studies of autistic subjects' brainstem raphe nuclei, the center of brain serotonergic innervation, and of the contribution of the serotonergic system to the diagnostic features of autism spectrum disorder (ASD). Discovery of severe fetal brainstem auditory system neuronal deficits and other anomalies leading to a spectrum of hearing deficits contributing to a cascade of behavioral alterations, including deficits of social and verbal communication in individuals with autism, is another argument to intensify postmortem studies of the type and topography of, and the severity of developmental defects in raphe nuclei and their contribution to abnormal brain development and to the broad spectrum of functional deficits and comorbid conditions in ASD.
Collapse
Affiliation(s)
- Jarek Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Kathryn Chadman
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Eric London
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Thomas Wisniewski
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- Center for Cognitive Neurology, Department of Neurology, Pathology and Psychiatry, NYU Grossman School of Medicine, New York, New York, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
3
|
Janowitz HN, Linden DJ. Chronic Treatment with Serotonin Selective Reuptake Inhibitors Does Not Affect Regrowth of Serotonin Axons Following Amphetamine Injury in the Mouse Forebrain. eNeuro 2024; 11:ENEURO.0444-22.2023. [PMID: 38355299 PMCID: PMC10867722 DOI: 10.1523/eneuro.0444-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 02/16/2024] Open
Abstract
A current hypothesis to explain the limited recovery following brain and spinal cord trauma stems from the dogma that neurons in the mammalian central nervous system lack the ability to regenerate their axons after injury. Serotonin (5-HT) neurons in the adult brain are a notable exception in that they can slowly regrow their axons following chemical or mechanical lesions. This process of regrowth occurs without intervention over several months and results in anatomical recovery that approximates the preinjured state. During development, serotonin is a trophic factor, playing a role in both cell survival and axon growth. Additionally, some studies have shown that stroke patients treated after injury with serotonin selective reuptake inhibitors (SSRIs) appeared to have improved recovery. To test the hypothesis that serotonin can influence the regrowth of 5-HT axons, mice received a high dose of para-chloroamphetamine (PCA) to induce widespread retrograde degeneration of 5-HT axons. Then, after a short rest period to avoid any interaction with the acute injury phase, SSRIs were administered daily for 6 or 10 weeks. Using immunohistochemistry in 5-HT transporter-GFP BAC transgenic mice, we determined that while PCA led to a rapid initial decrease in total 5-HT axon length in the somatosensory cortex, visual cortex, or area CA1 of the hippocampus, treatment with either fluoxetine or sertraline (two different SSRIs) did not affect the recovery of axon length. These results suggest that chronic SSRI treatment does not affect the regrowth of 5-HT axons and argue against SSRIs as a potential therapy following brain injury.
Collapse
Affiliation(s)
- Haley N Janowitz
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - David J Linden
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
4
|
5-HT-dependent synaptic plasticity of the prefrontal cortex in postnatal development. Sci Rep 2022; 12:21015. [PMID: 36470912 PMCID: PMC9723183 DOI: 10.1038/s41598-022-23767-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Important functions of the prefrontal cortex (PFC) are established during early life, when neurons exhibit enhanced synaptic plasticity and synaptogenesis. This developmental stage drives the organization of cortical connectivity, responsible for establishing behavioral patterns. Serotonin (5-HT) emerges among the most significant factors that modulate brain activity during postnatal development. In the PFC, activated 5-HT receptors modify neuronal excitability and interact with intracellular signaling involved in synaptic modifications, thus suggesting that 5-HT might participate in early postnatal plasticity. To test this hypothesis, we employed intracellular electrophysiological recordings of PFC layer 5 neurons to study the modulatory effects of 5-HT on plasticity induced by theta-burst stimulation (TBS) in two postnatal periods of rats. Our results indicate that 5-HT is essential for TBS to result in synaptic changes during the third postnatal week, but not later. TBS coupled with 5-HT2A or 5-HT1A and 5-HT7 receptors stimulation leads to long-term depression (LTD). On the other hand, TBS and synergic activation of 5-HT1A, 5-HT2A, and 5-HT7 receptors lead to long-term potentiation (LTP). Finally, we also show that 5-HT dependent synaptic plasticity of the PFC is impaired in animals that are exposed to early-life chronic stress.
Collapse
|
5
|
Beopoulos A, Géa M, Fasano A, Iris F. Autism spectrum disorders pathogenesis: Toward a comprehensive model based on neuroanatomic and neurodevelopment considerations. Front Neurosci 2022; 16:988735. [PMID: 36408388 PMCID: PMC9671112 DOI: 10.3389/fnins.2022.988735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) involves alterations in neural connectivity affecting cortical network organization and excitation to inhibition ratio. It is characterized by an early increase in brain volume mediated by abnormal cortical overgrowth patterns and by increases in size, spine density, and neuron population in the amygdala and surrounding nuclei. Neuronal expansion is followed by a rapid decline from adolescence to middle age. Since no known neurobiological mechanism in human postnatal life is capable of generating large excesses of frontocortical neurons, this likely occurs due to a dysregulation of layer formation and layer-specific neuronal migration during key early stages of prenatal cerebral cortex development. This leads to the dysregulation of post-natal synaptic pruning and results in a huge variety of forms and degrees of signal-over-noise discrimination losses, accounting for ASD clinical heterogeneities, including autonomic nervous system abnormalities and comorbidities. We postulate that sudden changes in environmental conditions linked to serotonin/kynurenine supply to the developing fetus, throughout the critical GW7 - GW20 (Gestational Week) developmental window, are likely to promote ASD pathogenesis during fetal brain development. This appears to be driven by discrete alterations in differentiation and patterning mechanisms arising from in utero RNA editing, favoring vulnerability outcomes over plasticity outcomes. This paper attempts to provide a comprehensive model of the pathogenesis and progression of ASD neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research and Treatment, Massachusetts General Hospital for Children, Boston, MA, United States
| | | |
Collapse
|
6
|
Fritz N, Berens S, Dong Y, Martínez C, Schmitteckert S, Houghton LA, Goebel-Stengel M, Wahl V, Kabisch M, Götze D, D’Amato M, Zheng T, Röth R, Mönnikes H, Tesarz J, Engel F, Gauss A, Raithel M, Andresen V, Keller J, Frieling T, Pehl C, Stein-Thöringer C, Clarke G, Kennedy PJ, Cryan JF, Dinan TG, Quigley EMM, Spiller R, Beltrán C, Madrid AM, Torres V, Mayer EA, Sayuk G, Gazouli M, Karamanolis G, Bustamante M, Estivil X, Rabionet R, Hoffmann P, Nöthen MM, Heilmann-Heimbach S, Schmidt B, Franke A, Lieb W, Herzog W, Boeckxstaens G, Wouters MM, Simrén M, Rappold GA, Vicario M, Santos J, Schaefert R, Lorenzo-Bermejo J, Niesler B. The serotonin receptor 3E variant is a risk factor for female IBS-D. J Mol Med (Berl) 2022; 100:1617-1627. [PMID: 36121467 PMCID: PMC9592668 DOI: 10.1007/s00109-022-02244-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/18/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022]
Abstract
Irritable bowel syndrome (IBS) is a gut-brain disorder of multifactorial origin. Evidence of disturbed serotonergic function in IBS accumulated for the 5-HT3 receptor family. 5-HT3Rs are encoded by HTR3 genes and control GI function, and peristalsis and secretion, in particular. Moreover, 5-HT3R antagonists are beneficial in the treatment of diarrhea predominant IBS (IBS-D). We previously reported on functionally relevant SNPs in HTR3A c.-42C > T (rs1062613), HTR3C p.N163K (rs6766410), and HTR3E c.*76G > A (rs56109847 = rs62625044) being associated with IBS-D, and the HTR3B variant p.Y129S (rs1176744) was also described within the context of IBS. We performed a multi-center study to validate previous results and provide further evidence for the relevance of HTR3 genes in IBS pathogenesis. Therefore, genotype data of 2682 IBS patients and 9650 controls from 14 cohorts (Chile, Germany (2), Greece, Ireland, Spain, Sweden (2), the UK (3), and the USA (3)) were taken into account. Subsequent meta-analysis confirmed HTR3E c.*76G > A (rs56109847 = rs62625044) to be associated with female IBS-D (OR = 1.58; 95% CI (1.18, 2.12)). Complementary expression studies of four GI regions (jejunum, ileum, colon, sigmoid colon) of 66 IBS patients and 42 controls revealed only HTR3E to be robustly expressed. On top, HTR3E transcript levels were significantly reduced in the sigma of IBS patients (p = 0.0187); more specifically, in those diagnosed with IBS-D (p = 0.0145). In conclusion, meta-analysis confirmed rs56109847 = rs62625044 as a risk factor for female IBS-D. Expression analysis revealed reduced HTR3E levels in the sigmoid colon of IBS-D patients, which underlines the relevance of HTR3E in the pathogenesis of IBS-D.
Collapse
Affiliation(s)
- Nikola Fritz
- grid.5253.10000 0001 0328 4908Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabrina Berens
- grid.5253.10000 0001 0328 4908Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Yuanjun Dong
- grid.5253.10000 0001 0328 4908Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Cristina Martínez
- grid.5253.10000 0001 0328 4908Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany ,grid.420395.90000 0004 0425 020XInstitut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain ,Lleida Institute for Biomedical Research Dr, Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Stefanie Schmitteckert
- grid.5253.10000 0001 0328 4908Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Lesley A. Houghton
- grid.443984.60000 0000 8813 7132University of Leeds, St. James’s University Hospital, Leeds, UK ,grid.417467.70000 0004 0443 9942Mayo Clinic, Jacksonville, FL USA
| | - Miriam Goebel-Stengel
- grid.411544.10000 0001 0196 8249Department of Psychosomatic Medicine, University Hospital Tübingen, Tübingen, Germany ,Department of Internal Medicine and Gastroenterology, HELIOS Clinic Rottweil, Rottweil, Germany
| | - Verena Wahl
- grid.5253.10000 0001 0328 4908Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Maria Kabisch
- grid.7700.00000 0001 2190 4373Institute of Medical Biometry and Informatics, Heidelberg University, Heidelberg, Germany
| | - Dorothea Götze
- grid.5253.10000 0001 0328 4908Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Mauro D’Amato
- grid.4714.60000 0004 1937 0626Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden ,grid.420175.50000 0004 0639 2420Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Bilbao, Derio Spain ,grid.424810.b0000 0004 0467 2314IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Tenghao Zheng
- grid.4714.60000 0004 1937 0626Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ralph Röth
- grid.5253.10000 0001 0328 4908Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Hubert Mönnikes
- grid.461755.40000 0004 0581 3852Martin-Luther-Hospital, Berlin, Germany
| | - Jonas Tesarz
- grid.5253.10000 0001 0328 4908Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Felicitas Engel
- grid.5253.10000 0001 0328 4908Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Annika Gauss
- grid.7700.00000 0001 2190 4373Department of Gastroenterology, Infectious Diseases and Intoxications, Heidelberg University, Heidelberg, Germany
| | - Martin Raithel
- grid.5330.50000 0001 2107 3311University of Erlangen, Erlangen, Germany
| | - Viola Andresen
- grid.414844.90000 0004 0436 8670Israelitisches Krankenhaus, Hamburg, Germany
| | - Jutta Keller
- grid.414844.90000 0004 0436 8670Israelitisches Krankenhaus, Hamburg, Germany
| | | | | | | | - Gerard Clarke
- grid.7872.a0000000123318773Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul J. Kennedy
- grid.7872.a0000000123318773Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F. Cryan
- grid.7872.a0000000123318773Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- grid.7872.a0000000123318773Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eamonn M. M. Quigley
- grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland ,grid.63368.380000 0004 0445 0041Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital, Weill Cornell Medical College, Houston, TX USA
| | - Robin Spiller
- grid.4563.40000 0004 1936 8868Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK
| | - Caroll Beltrán
- grid.412248.90000 0004 0412 9717Gastroenterology Unit, Medicine Department, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago de Chile, Chile
| | - Ana María Madrid
- grid.412248.90000 0004 0412 9717Gastroenterology Unit, Medicine Department, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago de Chile, Chile
| | - Verónica Torres
- grid.412248.90000 0004 0412 9717Gastroenterology Unit, Medicine Department, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago de Chile, Chile
| | - Emeran A. Mayer
- grid.19006.3e0000 0000 9632 6718Oppenheimer Center for Neurobiology of Stress, University of California, Los Angeles, CA USA
| | - Gregory Sayuk
- grid.4367.60000 0001 2355 7002Washington University School of Medicine, St. Louis, MO USA
| | - Maria Gazouli
- grid.5216.00000 0001 2155 0800Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Karamanolis
- grid.5216.00000 0001 2155 0800Academic Department of Gastroenterology, Medical School, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Mariona Bustamante
- grid.11478.3b0000 0004 1766 3695CRG, Centre for Genomic Regulation, Barcelona, Spain ,grid.434607.20000 0004 1763 3517ISGlobal, Barcelona, Spain
| | - Xavier Estivil
- grid.5841.80000 0004 1937 0247Department of Genetics, Microbiology and Statistics, Faculty of Biology, IBUB, Universitat de Barcelona, CIBERER, IRSJD, Barcelona, Spain
| | - Raquel Rabionet
- grid.5841.80000 0004 1937 0247Department of Genetics, Microbiology and Statistics, Faculty of Biology, IBUB, Universitat de Barcelona, CIBERER, IRSJD, Barcelona, Spain
| | - Per Hoffmann
- grid.435715.10000 0004 0436 7643Life and Brain Center, Bonn, Germany
| | - Markus M. Nöthen
- grid.435715.10000 0004 0436 7643Life and Brain Center, Bonn, Germany
| | | | - Börge Schmidt
- grid.410718.b0000 0001 0262 7331Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - André Franke
- Institute of Clinical Molecular Biology, Kiel, Germany
| | - Wolfgang Lieb
- grid.417834.dInstitute of Epidemiology, Kiel, Germany
| | - Wolfgang Herzog
- grid.5253.10000 0001 0328 4908Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Guy Boeckxstaens
- grid.410569.f0000 0004 0626 3338TARGID, University Hospital Leuven, Louvain, Belgium
| | - Mira M. Wouters
- grid.410569.f0000 0004 0626 3338TARGID, University Hospital Leuven, Louvain, Belgium
| | - Magnus Simrén
- grid.8761.80000 0000 9919 9582Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Gudrun A. Rappold
- grid.5253.10000 0001 0328 4908Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Maria Vicario
- grid.411083.f0000 0001 0675 8654Institut de Recerca Vall d Hebron, Hospital Vall d Hebron, Passeig de la Vall d Hebron, Barcelona, Spain ,grid.419905.00000 0001 0066 4948Nestlé Institute of Health Sciences, Nestlé Research, Société Des Produits Nestlé S.A, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Javier Santos
- grid.411083.f0000 0001 0675 8654Institut de Recerca Vall d Hebron, Hospital Vall d Hebron, Passeig de la Vall d Hebron, Barcelona, Spain
| | - Rainer Schaefert
- grid.410567.1Department of Psychosomatic Medicine, Division of Theragnostics, University Hospital Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Justo Lorenzo-Bermejo
- grid.7700.00000 0001 2190 4373Institute of Medical Biometry and Informatics, Heidelberg University, Heidelberg, Germany
| | - Beate Niesler
- grid.5253.10000 0001 0328 4908Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Kameneva P, Melnikova VI, Kastriti ME, Kurtova A, Kryukov E, Murtazina A, Faure L, Poverennaya I, Artemov AV, Kalinina TS, Kudryashov NV, Bader M, Skoda J, Chlapek P, Curylova L, Sourada L, Neradil J, Tesarova M, Pasqualetti M, Gaspar P, Yakushov VD, Sheftel BI, Zikmund T, Kaiser J, Fried K, Alenina N, Voronezhskaya EE, Adameyko I. Serotonin limits generation of chromaffin cells during adrenal organ development. Nat Commun 2022; 13:2901. [PMID: 35614045 PMCID: PMC9133002 DOI: 10.1038/s41467-022-30438-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 04/23/2022] [Indexed: 11/12/2022] Open
Abstract
Adrenal glands are the major organs releasing catecholamines and regulating our stress response. The mechanisms balancing generation of adrenergic chromaffin cells and protecting against neuroblastoma tumors are still enigmatic. Here we revealed that serotonin (5HT) controls the numbers of chromaffin cells by acting upon their immediate progenitor "bridge" cells via 5-hydroxytryptamine receptor 3A (HTR3A), and the aggressive HTR3Ahigh human neuroblastoma cell lines reduce proliferation in response to HTR3A-specific agonists. In embryos (in vivo), the physiological increase of 5HT caused a prolongation of the cell cycle in "bridge" progenitors leading to a smaller chromaffin population and changing the balance of hormones and behavioral patterns in adulthood. These behavioral effects and smaller adrenals were mirrored in the progeny of pregnant female mice subjected to experimental stress, suggesting a maternal-fetal link that controls developmental adaptations. Finally, these results corresponded to a size-distribution of adrenals found in wild rodents with different coping strategies.
Collapse
Affiliation(s)
- Polina Kameneva
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Victoria I Melnikova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria Eleni Kastriti
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Anastasia Kurtova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Emil Kryukov
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Aliia Murtazina
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Irina Poverennaya
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Artem V Artemov
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
- National Medical Research Center for Endocrinology, Moscow, Russia
| | - Tatiana S Kalinina
- Federal state budgetary institution "Research Zakusov Institute of Pharmacology" (FSBI "Zakusov Institute of Pharmacology"), Russian Academy of Sciences, Moscow, Russia
| | - Nikita V Kudryashov
- Federal state budgetary institution "Research Zakusov Institute of Pharmacology" (FSBI "Zakusov Institute of Pharmacology"), Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), 13125, Berlin-Buch, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Institute for Biology, University of Lübeck, 23562, Lübeck, Germany
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Petr Chlapek
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Lucie Curylova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Lukas Sourada
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jakub Neradil
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | | | - Vasily D Yakushov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Boris I Sheftel
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Natalia Alenina
- Max-Delbrück Center for Molecular Medicine (MDC), 13125, Berlin-Buch, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - Elena E Voronezhskaya
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria.
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
8
|
Molinard-Chenu A, Godel M, Rey A, Musardo S, Bodogan T, Vutskits L, Bellone C, Dayer A. Down-regulation of the schizophrenia risk-gene Dgcr2 alters early microcircuit development in the mouse medial prefrontal cortex. Int J Dev Neurosci 2022; 82:277-285. [PMID: 35212007 PMCID: PMC9313615 DOI: 10.1002/jdn.10175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in the generation, migration and integration of different subtypes of neurons in the medial prefrontal cortex (mPFC) microcircuit could play an important role in vulnerability to schizophrenia. Using in vivo cell‐type specific manipulation of pyramidal neurons (PNs) progenitors, we aim to investigate the role of the schizophrenia risk‐gene DiGeorge Critical Region 2 (Dgcr2) on cortical circuit formation in the mPFC of developing mice. This report describes how Dgcr2 knock down in upper‐layer PNs impacts the functional maturation of PNs and interneurons (INs) in the mPFC. First, we demonstrate that Dgcr2 knock‐down disrupts laminar positioning, dendritic morphology and excitatory activity of upper‐layer PNs. Interestingly, inhibitory activity is also modified in Dgcr2 knock‐down PNs, suggesting a broader microcircuit alteration involving interneurons. Further analyses show that the histological maturation of parvalbumin (PV) INs is not dramatically impaired, thus implying that other INs subtypes might be at play in the reported microcircuit alteration. Overall, this study unravels how local functional deficits of the early postnatal development of the mPFC can be induced by Dgcr2 knock‐down in PNs.
Collapse
Affiliation(s)
- Aude Molinard-Chenu
- Department of Psychiatry, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Michel Godel
- Department of Psychiatry, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Alicia Rey
- Department of Psychiatry, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Stefano Musardo
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Timea Bodogan
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Laszlo Vutskits
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva 4, Switzerland
| | - Camilla Bellone
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| | - Alexandre Dayer
- Department of Psychiatry, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland
| |
Collapse
|
9
|
Integrative multi-omics landscape of fluoxetine action across 27 brain regions reveals global increase in energy metabolism and region-specific chromatin remodelling. Mol Psychiatry 2022; 27:4510-4525. [PMID: 36056172 PMCID: PMC9734063 DOI: 10.1038/s41380-022-01725-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.
Collapse
|
10
|
Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Raj P, Rathipriya AG, Qoronfleh MW, Essa MM, Chidambaram SB. Impact of Pharmacological and Non-Pharmacological Modulators on Dendritic Spines Structure and Functions in Brain. Cells 2021; 10:3405. [PMID: 34943913 PMCID: PMC8699406 DOI: 10.3390/cells10123405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines are small, thin, hair-like protrusions found on the dendritic processes of neurons. They serve as independent compartments providing large amplitudes of Ca2+ signals to achieve synaptic plasticity, provide sites for newer synapses, facilitate learning and memory. One of the common and severe complication of neurodegenerative disease is cognitive impairment, which is said to be closely associated with spine pathologies viz., decreased in spine density, spine length, spine volume, spine size etc. Many treatments targeting neurological diseases have shown to improve the spine structure and distribution. However, concise data on the various modulators of dendritic spines are imperative and a need of the hour. Hence, in this review we made an attempt to consolidate the effects of various pharmacological (cholinergic, glutamatergic, GABAergic, serotonergic, adrenergic, and dopaminergic agents) and non-pharmacological modulators (dietary interventions, enriched environment, yoga and meditation) on dendritic spines structure and functions. These data suggest that both the pharmacological and non-pharmacological modulators produced significant improvement in dendritic spine structure and functions and in turn reversing the pathologies underlying neurodegeneration. Intriguingly, the non-pharmacological approaches have shown to improve intellectual performances both in preclinical and clinical platforms, but still more technology-based evidence needs to be studied. Thus, we conclude that a combination of pharmacological and non-pharmacological intervention may restore cognitive performance synergistically via improving dendritic spine number and functions in various neurological disorders.
Collapse
Affiliation(s)
- Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Praveen Raj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
| | | | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, 7227 Rachel Drive, Ypsilanti, MI 48917, USA;
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
- Biomedical Sciences Department, University of Pacific, Sacramento, CA 95211, USA
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
11
|
John Jayakumar JAK, Panicker MM. The roles of serotonin in cell adhesion and migration, and cytoskeletal remodeling. Cell Adh Migr 2021; 15:261-271. [PMID: 34494935 PMCID: PMC8437456 DOI: 10.1080/19336918.2021.1963574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/04/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
Serotonin is well known as a neurotransmitter. Its roles in neuronal processes such as learning, memory or cognition are well established, and also in disorders such as depression, schizophrenia, bipolar disorder, and dementia. However, its effects on adhesion and cytoskeletal remodelling which are strongly affected by 5-HT receptors, are not as well studied with some exceptions for e.g. platelet aggregation. Neuronal function is strongly dependent on cell-cell contacts and adhesion-related processes. Therefore the role played by serotonin in psychiatric illness, as well as in the positive and negative effects of neuropsychiatric drugs through cell-related adhesion can be of great significance. In this review, we explore the role of serotonin in some of these aspects based on recent findings.
Collapse
Affiliation(s)
- Joe Anand Kumar John Jayakumar
- Manipal Academy of Higher Education, Manipal, India
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Mitradas M. Panicker
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
- Present Address - Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, USA
| |
Collapse
|
12
|
Irving H, Turek I, Kettle C, Yaakob N. Tapping into 5-HT 3 Receptors to Modify Metabolic and Immune Responses. Int J Mol Sci 2021; 22:ijms222111910. [PMID: 34769340 PMCID: PMC8584345 DOI: 10.3390/ijms222111910] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
5-hydroxytryptamine type 3 (5-HT3) receptors are ligand gated ion channels, which clearly distinguish their mode of action from the other G-protein coupled 5-HT or serotonin receptors. 5-HT3 receptors are well established targets for emesis and gastrointestinal mobility and are used as adjunct targets in treating schizophrenia. However, the distribution of these receptors is wider than the nervous system and there is potential that these additional sites can be targeted to modulate inflammatory and/or metabolic conditions. Recent progress in structural biology and pharmacology of 5-HT3 receptors have provided profound insights into mechanisms of their action. These advances, combined with insights into clinical relevance of mutations in genes encoding 5-HT3 subunits and increasing understanding of their implications in patient's predisposition to diseases and response to the treatment, open new avenues for personalized precision medicine. In this review, we recap on the current status of 5-HT3 receptor-based therapies using a biochemical and physiological perspective. We assess the potential for targeting 5-HT3 receptors in conditions involving metabolic or inflammatory disorders based on recent findings, underscoring the challenges and limitations of this approach.
Collapse
Affiliation(s)
- Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia; (I.T.); (C.K.)
- Correspondence:
| | - Ilona Turek
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia; (I.T.); (C.K.)
| | - Christine Kettle
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia; (I.T.); (C.K.)
| | - Nor Yaakob
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
13
|
Voronezhskaya EE. Maternal Serotonin: Shaping Developmental Patterns and Behavioral Strategy on Progeny in Molluscs. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.739787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Serotonin is a well-known neurotransmitter and neurohormone regulating mood, sleep, feeding, and learning in high organisms. Serotonin also affects the embryonic events related to neurogenesis and maturation of hormonal systems, the underlying organism adaptation to a changing environment. Such serotonin-based mother-to-embryo signaling is realized via direct interactions in case of internal fertilization and embryonic development inside the mother body. However, the possibility of such signaling is less obvious in organisms with the ancestral type of embryogenesis and embryo development within the egg, outside the mother body. Our data, based on the investigation of freshwater gastropod molluscs (Lymnaea and Helisoma), demonstrated a correlation between seasonal variations of serotonin content within the female reproductive system, and developmental patterns and the behavioral characteristics of progeny. The direct action of serotonin via posttranslational protein modification—serotonylation—during early development, as well as classical receptor-mediated effects, underlies such serotonin-modulated developmental changes. In the present paper, I will shortly overview our results on freshwater molluscs and parallel the experimental data with the living strategy of these species occupying almost all Holarctic regions.
Collapse
|
14
|
Sahu MP, Pazos-Boubeta Y, Steinzeig A, Kaurinkoski K, Palmisano M, Borowecki O, Piepponen TP, Castrén E. Depletion of TrkB Receptors From Adult Serotonergic Neurons Increases Brain Serotonin Levels, Enhances Energy Metabolism and Impairs Learning and Memory. Front Mol Neurosci 2021; 14:616178. [PMID: 33935645 PMCID: PMC8082189 DOI: 10.3389/fnmol.2021.616178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/23/2021] [Indexed: 11/20/2022] Open
Abstract
Neurotrophin brain-derived neurotrophic factor (BDNF) and neurotransmitter serotonin (5-HT) regulate each other and have been implicated in several neuronal mechanisms, including neuroplasticity. We have investigated the effects of BDNF on serotonergic neurons by deleting BDNF receptor TrkB from serotonergic neurons in the adult brain. The transgenic mice show increased 5-HT and Tph2 levels with abnormal behavioral phenotype. In spite of increased food intake, the transgenic mice are significantly leaner than their wildtype littermates, which may be due to increased metabolic activity. Consistent with increased 5-HT, the proliferation of hippocampal progenitors is significantly increased, however, long-term survival of newborn cells is unchanged. Our data indicates that BDNF-TrkB signaling regulates the functional phenotype of 5-HT neurons with long-term behavioral consequences.
Collapse
Affiliation(s)
- Madhusmita P Sahu
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Yago Pazos-Boubeta
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anna Steinzeig
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Katja Kaurinkoski
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Michela Palmisano
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Olgierd Borowecki
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.,Faculty of Philosopy and Social Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | | | - Eero Castrén
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Implication of 5-HT7 receptor in prefrontal circuit assembly and detrimental emotional effects of SSRIs during development. Neuropsychopharmacology 2020; 45:2267-2277. [PMID: 32688364 PMCID: PMC7784885 DOI: 10.1038/s41386-020-0775-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
Abstract
Altered development of prefrontal cortex (PFC) circuits can have long-term consequences on adult emotional behavior. Changes in serotonin homeostasis during critical periods produced by genetic or pharmacological inactivation of the serotonin transporter (SERT, or Slc6a4), have been involved in such developmental effects. In mice, selective serotonin reuptake inhibitors (SSRIs), administered during postnatal development cause exuberant synaptic connectivity of the PFC to brainstem dorsal raphe nucleus (DRN) circuits, and increase adult risk for developing anxiety and depressive symptoms. SERT is transiently expressed in the glutamate neurons of the mouse PFC, that project to the DRN. Here, we find that 5-HTR7 is transiently co-expressed with SERT by PFC neurons, and it plays a key role in the maturation of PFC-to-DRN synaptic circuits during early postnatal life. 5-HTR7-KO mice show reduced PFC-to-DRN synaptic density (as measured by array-tomography and VGLUT1/synapsin immunocytochemistry). Conversely, 5-HTR7 over-expression in the developing PFC increased PFC-to-DRN synaptic density. Long-term consequences on depressive-like and anxiogenic behaviors were observed in adults. 5-HTR7 over-expression in the developing PFC, results in depressive-like symptoms in adulthood. Importantly, the long-term depressive-like and anxiogenic effects of SSRIs (postnatal administration of fluoxetine from P2 to P14) were not observed in 5-HTR7-KO mice, and were prevented by co-administration of the selective inhibitor of 5-HTR7, SB269970. This study identifies a new role 5-HTR7 in the postnatal maturation of prefrontal descending circuits. Furthermore, it shows that 5-HTR7 in the PFC is crucially required for the detrimental emotional effects caused by SSRI exposure during early postnatal life.
Collapse
|
16
|
Hu Y, Hu J, Li W, Gao Y, Tian Y. Changes of embryonic development, locomotor activity, and metabolomics in zebrafish co-exposed to chlorpyrifos and deltamethrin. J Appl Toxicol 2020; 41:1345-1356. [PMID: 33247449 DOI: 10.1002/jat.4124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Organophosphates (OPs) and pyrethroids (PYRs) are extensively used pesticides and often occur in the form of mixture, whereas little was known about their joint toxicities. We aim to investigate the individual and joint effects of OPs and PYRs exposure on zebrafish embryo by employing chlorpyrifos (CPF) and deltamethrin (DM) as representatives. Zebrafish embryos at 2 hours post fertilization (hpf) were exposed to CPF (4.80, 39.06, and 78.13 μg/L), DM exposure (0.06, 1.60, and 3.19 μg/L), and CPF + DM (4.80 + 0.06, 39.06 + 1.60, and 78.13 + 3.19 μg/L) until 144 hpf. Embryonic development, locomotor activity, and metabolomic changes were recorded and examined. Results displayed that individual exposure to CPF and DM significantly increased the mortality and malformation rate of zebrafish embryos, but decreased hatching rate was only found in CPF + DM co-exposure groups (p < .05). Meanwhile, individual CPF exposure had no detrimental effect on locomotor activity, high dose of individual CPF exposure decreased the swimming speed but had adaptability to the conversion from dark to light, whereas high dose of CPF + DM co-exposure exhibited not only significant decline in swimming speed but also no adaptability to the repeated stimulations, suggesting deficit in learning and memory function. In metabolomic analysis, individual CPF exposure mainly influenced the metabolism of glycerophospholipids and amino acids, individual DM exposure mainly influenced glycerophospholipids, and CPF + DM co-exposure mainly influenced glycerophospholipids and amino acids. Taken together, our findings suggested the embryonic toxicities and neurobehavioral changes caused by CPF and/or DM exposure. The disorder metabolomics of glycerophospholipids and amino acids might be involved in the underlying mechanism of those toxicities.
Collapse
Affiliation(s)
- Yi Hu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jingying Hu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Weihua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Genescu I, Garel S. Being superficial: a developmental viewpoint on cortical layer 1 wiring. Curr Opin Neurobiol 2020; 66:125-134. [PMID: 33186879 DOI: 10.1016/j.conb.2020.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/03/2020] [Accepted: 10/04/2020] [Indexed: 01/01/2023]
Abstract
Functioning of the neocortex relies on a complex architecture of circuits, as illustrated by the causal link between neocortical excitation/inhibition imbalance and the etiology of several neurodevelopmental disorders. An important entry point to cortical circuits is located in the superficial layer 1 (L1), which contains mostly local and long-range inputs and sparse inhibitory interneurons that collectively regulate cerebral functions. While increasing evidence indicates that L1 has important physiological roles, our understanding of how it wires up during development remains limited. Here, we provide an integrated overview of L1 anatomy, function and development, with a focus on transient early born Cajal-Retzius neurons, and highlight open questions key for progressing our understanding of this essential yet understudied layer of the cerebral cortex.
Collapse
Affiliation(s)
- Ioana Genescu
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sonia Garel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France; Collège de France, Paris, France.
| |
Collapse
|
18
|
Pierre C, Pradère N, Froc C, Ornelas-García P, Callebert J, Rétaux S. A mutation in monoamine oxidase (MAO) affects the evolution of stress behavior in the blind cavefish Astyanax mexicanus. J Exp Biol 2020; 223:jeb226092. [PMID: 32737213 DOI: 10.1242/jeb.226092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 08/26/2023]
Abstract
The neurotransmitter serotonin controls a variety of physiological and behavioral processes. In humans, mutations affecting monoamine oxidase (MAO), the serotonin-degrading enzyme, are highly deleterious. Yet, blind cavefish of the species Astyanax mexicanus carry a partial loss-of-function mutation in MAO (P106L) and thrive in their subterranean environment. Here, we established four fish lines, corresponding to the blind cave-dwelling and the sighted river-dwelling morphs of this species, with or without the mutation, in order to decipher the exact contribution of mao P106L in the evolution of cavefish neurobehavioral traits. Unexpectedly, although mao P106L appeared to be an excellent candidate for the genetic determinism of the loss of aggressive and schooling behaviors in cavefish, we demonstrated that it was not the case. Similarly, the anatomical variations in monoaminergic systems observed between cavefish and surface fish brains were independent from mao P106L, and rather due to other, morph-dependent developmental processes. However, we found that mao P106L strongly affected anxiety-like behaviors. Cortisol measurements showed lower basal levels and an increased amplitude of stress response after a change of environment in fish carrying the mutation. Finally, we studied the distribution of the P106L mao allele in wild populations of cave and river A. mexicanus, and discovered that the mutant allele was present - and sometimes fixed - in all populations inhabiting caves of the Sierra de El Abra. The possibility that this partial loss-of-function mao allele evolves under a selective or a neutral regime in the particular cave environment is discussed.
Collapse
Affiliation(s)
- Constance Pierre
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Naomie Pradère
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Cynthia Froc
- Amatrace platform, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Patricia Ornelas-García
- Departamento de Zoología, Instituto de Biología, Universidad Autónoma de México, CP 04510, Mexico City, Mexico
| | - Jacques Callebert
- Service Biochimie et Biologie Moléculaire, Hôpital Lariboisière, 75475 Paris, France
| | - Sylvie Rétaux
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| |
Collapse
|
19
|
Levitan RD, Sqapi M, Atkinson L, Murphy K, Levitt A, Bocking A, Post M, Knight JA, Matthews SG. Seasonality of plasma tryptophan and kynurenine in pregnant mothers with a history of seasonal affective disorder: Vulnerability or adaptation? World J Biol Psychiatry 2020; 21:529-538. [PMID: 32462949 DOI: 10.1080/15622975.2020.1769189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objectives: Maternal-foetal tryptophan metabolism plays multiple roles in neurodevelopment and immunomodulation across pregnancy. Tryptophan and the immune system are both influenced by the seasons of the year. We thus compared tryptophan and kynurenine levels in subgroups of pregnant women defined by maternal seasonality and season-of-conception (SoC).Methods: Maternal plasma samples taken at 9-15 and 23-29 weeks of pregnancy were analysed in 47 women with historical full or sub-syndromal Seasonal Affective Disorder (SAD) and 144 pregnant controls. Repeated measure ANCOVAs compared tryptophan and kynurenine levels in the two study groups over the two pregnancy sampling times, using SoC as a moderator.Results: Significant differences in both plasma tryptophan and kynurenine were found across the eight subgroups defined by maternal seasonality and SoC. These results were independent of the state of depression.Conclusions: Pregnant women with a history of full or sub-syndromal SAD exhibited a different pattern of plasma tryptophan and kynurenine across the seasons compared to control mothers, independent of current mood state. Follow-up of the children will determine the implications of these findings for neurodevelopment and psychiatric risk. Maternal seasonality and SoC may be important considerations when studying tryptophan and its metabolites in human pregnancy and foetal brain development.
Collapse
Affiliation(s)
- Robert D Levitan
- Mood and Anxiety Disorders Program, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Maria Sqapi
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Leslie Atkinson
- Department of Psychology, Ryerson University, Toronto, Canada
| | - Kellie Murphy
- Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Canada
| | - Anthony Levitt
- Department of Psychiatry, Sunnybrook Hospital, Toronto, Canada
| | - Alan Bocking
- Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Canada
| | - Martin Post
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Julia A Knight
- Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, Canada.,Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Hanswijk SI, Spoelder M, Shan L, Verheij MMM, Muilwijk OG, Li W, Liu C, Kolk SM, Homberg JR. Gestational Factors throughout Fetal Neurodevelopment: The Serotonin Link. Int J Mol Sci 2020; 21:E5850. [PMID: 32824000 PMCID: PMC7461571 DOI: 10.3390/ijms21165850] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Serotonin (5-HT) is a critical player in brain development and neuropsychiatric disorders. Fetal 5-HT levels can be influenced by several gestational factors, such as maternal genotype, diet, stress, medication, and immune activation. In this review, addressing both human and animal studies, we discuss how these gestational factors affect placental and fetal brain 5-HT levels, leading to changes in brain structure and function and behavior. We conclude that gestational factors are able to interact and thereby amplify or counteract each other's impact on the fetal 5-HT-ergic system. We, therefore, argue that beyond the understanding of how single gestational factors affect 5-HT-ergic brain development and behavior in offspring, it is critical to elucidate the consequences of interacting factors. Moreover, we describe how each gestational factor is able to alter the 5-HT-ergic influence on the thalamocortical- and prefrontal-limbic circuitry and the hypothalamo-pituitary-adrenocortical-axis. These alterations have been associated with risks to develop attention deficit hyperactivity disorder, autism spectrum disorders, depression, and/or anxiety. Consequently, the manipulation of gestational factors may be used to combat pregnancy-related risks for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sabrina I. Hanswijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Marcia Spoelder
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Ling Shan
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands;
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Otto G. Muilwijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Weizhuo Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Chunqing Liu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Sharon M. Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, The Netherlands;
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| |
Collapse
|
21
|
Perinatal exposure of rats to the HIV drug efavirenz affects medial prefrontal cortex cytoarchitecture. Biochem Pharmacol 2020; 178:114050. [PMID: 32446887 DOI: 10.1016/j.bcp.2020.114050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/19/2020] [Indexed: 12/29/2022]
Abstract
Efavirenz (EFV) is used for antiretroviral treatment of HIV infection, and successfully inhibits viral replication and mother-to-child transmission of HIV during pregnancy and childbirth. Unfortunately, the drug induces neuropsychiatric symptoms such as anxiety and depressed mood and potentially affects cognitive performance. EFV acts on, among others, the serotonin transporter and serotonin receptors that are expressed in the developing brain. Yet, how perinatal EFV exposure affects brain cytoarchitecture remains unclear. Here, we exposed pregnant and lactating rats to EFV, and examined in the medial prefrontal cortex (mPFC) of their adult offspring the effects of the maternal EFV exposure on cortical architecture. We observed a significant decrease in the number of cells, mainly mature neurons, in the infra/prelimbic and cingulate cortices of adult offspring. Next, we found an altered cortical cytoarchitecture characterized by a significant reduction in deep- and superficial-layer cells. This was accompanied by a sharp increase in programmed cell death, as we identified a significantly higher number of cleaved Caspase-3-positive cells. Finally, the serotonergic and dopaminergic innervation of the mPFC subdomains was increased. Thus, the perinatal exposure to EFV provoked in the mPFC of adult offspring cell death, significant changes in cytoarchitecture, and disturbances in serotonergic and dopaminergic innervation. Our results are important in the light of EFV treatment of HIV-positive pregnant women, and its effect on brain development and cognitive behavior.
Collapse
|
22
|
Dougherty SE, Kajstura TJ, Jin Y, Chan-Cortés MH, Kota A, Linden DJ. Catecholaminergic axons in the neocortex of adult mice regrow following brain injury. Exp Neurol 2019; 323:113089. [PMID: 31697941 DOI: 10.1016/j.expneurol.2019.113089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/10/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022]
Abstract
Serotonin axons in the adult rodent brain can regrow and recover their function following several forms of injury including controlled cortical impact (CCI), a neocortical stab wound, or systemic amphetamine toxicity. To assess whether this capacity for regrowth is unique to serotonergic fibers, we used CCI and stab injury models to assess whether fibers from other neuromodulatory systems can also regrow following injury. Using tyrosine-hydoxylase (TH) immunohistochemistry we measured the density of catecholaminergic axons before and at various time points after injury. One week after CCI injury we observed a pronounced loss, across cortical layers, of TH+ axons posterior to the site of injury. One month after CCI injury the same was true of TH+ axons both anterior and posterior to the site of injury. This loss was followed by significant recovery of TH+ fiber density across cortical layers, both anterior and posterior to the site of injury, measured three months after injury. TH+ axon loss and recovery over weeks to months was also observed throughout cortical layers using the stab injury model. Double label immunohistochemistry revealed that nearly all TH+ axons in neocortical layer 1/2 are also dopamine-beta-hyroxylase+ (DBH+; presumed norepinephrine), while TH+ axons in layer 5 are a mixture of DBH+ and dopamine transporter+ types. This suggests that noradrenergic axons can regrow following CCI or stab injury in the adult mouse neocortex and leaves open the question of whether dopaminergic axons can do the same.
Collapse
Affiliation(s)
- Sarah E Dougherty
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA
| | - Tymoteusz J Kajstura
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA
| | - Yunju Jin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA; Department of Neurobiology and Anatomy, University of Utah, School of Medicine, 20 South 2030 East, Room 320 BPRB, Salt Lake City, UT, USA
| | - Michelle H Chan-Cortés
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA
| | - Akhil Kota
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA
| | - David J Linden
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA.
| |
Collapse
|
23
|
The 5-HT 6 receptor interactome: New insight in receptor signaling and its impact on brain physiology and pathologies. Neuropharmacology 2019; 172:107839. [PMID: 31682856 DOI: 10.1016/j.neuropharm.2019.107839] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 01/02/2023]
Abstract
The serotonin (5-HT)6 receptor is a Gs-coupled receptor exclusively expressed in the central nervous system. Highest receptor densities are found in brain regions implicated in mnemonic functions where the receptor is primarily but not exclusively located in the primary cilium of neurons. The 5-HT6 receptor continues to raise particular interest for neuropharmacologists, given the pro-cognitive effects of antagonists in a wide range of cognitive impairment paradigms in rodents and human. The 5-HT6 receptor also finely controls key neuro-developmental processes including neuron migration and differentiation. However, its influence upon neurodevelopment and cognition is not solely mediated by its coupling to the Gs-adenylyl cyclase pathway, suggesting alternative signal transduction mechanisms. This prompted studies aimed at characterizing the receptor interactome that identified 125 candidate receptor partners, making the 5-HT6 receptor one of the G protein-coupled receptors with the most extensively characterized interactome. These studies showed that the receptor localization at the plasma membrane and, consequently, its signal transduction, are finely modulated by several receptor partners. They demonstrated that prefrontal 5-HT6 receptors engage the mTOR pathway to compromise cognition in neurodevelopmental models of schizophrenia, and a role of the 5-HT6-mTOR pathway in temporal epilepsy. Finally, they revealed that the receptor activates Cdk5 signaling in an agonist-independent manner through a mechanism involving receptor phosphorylation by the associated Cdk5 and highlighted its key role in the migration of neurons and neurite growth. These new receptor-operated signaling mechanisms should be considered in the future development of drugs acting on 5-HT6 receptors. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
|
24
|
Sarrouilhe D, Mesnil M, Dejean C. Targeting Gap Junctions: New Insights into the Treatment of Major Depressive Disorder. Curr Med Chem 2019; 26:3775-3791. [DOI: 10.2174/0929867325666180327103530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/22/2017] [Accepted: 03/21/2018] [Indexed: 01/05/2023]
Abstract
Background:Major depressive disorder (MDD) is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and associated with excess mortality. Treatments for this disease are not effective in all patients showing the need to find new therapeutic targets.Objective:This review aims to update our knowledge on the involvement of astroglial gap junctions and hemichannels in MDD and to show how they have become potential targets for the treatment of this pathology.Methods:The method applied in this review includes a systematic compilation of the relevant literature.Results and Conclusion:The use of rodent models of depression, gene analysis of hippocampal tissues of MDD patients and post-mortem studies on the brains from MDD patients suggest that astrocytic gap junction dysfunction may be a part of MDD etiologies. Chronic antidepressant treatments of rats, rat cultured cortical astrocytes and human astrocytoma cell lines support the hypothesis that the up-regulation of gap junctional coupling between astrocytes could be an underlying mechanism for the therapeutic effect of antidepressants. However, two recent functional studies suggest that connexin43 hemichannel activity is a part of several antidepressants’ mode of action and that astrocyte gap junctional intercellular communication and hemichannels exert different effects on antidepressant drug response. Even if they emerge as new therapeutic targets for new and more active treatments, further studies are needed to decipher the sophisticated and respective role of astrocytic gap junctions and hemichannels in MDD.
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculte de Medecine et Pharmacie, Universite de Poitiers, 6 rue de la Miletrie, Bat D1, TSA 51115, 86073 Poitiers, Cedex 9, France
| | - Marc Mesnil
- STIM, ERL 7003, CNRS-Universite de Poitiers, Pole Biologie Sante, Bat B36, TSA 51106, 1 rue Georges Bonnet, 86073 Poitiers, Cedex 9, France
| | - Catherine Dejean
- Service Pharmacie, Pavillon Janet, Centre Hospitalier Henri Laborit, 370 avenue Jacques Coeur, 86021 Poitiers Cedex, France
| |
Collapse
|
25
|
Velasquez JC, Zhao Q, Chan Y, Galindo LC, Simasotchi C, Wu D, Hou Z, Herod SM, Oberlander TF, Gil S, Fournier T, Burd I, Andrews AM, Bonnin A. In Utero Exposure to Citalopram Mitigates Maternal Stress Effects on Fetal Brain Development. ACS Chem Neurosci 2019; 10:3307-3317. [PMID: 31184110 DOI: 10.1021/acschemneuro.9b00180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human epidemiological and animal-model studies suggest that separate exposure to stress or serotonin-selective reuptake inhibitor (SSRI) antidepressants during pregnancy increases risks for neurodevelopmental disorders in offspring. Yet, little is known about the combined effects of maternal stress and SSRIs with regard to brain development in utero. We found that the placenta is highly permeable to the commonly prescribed SSRI (±)-citalopram (CIT) in humans and mice, allowing rapid exposure of the fetal brain to this drug. We investigated the effects of maternal chronic unpredictable stress in mice with or without maternal oral administration of CIT from embryonic day (E)8 to E17. We assessed fetal brain development using magnetic resonance imaging and quantified changes in serotonergic, thalamocortical, and cortical development. In utero exposure to maternal stress did not affect overall fetal brain growth. However, serotonin tissue content in the fetal forebrain was increased in association with maternal stress; this increase was reversed by maternal CIT. In utero exposure to stress increased the numbers of deep-layer neurons in specific cortical regions, whereas CIT increased overall cell numbers without changing the proportions of layer-specific neurons to offset the effects of stress on deep-layer cortical development. These findings suggest that stress and SSRI exposure in utero differentially impact serotonin-dependent fetal neurodevelopment such that CIT reverses key effects of maternal gestational stress on offspring brain development.
Collapse
Affiliation(s)
- Juan C. Velasquez
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Qiuying Zhao
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Yen Chan
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Ligia C.M. Galindo
- Department of Anatomy, Federal University of Pernambuco, Recife 50670, Brazil
| | | | - Dan Wu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Zhipeng Hou
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Skyla M. Herod
- Department of Biology and Chemistry, Azusa Pacific University, Azusa, California 91702, United States
| | - Tim F. Oberlander
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3 V4, Canada
| | - Sophie Gil
- UMR-S 1139 INSERM/University of Paris Descartes, 75006 Paris, France
- PremUp Foundation, 75014 Paris, France
| | - Thierry Fournier
- UMR-S 1139 INSERM/University of Paris Descartes, 75006 Paris, France
- PremUp Foundation, 75014 Paris, France
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Anne M. Andrews
- Terry and Jane Semel Institute for Neuroscience & Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, and Departments of Psychiatry and Biobehavioral Sciences and Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexandre Bonnin
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
26
|
Chakraborty S, Lennon JC, Malkaram SA, Zeng Y, Fisher DW, Dong H. Serotonergic system, cognition, and BPSD in Alzheimer's disease. Neurosci Lett 2019; 704:36-44. [PMID: 30946928 DOI: 10.1016/j.neulet.2019.03.050] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022]
Abstract
Behavioral and Psychological Symptoms of Dementia (BPSD), present in almost 90% of patients with Alzheimer's Disease (AD), cause extensive impairment leading to reduced independence and inability to complete activities of daily living. Though BPSD includes a wide range of symptoms, such as agitation, aggression, disinhibition, anxiety, depression, apathy, delusions, and hallucinations. Certain BPSD in AD co-present and can be clustered into distinct domains based on their frequency of co-occurrence. As these BPSD are so pervasive in any stages of AD, the disease may be better characterized as a disorder of heterogeneous degenerative symptoms across a number of symptom domains, with the most prominent domain comprising memory and cognitive deficits. Importantly, there are no FDA-approved drugs to treat these BPSD, and new approaches must be considered to develop effective treatments for AD patients. The biogenic monoamine 5-hydroxytryptamine (5-HT), or serotonin, works as both a neurotransmitter and neuromodulator, which has been tied to cognitive decline and multiple BPSD domains. This review summarizes the evidence for specific serotonergic system alterations across some of the well-studied cognitive, behavioral, and psychiatric domains. Though differences in overall serotonergic transmission occur in AD, circuit-specific alterations in individual 5-HT receptors (5-HTRs) are likely linked to the heterogeneous presentation of BPSD in AD.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Jack C Lennon
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Sridhar A Malkaram
- Department of Biology, West Virginia State University Institute, WV-25112, USA
| | - Yan Zeng
- Brain and Cognition Research Institute, Wuhan University of Science and Technology, China
| | - Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
27
|
Neurodevelopmental and behavioral consequences of perinatal exposure to the HIV drug efavirenz in a rodent model. Transl Psychiatry 2019; 9:84. [PMID: 30745561 PMCID: PMC6370772 DOI: 10.1038/s41398-019-0420-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 01/09/2023] Open
Abstract
Efavirenz is recommended as a preferred first-line drug for women of childbearing potential living with human immunodeficiency virus. Efavirenz is known for its central nervous system side effects, which are partly mediated by serotonergic actions. The neurotransmitter serotonin exerts neurotrophic effects during neurodevelopment and antenatal exposure to serotonergic agents has been linked to developmental delay. Although the teratogenic risks of efavirenz appear to be minimal, data on long-term developmental effects remain scarce. Here, we aimed to investigate the short- and long-term behavioral and neurodevelopmental effects of perinatal efavirenz exposure. We treated pregnant rats from gestation day 1 until postnatal day 7 with efavirenz (100 mg/kg) or vehicle. We measured behavioral outcomes in male offspring during the first 3 postnatal weeks, adolescence and adulthood, and conducted brain immunohistochemistry analyses after sacrifice. Perinatal efavirenz exposure resulted in reduced body weight and delayed reflex and motor development. During adulthood, we observed a decrease in the total number of cells and mature neurons in the motor cortex, as well as an increase in the number of Caspase-3-positive cells and serotonergic fibers. Together, our data show a developmental delay and persistent changes in the brain motor cortex of rats exposed to efavirenz perinatally. Because over 1 million children born annually are exposed to antiretroviral therapy, our findings underline the need for clinical studies on long-term neurodevelopmental outcomes of perinatal exposure to efavirenz.
Collapse
|
28
|
Ranzil S, Walker DW, Borg AJ, Wallace EM, Ebeling PR, Murthi P. The relationship between the placental serotonin pathway and fetal growth restriction. Biochimie 2018; 161:80-87. [PMID: 30605696 DOI: 10.1016/j.biochi.2018.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/26/2018] [Indexed: 01/18/2023]
Abstract
Fetal growth restriction (FGR) is a complex disorder of human pregnancy that leads to poor health outcomes in offspring. These range from immediate risks such as perinatal morbidity and stillbirths, to long-term complications including severe neurodevelopmental problems. Despite its relatively high global prevalence, the aetiology of FGR and its complications is not currently well understood. We now know that serotonin (5-HT) is synthesised in the placenta and is crucial for early fetal forebrain development in mice. However, the contribution of a disrupted placental 5-HT synthetic pathway to the pathophysiology of placental insufficiency in FGR and its significant fetal neurodevelopmental complications are unclear.
Collapse
Affiliation(s)
- Suveena Ranzil
- Department of Obstetrics and Gynaecology, Monash University, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | | | - Anthony J Borg
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Euan M Wallace
- Department of Obstetrics and Gynaecology, Monash University, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Clayton, Victoria, Australia
| | - Padma Murthi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia; Department of Medicine, School of Clinical Sciences, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
29
|
Dadalko OI, Travers BG. Evidence for Brainstem Contributions to Autism Spectrum Disorders. Front Integr Neurosci 2018; 12:47. [PMID: 30337860 PMCID: PMC6180283 DOI: 10.3389/fnint.2018.00047] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition that affects one in 59 children in the United States. Although there is a mounting body of knowledge of cortical and cerebellar contributions to ASD, our knowledge about the early developing brainstem in ASD is only beginning to accumulate. Understanding how brainstem neurotransmission is implicated in ASD is important because many of this condition’s sensory and motor symptoms are consistent with brainstem pathology. Therefore, the purpose of this review was to integrate epidemiological, behavioral, histological, neuroimaging, and animal evidence of brainstem contributions to ASD. Because ASD is a neurodevelopmental condition, we examined the available data through a lens of hierarchical brain development. The review of the literature suggests that developmental alterations of the brainstem could have potential cascading effects on cortical and cerebellar formation, ultimately leading to ASD symptoms. This view is supported by human epidemiology findings and data from animal models of ASD, showing that perturbed development of the brainstem substructures, particularly during the peak formation of the brainstem’s monoaminergic centers, may relate to ASD or ASD-like behaviors. Furthermore, we review evidence from human histology, psychophysiology, and neuroimaging suggesting that brainstem development and maturation may be atypical in ASD and may be related to key ASD symptoms, such as atypical sensorimotor features and social responsiveness. From this review there emerges the need of future research to validate early detection of the brainstem-based somatosensory and psychophysiological behaviors that emerge in infancy, and to examine the brainstem across the life span, while accounting for age. In all, there is preliminary evidence for brainstem involvement in ASD, but a better understanding of the brainstem’s role would likely pave the way for earlier diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Olga I Dadalko
- Motor and Brain Development Lab, Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Brittany G Travers
- Motor and Brain Development Lab, Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
30
|
Gingrich JA, Malm H, Ansorge MS, Brown A, Sourander A, Suri D, Teixeira CM, Caffrey Cagliostro MK, Mahadevia D, Weissman MM. New Insights into How Serotonin Selective Reuptake Inhibitors Shape the Developing Brain. Birth Defects Res 2018; 109:924-932. [PMID: 28714607 DOI: 10.1002/bdr2.1085] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 12/28/2022]
Abstract
Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system (CNS) development, such sensitive periods shape the formation of neuro-circuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint, as well as the environmental context. While allowing for adaptation, such sensitive periods are also windows of vulnerability during which external and internal factors can confer risk to brain disorders by derailing adaptive developmental programs. Our group has been particularly interested in developmental periods that are sensitive to serotonin (5-HT) signaling, and impact behavior and cognition relevant to psychiatry. Specifically, we review a 5-HT-sensitive period that impacts fronto-limbic system development, resulting in cognitive, anxiety, and depression-related behaviors. We discuss preclinical data to establish biological plausibility and mechanistic insights. We also summarize epidemiological findings that underscore the potential public health implications resulting from the current practice of prescribing 5-HT reuptake inhibiting antidepressants during pregnancy. These medications enter the fetal circulation, likely perturb 5-HT signaling in the brain, and may be affecting circuit maturation in ways that parallel our findings in the developing rodent brain. More research is needed to better disambiguate the dual effects of maternal symptoms on fetal and child development from the effects of 5-HT reuptake inhibitors on clinical outcomes in the offspring. Birth Defects Research 109:924-932, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jay A Gingrich
- Columbia University Medical Center, Psychiatry, New York, New York
| | - Heli Malm
- Columbia University Medical Center, Psychiatry, New York, New York
| | - Mark S Ansorge
- Columbia University Medical Center, Psychiatry, New York, New York
| | - Alan Brown
- Columbia University Medical Center, Psychiatry, New York, New York
| | - Andre Sourander
- Columbia University Medical Center, Psychiatry, New York, New York
| | - Deepika Suri
- Columbia University Medical Center, Psychiatry, New York, New York
| | - Cátia M Teixeira
- Columbia University Medical Center, Psychiatry, New York, New York
| | | | | | - Myrna M Weissman
- Columbia University Medical Center, Psychiatry, New York, New York
| |
Collapse
|
31
|
Forero A, Rivero O, Wäldchen S, Ku HP, Kiser DP, Gärtner Y, Pennington LS, Waider J, Gaspar P, Jansch C, Edenhofer F, Resink TJ, Blum R, Sauer M, Lesch KP. Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain. Front Cell Neurosci 2017; 11:307. [PMID: 29018333 PMCID: PMC5623013 DOI: 10.3389/fncel.2017.00307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/15/2017] [Indexed: 01/29/2023] Open
Abstract
Background: During early prenatal stages of brain development, serotonin (5-HT)-specific neurons migrate through somal translocation to form the raphe nuclei and subsequently begin to project to their target regions. The rostral cluster of cells, comprising the median and dorsal raphe (DR), innervates anterior regions of the brain, including the prefrontal cortex. Differential analysis of the mouse 5-HT system transcriptome identified enrichment of cell adhesion molecules in 5-HT neurons of the DR. One of these molecules, cadherin-13 (Cdh13) has been shown to play a role in cell migration, axon pathfinding, and synaptogenesis. This study aimed to investigate the contribution of Cdh13 to the development of the murine brain 5-HT system. Methods: For detection of Cdh13 and components of the 5-HT system at different embryonic developmental stages of the mouse brain, we employed immunofluorescence protocols and imaging techniques, including epifluorescence, confocal and structured illumination microscopy. The consequence of CDH13 loss-of-function mutations on brain 5-HT system development was explored in a mouse model of Cdh13 deficiency. Results: Our data show that in murine embryonic brain Cdh13 is strongly expressed on 5-HT specific neurons of the DR and in radial glial cells (RGCs), which are critically involved in regulation of neuronal migration. We observed that 5-HT neurons are intertwined with these RGCs, suggesting that these neurons undergo RGC-guided migration. Cdh13 is present at points of intersection between these two cell types. Compared to wildtype controls, Cdh13-deficient mice display increased cell densities in the DR at embryonic stages E13.5, E17.5, and adulthood, and higher serotonergic innervation of the prefrontal cortex at E17.5. Conclusion: Our findings provide evidence for a role of CDH13 in the development of the serotonergic system in early embryonic stages. Specifically, we indicate that Cdh13 deficiency affects the cell density of the developing DR and the posterior innervation of the prefrontal cortex (PFC), and therefore might be involved in the migration, axonal outgrowth and terminal target finding of DR 5-HT neurons. Dysregulation of CDH13 expression may thus contribute to alterations in this system of neurotransmission, impacting cognitive function, which is frequently impaired in neurodevelopmental disorders including attention-deficit/hyperactivity and autism spectrum disorders.
Collapse
Affiliation(s)
- Andrea Forero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Sina Wäldchen
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Hsing-Ping Ku
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Dominik P Kiser
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Yvonne Gärtner
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Laura S Pennington
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Jonas Waider
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Patricia Gaspar
- Institut du Fer á Moulin, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S839, Paris, France
| | - Charline Jansch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Frank Edenhofer
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens-University Innsbruck, Innsbruck, Austria.,Stem Cell Biology and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Thérèse J Resink
- Laboratory for Signal Transduction, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Robert Blum
- Department of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
32
|
Bravo K, Eugenín JL, Llona I. Perinatal Fluoxetine Exposure Impairs the CO2 Chemoreflex. Implications for Sudden Infant Death Syndrome. Am J Respir Cell Mol Biol 2017; 55:368-76. [PMID: 27018763 DOI: 10.1165/rcmb.2015-0384oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
High serotonin levels during pregnancy affect central nervous system development. Whether a commonly used antidepressant such as fluoxetine (a selective serotonin reuptake inhibitor) taken during pregnancy may adversely affect respiratory control in offspring has not been determined. The objective was to determine the effect of prenatal-perinatal fluoxetine exposure on the respiratory neural network in offspring, particularly on central chemoreception. Osmotic minipumps implanted into CF-1 mice on Days 5-7 of pregnancy delivered 7 milligrams per kilogram per day of fluoxetine, achieving plasma levels within the range found in patients. Ventilation was assessed in offspring at postnatal Days 0-40 using head-out body plethysmography. Neuronal activation was evaluated in the raphe nuclei and in the nucleus tractus solitarius by c-Fos immunohistochemistry during normoxic eucapnia and hypercapnia (10% CO2). Respiratory responses to acidosis were evaluated in brainstem slices. Prenatal-perinatal fluoxetine did not affect litter size, birth weight, or the postnatal growth curve. Ventilation under eucapnic normoxic conditions was similar to that of control offspring. Fluoxetine exposure reduced ventilatory responses to hypercapnia at P8-P40 (P < 0.001) but not at P0-P5. At P8, it reduced hypercapnia-induced neuronal activation in raphe nuclei (P < 0.05) and nucleus tractus solitarius (P < 0.01) and the acidosis-induced increase in the respiratory frequency in brainstem slices (P < 0.05). Fluoxetine applied acutely on control slices did not modify their respiratory response to acidosis. We concluded that prenatal-perinatal fluoxetine treatment impairs central respiratory chemoreception during postnatal life. These results are relevant in understanding the pathogenesis of respiratory failures, such as sudden infant death syndrome, associated with brainstem serotonin abnormalities and the failure of respiratory chemoreflexes.
Collapse
Affiliation(s)
- Karina Bravo
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Jaime L Eugenín
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Isabel Llona
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
33
|
The association of serotonin receptor 3A methylation with maternal violence exposure, neural activity, and child aggression. Behav Brain Res 2017; 325:268-277. [DOI: 10.1016/j.bbr.2016.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 01/05/2023]
|
34
|
Evaluation of Possible Consequences of Zika Virus Infection in the Developing Nervous System. Mol Neurobiol 2017; 55:1620-1629. [DOI: 10.1007/s12035-017-0442-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/03/2017] [Indexed: 01/05/2023]
|
35
|
Babij R, De Marco Garcia N. Neuronal activity controls the development of interneurons in the somatosensory cortex. FRONTIERS IN BIOLOGY 2016; 11:459-470. [PMID: 28133476 PMCID: PMC5267357 DOI: 10.1007/s11515-016-1427-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Neuronal activity in cortical areas regulates neurodevelopment by interacting with defined genetic programs to shape the mature central nervous system. Electrical activity is conveyed to sensory cortical areas via intracortical and thalamocortical neurons, and includes oscillatory patterns that have been measured across cortical regions. OBJECTIVE In this work, we review the most recent findings about how electrical activity shapes the developmental assembly of functional circuitry in the somatosensory cortex, with an emphasis on interneuron maturation and integration. We include studies on the effect of various neurotransmitters and on the influence of thalamocortical afferent activity on circuit development. We additionally reviewed studies describing network activity patterns. METHODS We conducted an extensive literature search using both the PubMed and Google Scholar search engines. The following keywords were used in various iterations: "interneuron", "somatosensory", "development", "activity", "network patterns", "thalamocortical", "NMDA receptor", "plasticity". We additionally selected papers known to us from past reading, and those recommended to us by reviewers and members of our lab. RESULTS We reviewed a total of 132 articles that focused on the role of activity in interneuronal migration, maturation, and circuit development, as well as the source of electrical inputs and patterns of cortical activity in the somatosensory cortex. 79 of these papers included in this timely review were written between 2007 and 2016. CONCLUSIONS Neuronal activity shapes the developmental assembly of functional circuitry in the somatosensory cortical interneurons. This activity impacts nearly every aspect of development and acquisition of mature neuronal characteristics, and may contribute to changing phenotypes, altered transmitter expression, and plasticity in the adult. Progressively changing oscillatory network patterns contribute to this activity in the early postnatal period, although a direct requirement for specific patterns and origins of activity remains to be demonstrated.
Collapse
Affiliation(s)
- Rachel Babij
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, USA
| | - Natalia De Marco Garcia
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
36
|
Celli J, Rappold G, Niesler B. The Human Serotonin Type 3 Receptor Gene (HTR3A-E) Allelic Variant Database. Hum Mutat 2016; 38:137-147. [PMID: 27763704 DOI: 10.1002/humu.23136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/11/2016] [Accepted: 10/15/2016] [Indexed: 12/17/2022]
Abstract
Serotonin type 3 (5-HT3 ) receptors are ligand-gated ion channels formed by five subunits (5-HT3A-E), which are encoded by the HTR3A, HTR3B, HTR3C, HTR3D, and HTR3E genes. Functional receptors are pentameric complexes of diverse composition. Different receptor subtypes confer a predisposition to nausea and vomiting during chemotherapy, pregnancy, and following surgery. In addition, different subtypes contribute to neurogastroenterologic disorders such irritable bowel syndrome (IBS) and eating disorders as well as comorbid psychiatric conditions. 5-HT3 receptor antagonists are established treatments for emesis and IBS and are beneficial in the treatment of psychiatric diseases. Several case-control and pharmacogenetic studies have demonstrated an association between HTR3 variants and psychiatric and neurogastroenterologic phenotypes. Recently, their potential as predictors of nausea and vomiting and treatment of psychiatric disorders became evident. This information is now available in the serotonin receptor 3 HTR3 gene allelic variant database (www.htr3.uni-hd.de), which contains five sub-databases, one for each of the five different serotonin receptor genes HTR3A-E. Information on HTR3 variants, their functional relevance, associated phenotypes, and pharmacogenetic data such as drug response and side effects are available. This central information pool should help clinicians as well as scientists to evaluate their findings and to use the relevant information for subsequent genotype-phenotype correlation studies and pharmacogenetic approaches.
Collapse
Affiliation(s)
- Jacopo Celli
- Center of Human and Clinical Genetics, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Gudrun Rappold
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
37
|
Salari AA, Fatehi-Gharehlar L, Motayagheni N, Homberg JR. Fluoxetine normalizes the effects of prenatal maternal stress on depression- and anxiety-like behaviors in mouse dams and male offspring. Behav Brain Res 2016; 311:354-367. [DOI: 10.1016/j.bbr.2016.05.062] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 11/25/2022]
|
38
|
Haj-Mirzaian A, Amiri S, Amini-Khoei H, Rahimi-Balaei M, Kordjazy N, Olson CO, Rastegar M, Naserzadeh P, Marzban H, Dehpour AR, Hosseini MJ, Samiei E, Mehr SE. Attenuation of oxidative and nitrosative stress in cortical area associates with antidepressant-like effects of tropisetron in male mice following social isolation stress. Brain Res Bull 2016; 124:150-63. [PMID: 27129671 DOI: 10.1016/j.brainresbull.2016.04.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/16/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
|
39
|
Raslan A, Hainz N, Beckmann A, Tschernig T, Meier C. Pannexin-1 expression in developing mouse nervous system: new evidence for expression in sensory ganglia. Cell Tissue Res 2015; 364:29-41. [PMID: 26453396 DOI: 10.1007/s00441-015-2294-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022]
Abstract
Pannexin1 (Panx1) is one of three members of the pannexin protein family. The expression of Panx1 mRNA has been extensively investigated from late embryonic to adult stages. In contrast, expression during early embryonic development is largely unknown. Our aim is to examine the temporal and spatial expression of Panx1 in mouse embryonic development by focusing on embryonic days (E) 9.5 to 12.5. Whole embryos are investigated in order to provide a comprehensive survey. Analyses were performed at the mRNA level by using reverse transcription plus the polymerase chain reaction and whole-mount in situ hybridization. Panx1 mRNA was detected in the heads and bodies of embryos at all developmental stages investigated (E9.5, E10.5, E11.5, E12.5). In particular, the nervous system expressed Panx1 at an early time point. Interestingly, Panx1 expression was found in afferent ganglia of the cranial nerves and spinal cord. This finding is of particular interest in the context of neuropathic pain and other Panx1-related neurological disorders. Our study shows, for the first time, that Panx1 is expressed in the central and peripheral nervous system during early developmental stages. The consequences of Panx1 deficiency or inhibition in a number of experimental paradigms might therefore be predicated on changes during early development.
Collapse
Affiliation(s)
- Abdulrahman Raslan
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66424, Homburg, Saar, Germany
| | - Nadine Hainz
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66424, Homburg, Saar, Germany
| | - Anja Beckmann
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66424, Homburg, Saar, Germany
| | - Thomas Tschernig
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66424, Homburg, Saar, Germany
| | - Carola Meier
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66424, Homburg, Saar, Germany.
| |
Collapse
|
40
|
Castro B, Sánchez P, Torres JM, Ortega E. Bisphenol A, bisphenol F and bisphenol S affect differently 5α-reductase expression and dopamine-serotonin systems in the prefrontal cortex of juvenile female rats. ENVIRONMENTAL RESEARCH 2015; 142:281-287. [PMID: 26186136 DOI: 10.1016/j.envres.2015.07.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/02/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Early-life exposure to the endocrine disruptor bisphenol A (BPA) affects brain function and behavior, which might be attributed to its interference with hormonal steroid signaling and/or neurotransmitter systems. Alternatively, the use of structural analogs of BPA, mainly bisphenol F (BPF) and bisphenol S (BPS), has increased recently. However, limited in vivo toxicity data exist. OBJECTIVES We investigated the effects of BPA, BPF and BPS on 5α-reductase (5α-R), a key enzyme involved in neurosteroidogenesis, as well as on dopamine (DA)- and serotonin (5-HT)-related genes, in the prefrontal cortex (PFC) of juvenile female rats. METHODS Gestating Wistar rats were treated with either vehicle or 10 μg/kg/day of BPA, BPF or BPS from gestational day 12 to parturition. Then, female pups were exposed from postnatal day 1 through day 21 (PND21), when they were euthanized and RT-PCR, western blot and quantitative PCR-array experiments were performed. RESULTS BPA decreased 5α-R2 and 5α-R3 mRNA and protein levels, while both BPF and BPS decreased 5α-R3 mRNA levels in PFC at PND21. Further, BPA, BPF and BPS significantly altered, respectively, the transcription of 25, 56 and 24 genes out of the 84 DA and 5-HT-related genes assayed. Of particular interest was the strong induction by all these bisphenols of Cyp2d4, implicated in corticosteroids synthesis. CONCLUSIONS Our results demonstrate for the first time that BPA, BPF and BPS differentially affect 5α-R and genes related to DA/5-HT systems in the female PFC. In vivo evidence of the potential adverse effects of BPF and BPS in the brain of mammals is provided in this work, raising questions about the safety of these chemicals as substitutes for BPA.
Collapse
Affiliation(s)
- Beatriz Castro
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Avda. de Madrid s/n, 18012 Granada, Spain
| | - Pilar Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Avda. de Madrid s/n, 18012 Granada, Spain
| | - Jesús M Torres
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Avda. de Madrid s/n, 18012 Granada, Spain; Institute of Neurosciences, Faculty of Medicine, University of Granada, Granada, Spain.
| | - Esperanza Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Avda. de Madrid s/n, 18012 Granada, Spain; Institute of Neurosciences, Faculty of Medicine, University of Granada, Granada, Spain.
| |
Collapse
|
41
|
Frazer S, Otomo K, Dayer A. Early-life serotonin dysregulation affects the migration and positioning of cortical interneuron subtypes. Transl Psychiatry 2015; 5:e644. [PMID: 26393490 PMCID: PMC5068808 DOI: 10.1038/tp.2015.147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/22/2015] [Accepted: 08/11/2015] [Indexed: 12/21/2022] Open
Abstract
Early-life deficiency of the serotonin transporter (SERT) gives rise to a wide range of psychiatric-relevant phenotypes; however, the molecular and cellular targets of serotonin dyregulation during neural circuit formation remain to be identified. Interestingly, migrating cortical interneurons (INs) derived from the caudal ganglionic eminence (CGE) have been shown to be more responsive to serotonin-mediated signalling compared with INs derived from the medial ganglionic eminence (MGE). Here we investigated the impact of early-life SERT deficiency on the migration and positioning of CGE-derived cortical INs in SERT-ko mice and in mice exposed to the SERT inhibitor fluoxetine during the late embryonic period. Using confocal time-lapse imaging and microarray-based expression analysis we found that genetic and pharmacological SERT deficiency significantly increased the migratory speed of CGE-derived INs and affected transcriptional programmes regulating neuronal migration. Postnatal studies revealed that SERT deficiency altered the cortical laminar distribution of subtypes of CGE-derived INs but not MGE-derived INs. More specifically, we found that the distribution of vasointestinal peptide (VIP)-expressing INs in layer 2/3 was abnormal in both genetic and pharmacological SERT-deficiency models. Collectively, these data indicate that early-life SERT deficiency has an impact on the migration and molecular programmes of CGE-derived INs, thus leading to specific alterations in the positioning of VIP-expressing INs. These data add to the growing evidence that early-life serotonin dysregulation affects cortical microcircuit formation and contributes to the emergence of psychiatric-relevant phenotypes.
Collapse
Affiliation(s)
- S Frazer
- Department of Mental Health and Psychiatry, University of Geneva Medical School, Geneva, Switzerland,Department of Psychiatry and Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland
| | - K Otomo
- Department of Mental Health and Psychiatry, University of Geneva Medical School, Geneva, Switzerland,Department of Psychiatry and Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland
| | - A Dayer
- Department of Mental Health and Psychiatry, University of Geneva Medical School, Geneva, Switzerland,Department of Psychiatry and Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland,Department of Psychiatry and Basic Neurosciences, University of Geneva Medical School (CMU), Rue Michel-Servet 1, 1211 Genève 4, Geneva 1211, Switzerland. E-mail:
| |
Collapse
|
42
|
Brandão JA, Romcy-Pereira RN. Interplay of environmental signals and progenitor diversity on fate specification of cortical GABAergic neurons. Front Cell Neurosci 2015; 9:149. [PMID: 25972784 PMCID: PMC4412069 DOI: 10.3389/fncel.2015.00149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/01/2015] [Indexed: 12/19/2022] Open
Abstract
Cortical GABAergic interneurons constitute an extremely diverse population of cells organized in a well-defined topology of precisely interconnected cells. They play a crucial role regulating inhibitory-excitatory balance in brain circuits, gating sensory perception, and regulating spike timing to brain oscillations during distinct behaviors. Dysfunctions in the establishment of proper inhibitory circuits have been associated to several brain disorders such as autism, epilepsy, and schizophrenia. In the rodent adult cortex, inhibitory neurons are generated during the second gestational week from distinct progenitor lineages located in restricted domains of the ventral telencephalon. However, only recently, studies have revealed some of the mechanisms generating the heterogeneity of neuronal subtypes and their modes of integration in brain networks. Here we will discuss some the events involved in the production of cortical GABAergic neuron diversity with focus on the interaction between intrinsically driven genetic programs and environmental signals during development.
Collapse
Affiliation(s)
- Juliana A Brandão
- Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| | | |
Collapse
|
43
|
Functional constituents of a local serotonergic system, intrinsic to the human coronary artery smooth muscle cells. Mol Biol Rep 2015; 42:1295-307. [PMID: 25861735 DOI: 10.1007/s11033-015-3874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
Human coronary artery smooth muscle cells (HCASMCs) play an important role in the pathogenesis of coronary atherosclerosis and coronary artery diseases (CAD). Serotonin is a mediator known to produce vascular smooth muscle cell mitogenesis and contribute to coronary atherosclerosis. We hypothesize that the HCASMC possesses certain functional constituents of the serotonergic system such as: tryptophan hydroxylase and serotonin transporter. Our aim was to examine the presence of functional tryptophan hydroxylase-1 (TPH1) and serotonin transporter (SERT) in HCASMCs. The mRNA transcripts by qPCR and protein expression by Western blot of TPH1 and SERT were examined. The specificity and accuracy of the primers were verified using DNA gel electrophoresis and sequencing of qPCR products. The functionality of SERT was examined using a fluorescence dye-based serotonin transporter assay. The enzymatic activity of TPH was evaluated using UPLC. The HCASMCs expressed both mRNA transcripts and protein of SERT and TPH. The qPCR showed a single melt curve peak for both transcripts and in sequence analysis the amplicons were aligned with the respective genes. SERT and TPH enzymatic activity was present in the HCASMCs. Taken together, both TPH and SERT are functionally expressed in HCASMCs. These findings are novel and represent an initial step in examining the clinical relevance of the serotonergic system in HCASMCs and its role in the pathogenesis of coronary atherosclerosis and CAD.
Collapse
|
44
|
Abstract
Early-life serotonin [5-hydroxytryptamine (5-HT)] signaling modulates brain development, which impacts adult behavior, but 5-HT-sensitive periods, neural substrates, and behavioral consequences remain poorly understood. Here we identify the period ranging from postnatal day 2 (P2) to P11 as 5-HT sensitive, with 5-HT transporter (5-HTT) blockade increasing anxiety- and depression-like behavior, and impairing fear extinction learning and memory in adult mice. Concomitantly, P2-P11 5-HTT blockade causes dendritic hypotrophy and reduced excitability of infralimbic (IL) cortex pyramidal neurons that normally promote fear extinction. By contrast, the neighboring prelimbic (PL) pyramidal neurons, which normally inhibit fear extinction, become more excitable. Excitotoxic IL but not PL lesions in adult control mice reproduce the anxiety-related phenotypes. These findings suggest that increased 5-HT signaling during P2-P11 alters adult mPFC function to increase anxiety and impair fear extinction, and imply a differential role for IL and PL neurons in regulating affective behaviors. Together, our results support a developmental mechanism for the etiology and pathophysiology of affective disorders and fear-related behaviors.
Collapse
|
45
|
Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology 2015; 40:88-112. [PMID: 25178408 PMCID: PMC4262911 DOI: 10.1038/npp.2014.231] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/30/2014] [Accepted: 08/20/2014] [Indexed: 02/07/2023]
Abstract
Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system development, such sensitive periods shape the formation of neurocircuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint as well as the environmental context. While allowing for adaptation, such sensitive periods are also vulnerability windows during which external and internal factors can confer risk to disorders by derailing otherwise resilient developmental programs. Here we review developmental periods that are sensitive to monoamine signaling and impact adult behaviors of relevance to psychiatry. Specifically, we review (1) a serotonin-sensitive period that impacts sensory system development, (2) a serotonin-sensitive period that impacts cognition, anxiety- and depression-related behaviors, and (3) a dopamine- and serotonin-sensitive period affecting aggression, impulsivity and behavioral response to psychostimulants. We discuss preclinical data to provide mechanistic insight, as well as epidemiological and clinical data to point out translational relevance. The field of translational developmental neuroscience has progressed exponentially providing solid conceptual advances and unprecedented mechanistic insight. With such knowledge at hand and important methodological innovation ongoing, the field is poised for breakthroughs elucidating the developmental origins of neuropsychiatric disorders, and thus understanding pathophysiology. Such knowledge of sensitive periods that determine the developmental trajectory of complex behaviors is a necessary step towards improving prevention and treatment approaches for neuropsychiatric disorders.
Collapse
|
46
|
Dayer A. Serotonin-related pathways and developmental plasticity: relevance for psychiatric disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2014. [PMID: 24733969 PMCID: PMC3984889 DOI: 10.31887/dcns.2014.16.1/adayer] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Risk for adult psychiatric disorders is partially determined by early-life alterations occurring during neural circuit formation and maturation. In this perspective, recent data show that the serotonin system regulates key cellular processes involved in the construction of cortical circuits. Translational data for rodents indicate that early-life serotonin dysregulation leads to a wide range of behavioral alterations, ranging from stress-related phenotypes to social deficits. Studies in humans have revealed that serotonin-related genetic variants interact with early-life stress to regulate stress-induced cortisol responsiveness and activate the neural circuits involved in mood and anxiety disorders. Emerging data demonstrate that early-life adversity induces epigenetic modifications in serotonin-related genes. Finally, recent findings reveal that selective serotonin reuptake inhibitors can reinstate juvenile-like forms of neural plasticity, thus allowing the erasure of long-lasting fear memories. These approaches are providing new insights on the biological mechanisms and clinical application of antidepressants.
Collapse
Affiliation(s)
- Alexandre Dayer
- Departments of Mental Health and Psychiatry and Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
47
|
Serotonin receptor 3A controls interneuron migration into the neocortex. Nat Commun 2014; 5:5524. [PMID: 25409778 PMCID: PMC4263148 DOI: 10.1038/ncomms6524] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/09/2014] [Indexed: 02/06/2023] Open
Abstract
Neuronal excitability has been shown to control the migration and cortical integration of reelin-expressing cortical interneurons (INs) arising from the caudal ganglionic eminence (CGE), supporting the possibility that neurotransmitters could regulate this process. Here we show that the ionotropic serotonin receptor 3A (5-HT3AR) is specifically expressed in CGE-derived migrating interneurons and upregulated while they invade the developing cortex. Functional investigations using calcium imaging, electrophysiological recordings and migration assays indicate that CGE-derived INs increase their response to 5-HT3AR activation during the late phase of cortical plate invasion. Using genetic loss-of-function approaches and in vivo grafts, we further demonstrate that the 5-HT3AR is cell autonomously required for the migration and proper positioning of reelin-expressing CGE-derived INs in the neocortex. Our findings reveal a requirement for a serotonin receptor in controlling the migration and laminar positioning of a specific subtype of cortical IN. During brain development, neuronal excitability controls the laminar migration of cortical interneurons from the caudal ganglionic eminences (CGEs). Here the authors identify the 5-HT3A receptor as a specific marker of CGE-derived cortical interneurons (cINs), and as a stimulator of cIN migration.
Collapse
|
48
|
Volpicelli F, Speranza L, di Porzio U, Crispino M, Perrone-Capano C. The serotonin receptor 7 and the structural plasticity of brain circuits. Front Behav Neurosci 2014; 8:318. [PMID: 25309369 PMCID: PMC4162376 DOI: 10.3389/fnbeh.2014.00318] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/27/2014] [Indexed: 12/18/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) modulates numerous physiological processes in the nervous system. Together with its function as neurotransmitter, 5-HT regulates neurite outgrowth, dendritic spine shape and density, growth cone motility and synapse formation during development. In the mammalian brain 5-HT innervation is virtually ubiquitous and the diversity and specificity of its signaling and function arise from at least 20 different receptors, grouped in 7 classes. Here we will focus on the role 5-HT7 receptor (5-HT7R) in the correct establishment of neuronal cytoarchitecture during development, as also suggested by its involvement in several neurodevelopmental disorders. The emerging picture shows that this receptor is a key player contributing not only to shape brain networks during development but also to remodel neuronal wiring in the mature brain, thus controlling cognitive and emotional responses. The activation of 5-HT7R might be one of the mechanisms underlying the ability of the CNS to respond to different stimuli by modulation of its circuit configuration.
Collapse
Affiliation(s)
- Floriana Volpicelli
- Department of Pharmacy, University of Naples Federico II Naples, Italy ; Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council (CNR) Naples, Italy
| | - Luisa Speranza
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council (CNR) Naples, Italy
| | - Umberto di Porzio
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council (CNR) Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Carla Perrone-Capano
- Department of Pharmacy, University of Naples Federico II Naples, Italy ; Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council (CNR) Naples, Italy
| |
Collapse
|
49
|
Baumeister D, Barnes G, Giaroli G, Tracy D. Classical hallucinogens as antidepressants? A review of pharmacodynamics and putative clinical roles. Ther Adv Psychopharmacol 2014; 4:156-69. [PMID: 25083275 PMCID: PMC4104707 DOI: 10.1177/2045125314527985] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hallucinogens have been part of spiritual practice for millennia, but controversy surrounding their mind-manifesting effects led to their proscription by the mid-20th century, largely without evidence of harm or toxicity and despite nascent data suggesting therapeutic utility in treating depressive illnesses. This review explores their pharmacodynamic actions and the current limited data on their clinic effectiveness. These drugs appear to exert their psychedelic effects through their agonist or partial agonist activity at the serotonergic 5-HT2A receptor, though they also have affinity for other metabotropic serotonin receptors. Hallucinogen binding affects a wide range of intracellular signalling pathways, the precise nature of which remains incompletely understood. They alter the serotonergic tone of brainstem raphe nuclei that project through the brain; they interact with receptors in the prefrontal cortex altering connectivity patterns and intracellular functioning; and they disrupt inhibitory control of sensory input via the thalamus to the cortex. The serotonergic system has long been implicated in anxiety and depressive disorders, and is a major target of most existing antidepressants. Classical hallucinogens alter the functioning of this system, but not in the same way current medications do: whilst there are identified receptors and neurotransmitter pathways through which hallucinogens could therein produce therapeutic effects, the neurobiology of this remains speculative at this time. There is currently an extremely limited but growing literature on hallucinogen safety and clinical application. The drugs appear well tolerated by healthy controls and clinical populations, and the rapid tolerance to repeated administration might reduce the possibility of dependency. Clinical trials reported over the past decade have generally shown positive therapeutic potential, but they are notably few in number. Legislative policy has had a freezing effect on evaluation of these compounds, a better understanding of which might improve our knowledge of the processes involved in consciousness, the neuropathology of depression, and potentially open up new pharmacological therapies.
Collapse
Affiliation(s)
- David Baumeister
- Consultant Psychiatrist, Oxleas NHS Foundation Trust, Princess Royal University Hospital, Orpington, BR6 8NY, UK and Cognition, Schizophrenia and Imaging Laboratory, Department of Psychosis Studies, the Institute of Psychiatry, King's College London, UK
| | - Georgina Barnes
- Stress, Psychiatry and Immunology Lab, Institute of Psychiatry, Department of Psychological Medicine, Kings College London, London, UK
| | - Giovanni Giaroli
- Cognition, Schizophrenia and Imaging Laboratory, Department of Psychosis Studies, the Institute of Psychiatry, King's College London, UK
| | - Derek Tracy
- Cognition, Schizophrenia and Imaging Laboratory, Department of Psychosis Studies, the Institute of Psychiatry, King's College London, UK
| |
Collapse
|
50
|
Jacobshagen M, Niquille M, Chaumont-Dubel S, Marin P, Dayer A. The serotonin 6 receptor controls neuronal migration during corticogenesis via a ligand-independent Cdk5-dependent mechanism. Development 2014; 141:3370-7. [PMID: 25078650 PMCID: PMC4199128 DOI: 10.1242/dev.108043] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The formation of a laminar structure such as the mammalian neocortex relies on the coordinated migration of different subtypes of excitatory pyramidal neurons in specific layers. Cyclin-dependent kinase 5 (Cdk5) is a master regulator of pyramidal neuron migration. Recently, we have shown that Cdk5 binds to the serotonin 6 receptor (5-HT6R), a G protein-coupled receptor (GPCR). Here, we investigated the role of 5-HT6R in the positioning and migration of pyramidal neurons during mouse corticogenesis. We report that constitutive expression of 5-HT6R controls pyramidal neuron migration through an agonist-independent mechanism that requires Cdk5 activity. These data provide the first in vivo evidence of a role for constitutive activity at a GPCR in neocortical radial migration.
Collapse
Affiliation(s)
- Moritz Jacobshagen
- Department of Psychiatry, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland Department of Basic Neurosciences, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland
| | - Mathieu Niquille
- Department of Psychiatry, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland Department of Basic Neurosciences, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661, Universités Montpellier I & II, Montpellier 34094, France
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661, Universités Montpellier I & II, Montpellier 34094, France
| | - Alexandre Dayer
- Department of Psychiatry, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland Department of Basic Neurosciences, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland
| |
Collapse
|