1
|
da Cunha Menezes E, de Abreu FF, Davis JB, Maurer SV, Roshko VC, Richardson A, Dowell J, Cassella SN, Stevens HE. Effects of gestational hypothyroidism on mouse brain development: Gabaergic systems and oxidative stress. Dev Biol 2024; 515:112-120. [PMID: 39048051 PMCID: PMC11330572 DOI: 10.1016/j.ydbio.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Hormonal imbalance during pregnancy is a risk factor for neuropsychiatric impairment in the offspring. It has been suggested that hypothyroidism leads to dysfunction of cortical GABAergic interneurons and inhibitory system development that in turn underlies impairment of the central nervous system. Here we investigated how gestational hypothyroidism affected offspring GABAergic system development as well as redox regulation parameters, because of previous links identified between the two. Experimental Gestational Hypothyroidism (EGH) was induced in CD-1 mice with 0.02% methimazole (MMI) in drinking water from embryonic day 9 (E9) until tissue collection at embryonic day 14 (E14) or E18. We examined GABAergic cell distribution and inhibitory system development gene expression as well as redox relevant gene expression and direct measures across all embryos regardless of sex. Intrauterine restriction of maternal thyroid hormones significantly impacted both of these outcomes in brain, as well as altering redox regulation in the placenta. GAD67+ neuronal migration was reduced, accompanied by a disruption in gene expression influencing GABAergic cell migration and cortical inhibitory neural system development. EGH also altered embryonic brain gene expression of Gpx1, Nfe2l2, Cat levels in the dorsal E14 brains. Additionally, EGH resulted in elevated TBARS, Gpx1 and Nfe2l2 in the ventral E18 brains. Furthermore, EGH downregulated placental Gpx1 gene expression at E14 and increased protein oxidation at E18. These findings support the hypothesis that sufficient maternal thyroid hormone supply to the fetus influences central nervous system development, including processes of GABAergic system development and redox equilibrium.
Collapse
Affiliation(s)
- Edênia da Cunha Menezes
- Psychiatry Department, Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; Psychiatry Department, Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Fabiula Francisca de Abreu
- Departamento de Fisiologia, Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Jada B Davis
- Psychiatry Department, Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Sara V Maurer
- Psychiatry Department, Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Venezia C Roshko
- Psychiatry Department, Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | | | - Jonathan Dowell
- Psychiatry Department, Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Sarah N Cassella
- Neuroscience Department, Loras College, Dubuque, IA, United States
| | - Hanna E Stevens
- Psychiatry Department, Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
2
|
Matsushima T, Izumi T, Vallortigara G. The domestic chick as an animal model of autism spectrum disorder: building adaptive social perceptions through prenatally formed predispositions. Front Neurosci 2024; 18:1279947. [PMID: 38356650 PMCID: PMC10864568 DOI: 10.3389/fnins.2024.1279947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Equipped with an early social predisposition immediately post-birth, humans typically form associations with mothers and other family members through exposure learning, canalized by a prenatally formed predisposition of visual preference to biological motion, face configuration, and other cues of animacy. If impaired, reduced preferences can lead to social interaction impairments such as autism spectrum disorder (ASD) via misguided canalization. Despite being taxonomically distant, domestic chicks could also follow a homologous developmental trajectory toward adaptive socialization through imprinting, which is guided via predisposed preferences similar to those of humans, thereby suggesting that chicks are a valid animal model of ASD. In addition to the phenotypic similarities in predisposition with human newborns, accumulating evidence on the responsible molecular mechanisms suggests the construct validity of the chick model. Considering the recent progress in the evo-devo studies in vertebrates, we reviewed the advantages and limitations of the chick model of developmental mental diseases in humans.
Collapse
Affiliation(s)
- Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu, Japan
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Takeshi Izumi
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu, Japan
| | | |
Collapse
|
3
|
de Souza JS. Thyroid hormone biosynthesis and its role in brain development and maintenance. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 142:329-365. [PMID: 39059990 DOI: 10.1016/bs.apcsb.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Thyroid hormones are critical modulators in the physiological processes necessary to virtually all tissues, with exceptionally fundamental roles in brain development and maintenance. These hormones regulate essential neurodevelopment events, including neuronal migration, synaptogenesis, and myelination. Additionally, thyroid hormones are crucial for maintaining brain homeostasis and cognitive function in adulthood. This chapter aims to offer a comprehensive understanding of thyroid hormone biosynthesis and its intricate role in brain physiology. Here, we described the mechanisms underlying the biosynthesis of thyroid hormones, their influence on various aspects of brain development and ongoing maintenance, and the proteins in the brain that are responsive to these hormones. This chapter was geared towards broadening our understanding of thyroid hormone action in the brain, shedding light on potential therapeutic targets for neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Janaina Sena de Souza
- Department of Pediatrics and Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
4
|
Hu G, Zhang M, Wang Y, Yu M, Zhou Y. Potential of Heterogeneous Compounds as Antidepressants: A Narrative Review. Int J Mol Sci 2022; 23:ijms232213776. [PMID: 36430254 PMCID: PMC9692659 DOI: 10.3390/ijms232213776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Depression is a globally widespread disorder caused by a complicated interplay of social, psychological, and biological factors. Approximately 280 million people are suffering from depression worldwide. Traditional frontline antidepressants targeting monoamine neurotransmitters show unsatisfactory effects. The development and application of novel antidepressants for dissimilar targets are on the agenda. This review characterizes the antidepressant effects of multiple endogenous compounds and/or their targets to provide new insight into the working mechanism of antidepressants. We also discuss perspectives and challenges for the generation of novel antidepressants.
Collapse
Affiliation(s)
- Gonghui Hu
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
| | - Meng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
| | - Yuyang Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ming Yu
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao 266000, China
- Correspondence:
| |
Collapse
|
5
|
Roubinov D, Meaney MJ, Boyce WT. Change of pace: How developmental tempo varies to accommodate failed provision of early needs. Neurosci Biobehav Rev 2021; 131:120-134. [PMID: 34547365 PMCID: PMC8648258 DOI: 10.1016/j.neubiorev.2021.09.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/30/2021] [Accepted: 09/16/2021] [Indexed: 01/13/2023]
Abstract
The interplay of genes and environments (GxE) is a fundamental source of variation in behavioral and developmental outcomes. Although the role of developmental time (T) in the unfolding of such interactions has yet to be fully considered, GxE operates within a temporal frame of reference across multiple timescales and degrees of biological complexity. Here, we consider GxExT interactions to understand adversity-induced developmental acceleration or deceleration whereby environmental conditions hasten or hinder children's development. To date, developmental pace changes have been largely explained through a focus on the individual: for example, how adversity "wears down" aging biological systems or how adversity accelerates or decelerates maturation to optimize reproductive fitness. We broaden such theories by positing shifts in developmental pace in response to the parent-child dyad's capacity or incapacity for meeting children's early, physiological and safety needs. We describe empirical evidence and potential neurobiological mechanisms supporting this new conceptualization of developmental acceleration and deceleration. We conclude with suggestions for future research on the developmental consequences of early adverse exposures.
Collapse
Affiliation(s)
- Danielle Roubinov
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, United States.
| | - Michael J Meaney
- Department of Psychiatry and Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec, H3H 1R4, Canada; Child and Brain Development Program, CIFAR, Toronto, Ontario, M5G 1M1, Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A ⁎STAR), 117609, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - W Thomas Boyce
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, United States; Child and Brain Development Program, CIFAR, Toronto, Ontario, M5G 1M1, Canada; Department of Pediatrics, University of California, San Francisco, United States
| |
Collapse
|
6
|
Wong-Riley MTT. The critical period: neurochemical and synaptic mechanisms shared by the visual cortex and the brain stem respiratory system. Proc Biol Sci 2021; 288:20211025. [PMID: 34493083 DOI: 10.1098/rspb.2021.1025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The landmark studies of Wiesel and Hubel in the 1960's initiated a surge of investigations into the critical period of visual cortical development, when abnormal visual experience can alter cortical structures and functions. Most studies focused on the visual cortex, with relatively little attention to subcortical structures. The goal of the present review is to elucidate neurochemical and synaptic mechanisms common to the critical periods of the visual cortex and the brain stem respiratory system in the normal rat. In both regions, the critical period is a time of (i) heightened inhibition; (ii) reduced expression of brain-derived neurotrophic factor (BDNF); and (iii) synaptic imbalance, with heightened inhibition and suppressed excitation. The last two mechanisms are contrary to the conventional premise. Synaptic imbalance renders developing neurons more vulnerable to external stressors. However, the critical period is necessary to enable each system to strengthen its circuitry, adapt to its environment, and transition from immaturity to maturity, when a state of relative synaptic balance is attained. Failure to achieve such a balance leads to neurological disorders.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Baksi S, Pradhan A. Thyroid hormone: sex-dependent role in nervous system regulation and disease. Biol Sex Differ 2021; 12:25. [PMID: 33685490 PMCID: PMC7971120 DOI: 10.1186/s13293-021-00367-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormone (TH) regulates many functions including metabolism, cell differentiation, and nervous system development. Alteration of thyroid hormone level in the body can lead to nervous system-related problems linked to cognition, visual attention, visual processing, motor skills, language, and memory skills. TH has also been associated with neuropsychiatric disorders including schizophrenia, bipolar disorder, anxiety, and depression. Males and females display sex-specific differences in neuronal signaling. Steroid hormones including testosterone and estrogen are considered to be the prime regulators for programing the neuronal signaling in a male- and female-specific manner. However, other than steroid hormones, TH could also be one of the key signaling molecules to regulate different brain signaling in a male- and female-specific manner. Thyroid-related diseases and neurological diseases show sex-specific incidence; however, the molecular mechanisms behind this are not clear. Hence, it will be very beneficial to understand how TH acts in male and female brains and what are the critical genes and signaling networks. In this review, we have highlighted the role of TH in nervous system regulation and disease outcome and given special emphasis on its sex-specific role in male and female brains. A network model is also presented that provides critical information on TH-regulated genes, signaling, and disease.
Collapse
Affiliation(s)
- Shounak Baksi
- Causality Biomodels, Kerala Technology Innovation Zone, Cochin, 683503, India
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| |
Collapse
|
8
|
Environmental regulation of the chloride transporter KCC2: switching inflammation off to switch the GABA on? Transl Psychiatry 2020; 10:349. [PMID: 33060559 PMCID: PMC7562743 DOI: 10.1038/s41398-020-01027-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Chloride homeostasis, the main determinant factor for the dynamic tuning of GABAergic inhibition during development, has emerged as a key element altered in a wide variety of brain disorders. Accordingly, developmental disorders such as schizophrenia, Autism Spectrum Disorder, Down syndrome, epilepsy, and tuberous sclerosis complex (TSC) have been associated with alterations in the expression of genes codifying for either of the two cotransporters involved in the excitatory-to-inhibitory GABA switch, KCC2 and NKCC1. These alterations can result from environmental insults, including prenatal stress and maternal separation which share, as common molecular denominator, the elevation of pro-inflammatory cytokines. In this review we report and systemize recent research articles indicating that different perinatal environmental perturbations affect the expression of chloride transporters, delaying the developmental switch of GABA signaling, and that inflammatory cytokines, in particular interleukin 1β, may represent a key causal factor for this phenomenon. Based on literature data, we provide therefore a unifying conceptual framework, linking environmental hits with the excitatory-to-inhibitory GABA switch in the context of brain developmental disorders.
Collapse
|
9
|
Gilbert ME, O'Shaughnessy KL, Axelstad M. Regulation of Thyroid-disrupting Chemicals to Protect the Developing Brain. Endocrinology 2020; 161:bqaa106. [PMID: 32615585 PMCID: PMC8650774 DOI: 10.1210/endocr/bqaa106] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Synthetic chemicals with endocrine disrupting properties are pervasive in the environment and are present in the bodies of humans and wildlife. As thyroid hormones (THs) control normal brain development, and maternal hypothyroxinemia is associated with neurological impairments in children, chemicals that interfere with TH signaling are of considerable concern for children's health. However, identifying thyroid-disrupting chemicals (TDCs) in vivo is largely based on measuring serum tetraiodothyronine in rats, which may be inadequate to assess TDCs with disparate mechanisms of action and insufficient to evaluate the potential neurotoxicity of TDCs. In this review 2 neurodevelopmental processes that are dependent on TH action are highlighted, neuronal migration and maturation of gamma amino butyric acid-ergic interneurons. We discuss how interruption of these processes by TDCs may contribute to abnormal brain circuitry following developmental TH insufficiency. Finally, we identify issues in evaluating the developmental neurotoxicity of TDCs and the strengths and limitations of current approaches designed to regulate them. It is clear that an enhanced understanding of how THs affect brain development will lead to refined toxicity testing, reducing uncertainty and improving our ability to protect children's health.
Collapse
Affiliation(s)
- Mary E Gilbert
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Batista G, Hensch TK. Critical Period Regulation by Thyroid Hormones: Potential Mechanisms and Sex-Specific Aspects. Front Mol Neurosci 2019; 12:77. [PMID: 31024251 PMCID: PMC6461013 DOI: 10.3389/fnmol.2019.00077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/11/2019] [Indexed: 12/24/2022] Open
Abstract
Adequate perinatal levels of thyroid hormones (THs) are required for normal brain function and development. Studies in non-mammalian species suggest that TH might be involved in the regulation of critical periods (CPs) of heightened plasticity. Yet, it is largely unknown what mechanisms controlling such CPs might be under TH regulation. Here, we briefly review the influence of TH in early life across evolution. We discuss possible links between TH and known circuit and/or molecular mechanisms determining the timing of CPs of heightened brain plasticity. We focus on the role of parvalbumin-positive (PV) interneurons since their maturation defines CP onset and closure. Specifically, abnormal PV circuits are associated with low perinatal levels of TH, possibly because thyroid hypofunction may increase oxidative stress and/or dysregulate Otx2-mediated maturation of neuroprotective perineuronal nets. In addition, the level of cholinergic transmission is important for CP plasticity. Potentially, TH levels could affect gain changes in cholinergic transmission that can alter brain development. We believe that understanding how TH impacts CPs of circuit refinement will shed light onto the principles underlying normal developmental trajectories. Given that the thyroid gland expresses estrogen and androgen receptors, its activity can potentially be regulated differently between the sexes, contributing to sexually dimorphic behaviors.
Collapse
Affiliation(s)
- Gervasio Batista
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Takao K Hensch
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, Cambridge, MA, United States.,FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Tokyo, Japan
| |
Collapse
|
11
|
Swaminathan A, Hassan-Abdi R, Renault S, Siekierska A, Riché R, Liao M, de Witte PAM, Yanicostas C, Soussi-Yanicostas N, Drapeau P, Samarut É. Non-canonical mTOR-Independent Role of DEPDC5 in Regulating GABAergic Network Development. Curr Biol 2018; 28:1924-1937.e5. [PMID: 29861134 DOI: 10.1016/j.cub.2018.04.061] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/13/2018] [Accepted: 04/17/2018] [Indexed: 01/19/2023]
Abstract
Mutations in DEPDC5 are causal factors for a broad spectrum of focal epilepsies, but the underlying pathogenic mechanisms are still largely unknown. To address this question, a zebrafish depdc5 knockout model showing spontaneous epileptiform events in the brain, increased drug-induced seizure susceptibility, general hypoactivity, premature death at 2-3 weeks post-fertilization, as well as the expected hyperactivation of mTOR signaling was developed. Using this model, the role of DEPDC5 in brain development was investigated using an unbiased whole-transcriptomic approach. Surprisingly, in addition to mTOR-associated genes, many genes involved in synaptic function, neurogenesis, axonogenesis, and GABA network activity were found to be dysregulated in larval brains. Although no gross defects in brain morphology or neuron loss were observed, immunostaining of depdc5-/- brains for several GABAergic markers revealed specific defects in the fine branching of the GABAergic network. Consistently, some defects in depdc5-/- could be compensated for by treatment with GABA, corroborating that GABA signaling is indeed involved in DEPDC5 pathogenicity. Further, the mTOR-independent nature of these neurodevelopmental defects was demonstrated by the inability of rapamycin to rescue the GABAergic network defects observed in depdc5-/- brains and, conversely, the inability of GABA to rescue the hypoactivity in another genetic model showing mTOR hyperactivation. This study hence provides the first in vivo evidence that DEPDC5 plays previously unknown roles apart from its canonical function as an mTOR inhibitor. Moreover, these results propose that defective neurodevelopment of GABAergic networks could be a key factor in epileptogenesis when DEPDC5 is mutated.
Collapse
Affiliation(s)
- Amrutha Swaminathan
- Department of Neurosciences, Research Center of the University of Montréal Hospital Center (CRCHUM), Université de Montréal, Montréal, QC, Canada H2X 0A9
| | - Rahma Hassan-Abdi
- Inserm, U1141, F-75019 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141, F-75019 Paris, France
| | - Solène Renault
- Inserm, U1141, F-75019 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141, F-75019 Paris, France
| | - Aleksandra Siekierska
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, 3000 Leuven, Belgium
| | - Raphaëlle Riché
- Department of Neurosciences, Research Center of the University of Montréal Hospital Center (CRCHUM), Université de Montréal, Montréal, QC, Canada H2X 0A9
| | - Meijiang Liao
- Department of Neurosciences, Research Center of the University of Montréal Hospital Center (CRCHUM), Université de Montréal, Montréal, QC, Canada H2X 0A9
| | - Peter A M de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, 3000 Leuven, Belgium
| | - Constantin Yanicostas
- Inserm, U1141, F-75019 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141, F-75019 Paris, France
| | - Nadia Soussi-Yanicostas
- Inserm, U1141, F-75019 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141, F-75019 Paris, France
| | - Pierre Drapeau
- Department of Neurosciences, Research Center of the University of Montréal Hospital Center (CRCHUM), Université de Montréal, Montréal, QC, Canada H2X 0A9; DanioDesign, Montréal, QC, Canada.
| | - Éric Samarut
- Department of Neurosciences, Research Center of the University of Montréal Hospital Center (CRCHUM), Université de Montréal, Montréal, QC, Canada H2X 0A9; DanioDesign, Montréal, QC, Canada.
| |
Collapse
|
12
|
Roles of autophagy in controlling stem cell identity: a perspective of self-renewal and differentiation. Cell Tissue Res 2018; 374:205-216. [DOI: 10.1007/s00441-018-2829-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/04/2018] [Indexed: 01/14/2023]
|
13
|
Ding YY, Tang X, Cheng XR, Wang FF, Li ZQ, Wu SJ, Kou XR, Shi Y, Le G. Effects of dietary oxidized tyrosine products on insulin secretion via the thyroid hormone T3-regulated TRβ1–Akt–mTOR pathway in the pancreas. RSC Adv 2017. [DOI: 10.1039/c7ra10435a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidized tyrosine products (OTPs) have been detected in commercial foods with high protein content.
Collapse
Affiliation(s)
- Yin-Yi Ding
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Xue Tang
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Xiang-Rong Cheng
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Fang-Fang Wang
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Zhu-Qing Li
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Sha-Ji Wu
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Xing-Ran Kou
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Yonghui Shi
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Guowei Le
- The State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| |
Collapse
|
14
|
Garza-Lombó C, Gonsebatt ME. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function. Front Cell Neurosci 2016; 10:157. [PMID: 27378854 PMCID: PMC4910040 DOI: 10.3389/fncel.2016.00157] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/30/2016] [Indexed: 01/14/2023] Open
Abstract
The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México México
| | - María E Gonsebatt
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México México
| |
Collapse
|
15
|
Sawano E, Iwatani K, Tominaga-Yoshino K, Ogura A, Tashiro T. Reduction in NPY-positive neurons and dysregulation of excitability in young senescence-accelerated mouse prone 8 (SAMP8) hippocampus precede the onset of cognitive impairment. J Neurochem 2015; 135:287-300. [PMID: 26250996 DOI: 10.1111/jnc.13274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/16/2015] [Accepted: 07/28/2015] [Indexed: 12/16/2023]
Abstract
The senescence-accelerated mouse prone 8 (SAMP8) strain is considered a neurodegeneration model showing age-related cognitive deficits with little physical impairment. Young SAMP8 mice, however, exhibit signs of disturbances in development such as marked hyperactivity and reduced anxiety well before the onset of cognitive impairment. As the key enzyme in local regulation of thyroid hormone (TH) signaling, type 2 deiodinase, was significantly reduced in the SAMP8 hippocampus relative to that of the normally aging SAM-resistant 1 (SAMR1), we used these two strains to compare the development of the hippocampal GABAergic system, which is known to be strongly affected by hypothyroidism. Among GABAergic components, neuronal K+ /Cl- co-transporter 2 was down-regulated in SAMP8 transiently at 2 weeks. Although distribution of total GABAergic neurons was similar in both strains, 22-30% reduction was observed in the neuropeptide Y (NPY)-positive subpopulation of GABAergic neurons in SAMP8. Electrophysiological studies on hippocampal slices obtained at 4 weeks revealed that epileptiform activity, induced by high-frequency stimulation, lasted four times longer in SAMP8 compared with SAMR1, indicating a dysregulation of excitability that may be linked to the behavioral abnormalities of young SAMP8 and to neurodegeneration later on in life. Local attenuation of TH signaling may thus impact the normal development of the GABAergic system.
Collapse
Affiliation(s)
- Erika Sawano
- Department of Chemistry & Biological Science, School of Science & Engineering, Aoyama Gakuin University, Sagamihara, Kanagawa, Japan
| | - Kanako Iwatani
- Department of Chemistry & Biological Science, School of Science & Engineering, Aoyama Gakuin University, Sagamihara, Kanagawa, Japan
| | - Keiko Tominaga-Yoshino
- Department of Neuroscience, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka, Japan
| | - Akihiko Ogura
- Department of Neuroscience, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka, Japan
| | - Tomoko Tashiro
- Department of Chemistry & Biological Science, School of Science & Engineering, Aoyama Gakuin University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
16
|
Watanabe M, Fukuda A. Development and regulation of chloride homeostasis in the central nervous system. Front Cell Neurosci 2015; 9:371. [PMID: 26441542 PMCID: PMC4585146 DOI: 10.3389/fncel.2015.00371] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/04/2015] [Indexed: 12/22/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter of the mature central nervous system (CNS). The developmental switch of GABAergic transmission from excitation to inhibition is induced by changes in Cl− gradients, which are generated by cation-Cl− co-transporters. An accumulation of Cl− by the Na+-K+-2Cl− co-transporter (NKCC1) increases the intracellular Cl− concentration ([Cl−]i) such that GABA depolarizes neuronal precursors and immature neurons. The subsequent ontogenetic switch, i.e., upregulation of the Cl−-extruder KCC2, which is a neuron-specific K+-Cl− co-transporter, with or without downregulation of NKCC1, results in low [Cl−]i levels and the hyperpolarizing action of GABA in mature neurons. Development of Cl− homeostasis depends on developmental changes in NKCC1 and KCC2 expression. Generally, developmental shifts (decreases) in [Cl−]i parallel the maturation of the nervous system, e.g., early in the spinal cord, hypothalamus and thalamus, followed by the limbic system, and last in the neocortex. There are several regulators of KCC2 and/or NKCC1 expression, including brain-derived neurotrophic factor (BDNF), insulin-like growth factor (IGF), and cystic fibrosis transmembrane conductance regulator (CFTR). Therefore, regionally different expression of these regulators may also contribute to the regional developmental shifts of Cl− homeostasis. KCC2 and NKCC1 functions are also regulated by phosphorylation by enzymes such as PKC, Src-family tyrosine kinases, and WNK1–4 and their downstream effectors STE20/SPS1-related proline/alanine-rich kinase (SPAK)-oxidative stress responsive kinase-1 (OSR1). In addition, activation of these kinases is modulated by humoral factors such as estrogen and taurine. Because these transporters use the electrochemical driving force of Na+ and K+ ions, topographical interaction with the Na+-K+ ATPase and its modulators such as creatine kinase (CK) should modulate functions of Cl− transporters. Therefore, regional developmental regulation of these regulators and modulators of Cl− transporters may also play a pivotal role in the development of Cl− homeostasis.
Collapse
Affiliation(s)
- Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Japan
| |
Collapse
|
17
|
Baltz T, Voigt T. Interaction of electrically evoked activity with intrinsic dynamics of cultured cortical networks with and without functional fast GABAergic synaptic transmission. Front Cell Neurosci 2015; 9:272. [PMID: 26236196 PMCID: PMC4505148 DOI: 10.3389/fncel.2015.00272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/02/2015] [Indexed: 11/23/2022] Open
Abstract
The modulation of neuronal activity by means of electrical stimulation is a successful therapeutic approach for patients suffering from a variety of central nervous system disorders. Prototypic networks formed by cultured cortical neurons represent an important model system to gain general insights in the input–output relationships of neuronal tissue. These networks undergo a multitude of developmental changes during their maturation, such as the excitatory–inhibitory shift of the neurotransmitter GABA. Very few studies have addressed how the output properties to a given stimulus change with ongoing development. Here, we investigate input–output relationships of cultured cortical networks by probing cultures with and without functional GABAAergic synaptic transmission with a set of stimulation paradigms at various stages of maturation. On the cellular level, low stimulation rates (<15 Hz) led to reliable neuronal responses; higher rates were increasingly ineffective. Similarly, on the network level, lowest stimulation rates (<0.1 Hz) lead to maximal output rates at all ages, indicating a network wide refractory period after each stimulus. In cultures aged 3 weeks and older, a gradual recovery of the network excitability within tens of milliseconds was in contrast to an abrupt recovery after about 5 s in cultures with absent GABAAergic synaptic transmission. In these GABA deficient cultures evoked responses were prolonged and had multiple discharges. Furthermore, the network excitability changed periodically, with a very slow spontaneous change of the overall network activity in the minute range, which was not observed in cultures with absent GABAAergic synaptic transmission. The electrically evoked activity of cultured cortical networks, therefore, is governed by at least two potentially interacting mechanisms: A refractory period in the order of a few seconds and a very slow GABA dependent oscillation of the network excitability.
Collapse
Affiliation(s)
- Thomas Baltz
- Institut für Physiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg Germany
| | - Thomas Voigt
- Institut für Physiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg Germany ; Center for Behavioral Brain Sciences, Magdeburg Germany
| |
Collapse
|
18
|
Navarro D, Alvarado M, Navarrete F, Giner M, Obregon MJ, Manzanares J, Berbel P. Gestational and early postnatal hypothyroidism alters VGluT1 and VGAT bouton distribution in the neocortex and hippocampus, and behavior in rats. Front Neuroanat 2015; 9:9. [PMID: 25741243 PMCID: PMC4330898 DOI: 10.3389/fnana.2015.00009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/17/2015] [Indexed: 12/20/2022] Open
Abstract
Thyroid hormones are fundamental for the expression of genes involved in the development of the CNS and their deficiency is associated with a wide spectrum of neurological diseases including mental retardation, attention deficit-hyperactivity disorder and autism spectrum disorders. We examined in rat whether developmental and early postnatal hypothyroidism affects the distribution of vesicular glutamate transporter-1 (VGluT1; glutamatergic) and vesicular inhibitory amino acid transporter (VGAT; GABAergic) immunoreactive (ir) boutons in the hippocampus and somatosensory cortex, and the behavior of the pups. Hypothyroidism was induced by adding 0.02% methimazole (MMI) and 1% KClO4 to the drinking water starting at embryonic day 10 (E10; developmental hypothyroidism) and E21 (early postnatal hypothyroidism) until day of sacrifice at postnatal day 50. Behavior was studied using the acoustic prepulse inhibition (somatosensory attention) and the elevated plus-maze (anxiety-like assessment) tests. The distribution, density and size of VGluT1-ir and VGAT-ir boutons in the hippocampus and somatosensory cortex was abnormal in MMI pups and these changes correlate with behavioral changes, as prepulse inhibition of the startle response amplitude was reduced, and the percentage of time spent in open arms increased. In conclusion, both developmental and early postnatal hypothyroidism significantly decreases the ratio of GABAergic to glutamatergic boutons in dentate gyrus leading to an abnormal flow of information to the hippocampus and infragranular layers of the somatosensory cortex, and alter behavior in rats. Our data show cytoarchitectonic alterations in the basic excitatory hippocampal loop, and in local inhibitory circuits of the somatosensory cortex and hippocampus that might contribute to the delayed neurocognitive outcome observed in thyroid hormone deficient children born in iodine deficient areas, or suffering from congenital hypothyroidism.
Collapse
Affiliation(s)
- Daniela Navarro
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| | - Mayvi Alvarado
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
- Instituto de Neuroetología, Universidad VeracruzanaXalapa, Veracruz, México
| | - Francisco Navarrete
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández and Consejo Superior de Investigaciones CientíficasAlicante, Spain
| | - Manuel Giner
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| | - Maria Jesus Obregon
- Instituto de investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de MadridMadrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández and Consejo Superior de Investigaciones CientíficasAlicante, Spain
| | - Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| |
Collapse
|
19
|
Oyanagi K, Negishi T, Tashiro T. Action of thyroxine on the survival and neurite maintenance of cerebellar granule neurons in culture. J Neurosci Res 2014; 93:592-603. [PMID: 25447738 DOI: 10.1002/jnr.23519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/27/2014] [Accepted: 10/17/2014] [Indexed: 01/28/2023]
Abstract
Developmental hypothyroidism causes severe impairments in the cerebellum. To understand the role of thyroid hormones (THs) in cerebellar development, we examined the effect of three different THs, thyroxine (T4), 3,5,3'-triidothyronine (T3), and 3,3',5'-triiodothyronine (reverse T3; rT3), on the survival and morphology of cerebellar granule neurons (CGNs) in culture and found novel actions specific to T4. Rat CGNs obtained at postnatal day 6 were first cultured for 2 days in serum-containing medium with 25 mM K(+) (K25), then switched to serum-free medium with physiological 5 mM K(+) (K5) or with K25 and cultured for an additional 2 or 4 days. CGNs underwent apoptosis in K5 but survived in K25. Addition of T4 at concentrations of 100-200 nM but not T3 or rT3 rescued CGNs from cell death in K5 in a dose-dependent manner. Furthermore, 200 nM T4 was also effective in maintaining the neurites of CGNs in K5. In K5, T4 suppressed tau phosphorylation at two developmentally regulated sites as well as phosphorylation of c-jun N-terminal kinase (JNK) necessary for its activation and localization to axons. These results suggest that, during cerebellar development, T4 exerts its activity in cell survival and neurite maintenance in a manner distinct from the other two thyroid hormones through regulating the activity and localization of JNK.
Collapse
Affiliation(s)
- Koshi Oyanagi
- Department of Chemistry and Biological Science, School of Science and Engineering, Aoyama Gakuin University, Kanagawa, Japan
| | | | | |
Collapse
|
20
|
Medina I, Friedel P, Rivera C, Kahle KT, Kourdougli N, Uvarov P, Pellegrino C. Current view on the functional regulation of the neuronal K(+)-Cl(-) cotransporter KCC2. Front Cell Neurosci 2014; 8:27. [PMID: 24567703 PMCID: PMC3915100 DOI: 10.3389/fncel.2014.00027] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/18/2014] [Indexed: 12/22/2022] Open
Abstract
In the mammalian central nervous system (CNS), the inhibitory strength of chloride (Cl(-))-permeable GABAA and glycine receptors (GABAAR and GlyR) depends on the intracellular Cl(-) concentration ([Cl(-)]i). Lowering [Cl(-)]i enhances inhibition, whereas raising [Cl(-)]i facilitates neuronal activity. A neuron's basal level of [Cl(-)]i, as well as its Cl(-) extrusion capacity, is critically dependent on the activity of the electroneutral K(+)-Cl(-) cotransporter KCC2, a member of the SLC12 cation-Cl(-) cotransporter (CCC) family. KCC2 deficiency compromises neuronal migration, formation and the maturation of GABAergic and glutamatergic synaptic connections, and results in network hyperexcitability and seizure activity. Several neurological disorders including multiple epilepsy subtypes, neuropathic pain, and schizophrenia, as well as various insults such as trauma and ischemia, are associated with significant decreases in the Cl(-) extrusion capacity of KCC2 that result in increases of [Cl(-)]i and the subsequent hyperexcitability of neuronal networks. Accordingly, identifying the key upstream molecular mediators governing the functional regulation of KCC2, and modifying these signaling pathways with small molecules, might constitute a novel neurotherapeutic strategy for multiple diseases. Here, we discuss recent advances in the understanding of the mechanisms regulating KCC2 activity, and of the role these mechanisms play in neuronal Cl(-) homeostasis and GABAergic neurotransmission. As KCC2 mediates electroneutral transport, the experimental recording of its activity constitutes an important research challenge; we therefore also, provide an overview of the different methodological approaches utilized to monitor function of KCC2 in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Igor Medina
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| | - Perrine Friedel
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| | - Claudio Rivera
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
- Neuroscience Center, University of HelsinkiHelsinki, Finland
| | - Kristopher T. Kahle
- Department of Cardiology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's HospitalBoston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical SchoolBoston, MA, USA
| | - Nazim Kourdougli
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| | - Pavel Uvarov
- Institute of Biomedicine, Anatomy, University of HelsinkiHelsinki, Finland
| | - Christophe Pellegrino
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| |
Collapse
|