1
|
Nutt K, Dombros-Ryan Z, Birea R, Franks EV, Eastham S, Godwin M, Adams CF, Chari DM, Jenkins SI. Electrospun Polycaprolactone (PCL) Nanofibers Induce Elongation and Alignment of Co-Cultured Primary Cortical Astrocytes and Neurons. MICROMACHINES 2025; 16:256. [PMID: 40141867 PMCID: PMC11946388 DOI: 10.3390/mi16030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025]
Abstract
Neuromimetic in vitro models, simulating in vivo architecture/organization, are urgently needed to reduce experimental reliance on live animals. Our group recently reported a novel brain tissue derivation protocol, simultaneously deriving all major cortical cell types (including immune cells) in a facile protocol, generating a network of neurons in a single growth medium, which was interfaced with nanomaterials. This represents a significant advance, as tissue engineers overwhelmingly use diverse methods to derive and combine individual brain cells for materials-interfacing. However, this multicellular model lacked cellular directionality/structural organization (unlike the highly organized cortical circuits in vivo). Synthetic nanofiber constructs are of high value in tissue engineering, providing directional cues for cells. Most neuro-nanofiber studies employ simple monocultures of astrocytes/neurons and commonly use peripheral neurons rather than central nervous system populations. Here, we have interfaced our complex brain model (neurons/astrocytes derived simultaneously) with randomly oriented or aligned polycaprolactone (PCL) fiber meshes. Both cell types showed targeted extension along aligned fibers versus coverslips or random fibers. A new analysis method developed in-house demonstrated that peak orientations for astrocytes and neurons correlated with aligned nanofibers. Our data support the concept that nanofiber scaffolds can achieve organized growth of mixed cortical neural cell populations, mimicking neural architecture.
Collapse
Affiliation(s)
- Kayleigh Nutt
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- School of Life Sciences, Keele University, Keele ST5 5BG, UK
| | - Zoe Dombros-Ryan
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- School of Life Sciences, Keele University, Keele ST5 5BG, UK
| | - Ruxandra Birea
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- School of Life Sciences, Keele University, Keele ST5 5BG, UK
| | - Emily Victoria Franks
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- School of Medicine, Keele University, Keele ST5 5BG, UK
| | - Sarah Eastham
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0NW, UK
| | - Morgan Godwin
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- School of Life Sciences, Keele University, Keele ST5 5BG, UK
| | - Chris F. Adams
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- School of Life Sciences, Keele University, Keele ST5 5BG, UK
| | - Divya Maitreyi Chari
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- School of Medicine, Keele University, Keele ST5 5BG, UK
| | - Stuart Iain Jenkins
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- School of Medicine, Keele University, Keele ST5 5BG, UK
| |
Collapse
|
2
|
Buentello DC, Garcia-Corral M, Trujillo-de Santiago G, Alvarez MM. Neuron(s)-on-a-Chip: A Review of the Design and Use of Microfluidic Systems for Neural Tissue Culture. IEEE Rev Biomed Eng 2024; 17:243-263. [PMID: 36301779 DOI: 10.1109/rbme.2022.3217486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuron-on-chip (NoC) systems-microfluidic devices in which neurons are cultured-have become a promising alternative to replace or minimize the use of animal models and have greatly facilitated in vitro research. Here, we review and discuss current developments in neuron-on-chip platforms, with a particular emphasis on existing biological models, culturing techniques, biomaterials, and topologies. We also discuss how the architecture, flow, and gradients affect neuronal growth, differentiation, and development. Finally, we discuss some of the most recent applications of NoCs in fundamental research (i.e., studies on the effects of electrical, mechanical/topological, or chemical stimuli) and in disease modeling.
Collapse
|
3
|
Saeidi S, Kainz MP, Dalbosco M, Terzano M, Holzapfel GA. Histology-informed multiscale modeling of human brain white matter. Sci Rep 2023; 13:19641. [PMID: 37949949 PMCID: PMC10638412 DOI: 10.1038/s41598-023-46600-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
In this study, we propose a novel micromechanical model for the brain white matter, which is described as a heterogeneous material with a complex network of axon fibers embedded in a soft ground matrix. We developed this model in the framework of RVE-based multiscale theories in combination with the finite element method and the embedded element technique for embedding the fibers. Microstructural features such as axon diameter, orientation and tortuosity are incorporated into the model through distributions derived from histological data. The constitutive law of both the fibers and the matrix is described by isotropic one-term Ogden functions. The hyperelastic response of the tissue is derived by homogenizing the microscopic stress fields with multiscale boundary conditions to ensure kinematic compatibility. The macroscale homogenized stress is employed in an inverse parameter identification procedure to determine the hyperelastic constants of axons and ground matrix, based on experiments on human corpus callosum. Our results demonstrate the fundamental effect of axon tortuosity on the mechanical behavior of the brain's white matter. By combining histological information with the multiscale theory, the proposed framework can substantially contribute to the understanding of mechanotransduction phenomena, shed light on the biomechanics of a healthy brain, and potentially provide insights into neurodegenerative processes.
Collapse
Affiliation(s)
- Saeideh Saeidi
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Manuel P Kainz
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Misael Dalbosco
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- GRANTE - Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Michele Terzano
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria.
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
4
|
Amirifar L, Shamloo A, Nasiri R, de Barros NR, Wang ZZ, Unluturk BD, Libanori A, Ievglevskyi O, Diltemiz SE, Sances S, Balasingham I, Seidlits SK, Ashammakhi N. Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease. Biomaterials 2022; 285:121531. [DOI: 10.1016/j.biomaterials.2022.121531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
|
5
|
Perez-Flores MC, Verschooten E, Lee JH, Kim HJ, Joris PX, Yamoah EN. Intrinsic mechanical sensitivity of mammalian auditory neurons as a contributor to sound-driven neural activity. eLife 2022; 11:74948. [PMID: 35266451 PMCID: PMC8942473 DOI: 10.7554/elife.74948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
Mechanosensation – by which mechanical stimuli are converted into a neuronal signal – is the basis for the sensory systems of hearing, balance, and touch. Mechanosensation is unmatched in speed and its diverse range of sensitivities, reaching its highest temporal limits with the sense of hearing; however, hair cells (HCs) and the auditory nerve (AN) serve as obligatory bottlenecks for sounds to engage the brain. Like other sensory neurons, auditory neurons use the canonical pathway for neurotransmission and millisecond-duration action potentials (APs). How the auditory system utilizes the relatively slow transmission mechanisms to achieve ultrafast speed, and high audio-frequency hearing remains an enigma. Here, we address this paradox and report that the mouse, and chinchilla, AN are mechanically sensitive, and minute mechanical displacement profoundly affects its response properties. Sound-mimicking sinusoidal mechanical and electrical current stimuli affect phase-locked responses. In a phase-dependent manner, the two stimuli can also evoke suppressive responses. We propose that mechanical sensitivity interacts with synaptic responses to shape responses in the AN, including frequency tuning and temporal phase locking. Combining neurotransmission and mechanical sensation to control spike patterns gives the mammalian AN a secondary receptor role, an emerging theme in primary neuronal functions.
Collapse
Affiliation(s)
| | - Eric Verschooten
- Laboratory of Auditory Neurophysiology, University of Leuven, Leuven, Belgium
| | | | | | - Philip X Joris
- Laboratory of Auditory Neurophysiology, University of Leuven, Leuven, Belgium
| | | |
Collapse
|
6
|
Wang DY, Melero C, Albaraky A, Atherton P, Jansen KA, Dimitracopoulos A, Dajas-Bailador F, Reid A, Franze K, Ballestrem C. Vinculin is required for neuronal mechanosensing but not for axon outgrowth. Exp Cell Res 2021; 407:112805. [PMID: 34487728 DOI: 10.1016/j.yexcr.2021.112805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/19/2021] [Accepted: 08/21/2021] [Indexed: 11/29/2022]
Abstract
Integrin receptors are transmembrane proteins that bind to the extracellular matrix (ECM). In most animal cell types integrins cluster together with adaptor proteins at focal adhesions that sense and respond to external mechanical signals. In the central nervous system (CNS), ECM proteins are sparsely distributed, the tissue is comparatively soft and neurons do not form focal adhesions. Thus, how neurons sense tissue stiffness is currently poorly understood. Here, we found that integrins and the integrin-associated proteins talin and focal adhesion kinase (FAK) are required for the outgrowth of neuronal processes. Vinculin, however, whilst not required for neurite outgrowth was a key regulator of integrin-mediated mechanosensing of neurons. During growth, growth cones of axons of CNS derived cells exerted dynamic stresses of around 10-12 Pa on their environment, and axons grew significantly longer on soft (0.4 kPa) compared to stiff (8 kPa) substrates. Depletion of vinculin blocked this ability of growth cones to distinguish between soft and stiff substrates. These data suggest that vinculin in neurons acts as a key mechanosensor, involved in the regulation of growth cone motility.
Collapse
Affiliation(s)
- De-Yao Wang
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Cristina Melero
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Ashwaq Albaraky
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul Atherton
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK; Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre. Manchester, M13 9PT, UK
| | - Karin A Jansen
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Andrea Dimitracopoulos
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | | | - Adam Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre. Manchester, M13 9PT, UK; Department of Plastic Surgery & Nurns, Wythenshawe Hospital, Manchester University NHS Foundation Trust. Manchester Academic Health Science Centre, Manchester, M23 9LT, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK; Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nuremberg, 91052, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany
| | - Christoph Ballestrem
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
7
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
8
|
Zhao Y, Demirci U, Chen Y, Chen P. Multiscale brain research on a microfluidic chip. LAB ON A CHIP 2020; 20:1531-1543. [PMID: 32150176 DOI: 10.1039/c9lc01010f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One major challenge in current brain research is generating an integrative understanding of the brain's functions and disorders from its multiscale neuronal architectures and connectivity. Thus, innovative neurotechnology tools are urgently required for deciphering the multiscale functional and structural organizations of the brain at hierarchical scales from the molecular to the organismal level by multiple brain research initiatives launched by the European Union, United States, Australia, Canada, China, Korea, and Japan. To meet this demand, microfluidic chips (μFCs) have rapidly evolved as a trans-scale neurotechnological toolset to enable multiscale studies of the brain due to their unique advantages in flexible microstructure design, multifunctional integration, accurate microenvironment control, and capacity for automatic sample processing. Here, we review the recent progress in applying innovative μFC-based neuro-technologies to promote multiscale brain research and uniquely focus on representative applications of μFCs to address challenges in brain research at each hierarchical level. We discuss the current trend of combinational applications of μFCs with other neuro- and biotechnologies, including optogenetics, brain organoids, and 3D bioprinting, for better multiscale brain research. In addition, we offer our insights into the existing outstanding questions at each hierarchical level of brain research that could potentially be addressed by advancing microfluidic techniques. This review will serve as a timely guide for bioengineers and neuroscientists to develop and apply μFC-based neuro-technologies for promoting basic and translational brain research.
Collapse
Affiliation(s)
- Yanan Zhao
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, 115 Donghu Road, Wuhan 430071, China.
| | | | | | | |
Collapse
|
9
|
Blasiak A, Khong J, Kee T. CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence. SLAS Technol 2019; 25:95-105. [PMID: 31771394 DOI: 10.1177/2472630319890316] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The clinical team attending to a patient upon a diagnosis is faced with two main questions: what treatment, and at what dose? Clinical trials' results provide the basis for guidance and support for official protocols that clinicians use to base their decisions upon. However, individuals rarely demonstrate the reported response from relevant clinical trials, often the average from a group representing a population or subpopulation. The decision complexity increases with combination treatments where drugs administered together can interact with each other, which is often the case. Additionally, the individual's response to the treatment varies over time with the changes in his or her condition, whether via the indication or physiology. In practice, the drug and the dose selection depend greatly on the medical protocol of the healthcare provider and the medical team's experience. As such, the results are inherently varied and often suboptimal. Big data approaches have emerged as an excellent decision-making support tool, but their application is limited by multiple challenges, the main one being the availability of sufficiently big datasets with good quality, representative information. An alternative approach-phenotypic personalized medicine (PPM)-finds an appropriate drug combination (quadratic phenotypic optimization platform [QPOP]) and an appropriate dosing strategy over time (CURATE.AI) based on small data collected exclusively from the treated individual. PPM-based approaches have demonstrated superior results over the current standard of care. The side effects are limited while the desired output is maximized, which directly translates into improving the length and quality of individuals' lives.
Collapse
Affiliation(s)
- Agata Blasiak
- Department of Bioengineering, National University of Singapore, Singapore.,The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| | - Jeffrey Khong
- Department of Bioengineering, National University of Singapore, Singapore.,The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| | - Theodore Kee
- Department of Bioengineering, National University of Singapore, Singapore.,The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| |
Collapse
|
10
|
Blasiak A, Guerin THM, Teh DBL, Yang IH, Lahiri A, Thakor NV. Fibro-Neuronal Guidance on Common, 3D-Printed Textured Substrates. IEEE Trans Nanobioscience 2019; 18:226-229. [PMID: 30892222 DOI: 10.1109/tnb.2019.2905469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ability to direct neuronal growth not only carries great potential for treating neural conditions-for example, bridging traumatically shattered connections-but would also be an exquisite tool for bionic applications that require a physical interface between neurons and electronics. A testing platform is needed to better understand axonal guidance in the context of a specific in vivo application. Versatility of 3D printing technology allows tailoring to researcher needs, both in vitro and in vivo. In this paper, we establish a fibro-neuronal co-culture inspired by our neural interface research and demonstrate axon alignment on a textured substrate fabricated with a common, versatile 3D-printing set-up.
Collapse
|
11
|
Baranes K, Hibsh D, Cohen S, Yamin T, Efroni S, Sharoni A, Shefi O. Comparing Transcriptome Profiles of Neurons Interfacing Adjacent Cells and Nanopatterned Substrates Reveals Fundamental Neuronal Interactions. NANO LETTERS 2019; 19:1451-1459. [PMID: 30704243 DOI: 10.1021/acs.nanolett.8b03879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Developing neuronal axons are directed by chemical and physical signals toward a myriad of target cells. According to current dogma, the resulting network architecture is critically shaped by electrical interconnections, the synapses; however, key mechanisms translating neuronal interactions into neuronal growth behavior during network formation are still unresolved. To elucidate these mechanisms, we examined neurons interfacing nanopatterned substrates and compared them to natural interneuron interactions. We grew similar neuronal populations under three connectivity conditions, (1) the neurons are isolated, (2) the neurons are interconnected, and (3) the neurons are connected only to artificial substrates, then quantitatively compared both the cell morphologies and the transcriptome-expression profiles. Our analysis shows that whereas axon-guidance signaling pathways in isolated neurons are predominant, in isolated neurons interfacing nanotopography, these pathways are downregulated, similar to the interconnected neurons. Moreover, in nanotopography, interfacing neuron genes related to synaptogenesis and synaptic regulation are highly expressed, that is, again resembling the behavior of interconnected neurons. These molecular findings demonstrate that interactions with nanotopographies, although not leading to electrical coupling, play a comparable functional role in two major routes, neuronal guidance and network formation, with high relevance to the design of regenerative interfaces.
Collapse
Affiliation(s)
- Koby Baranes
- Faculty of Engineering , Bar-Ilan University , Ramat-Gan 5290002 , Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Dror Hibsh
- Bar-Ilan Institute of Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
- Faculty of Life Sciences , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Sharon Cohen
- Faculty of Engineering , Bar-Ilan University , Ramat-Gan 5290002 , Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
- Gonda Multidisciplinary Brain Research Center , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Tony Yamin
- Bar-Ilan Institute of Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
- Department of Physics , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Sol Efroni
- Bar-Ilan Institute of Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
- Faculty of Life Sciences , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Amos Sharoni
- Bar-Ilan Institute of Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
- Department of Physics , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Orit Shefi
- Faculty of Engineering , Bar-Ilan University , Ramat-Gan 5290002 , Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| |
Collapse
|
12
|
Subcellular Optogenetic Stimulation Platform for Studying Activity-Dependent Axon Myelination In Vitro. Methods Mol Biol 2019; 1791:207-224. [PMID: 30006712 DOI: 10.1007/978-1-4939-7862-5_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Activity-dependent myelination modulates neuron conduction velocity and as such it is essential for a correct wiring of a whole nervous system. Increasing myelination through inducing neuron activity has been proposed as a treatment strategy for demyelination diseases. Yet, the mechanisms and the effects of activity-dependent myelination remain elusive-new tools are needed. In this chapter, we describe a novel compartmentalized device integrated with an optogenetic stimulator for studying activity-dependent myelination in vitro. The platform can be modified to include multiple cell types, stimulation modes, and experimental readouts to answer a specific research question. This versatility combined with a precise control over spatial extent of the stimulation and the stimulation pattern make the proposed platform a valuable tool for molecular myelination studies.
Collapse
|
13
|
Kilinc D. The Emerging Role of Mechanics in Synapse Formation and Plasticity. Front Cell Neurosci 2018; 12:483. [PMID: 30574071 PMCID: PMC6291423 DOI: 10.3389/fncel.2018.00483] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
The regulation of synaptic strength forms the basis of learning and memory, and is a key factor in understanding neuropathological processes that lead to cognitive decline and dementia. While the mechanical aspects of neuronal development, particularly during axon growth and guidance, have been extensively studied, relatively little is known about the mechanical aspects of synapse formation and plasticity. It is established that a filamentous actin network with complex spatiotemporal behavior controls the dendritic spine shape and size, which is thought to be crucial for activity-dependent synapse plasticity. Accordingly, a number of actin binding proteins have been identified as regulators of synapse plasticity. On the other hand, a number of cell adhesion molecules (CAMs) are found in synapses, some of which form transsynaptic bonds to align the presynaptic active zone (PAZ) with the postsynaptic density (PSD). Considering that these CAMs are key components of cellular mechanotransduction, two critical questions emerge: (i) are synapses mechanically regulated? and (ii) does disrupting the transsynaptic force balance lead to (or exacerbate) synaptic failure? In this mini review article, I will highlight the mechanical aspects of synaptic structures-focusing mainly on cytoskeletal dynamics and CAMs-and discuss potential mechanoregulation of synapses and its relevance to neurodegenerative diseases.
Collapse
Affiliation(s)
- Devrim Kilinc
- INSERM U1167, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
14
|
Johnson CDL, Zuidema JM, Kearns KR, Maguire AB, Desmond GP, Thompson DM, Gilbert RJ. The Effect of Electrospun Fiber Diameter on Astrocyte-Mediated Neurite Guidance and Protection. ACS APPLIED BIO MATERIALS 2018; 2:104-117. [PMID: 31061987 DOI: 10.1021/acsabm.8b00432] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The topography of electrospun fiber scaffolds modifies astrocytes toward in vivo-like morphologies and behaviors. However, little is known about how electrospun fiber diameter influences astrocyte behavior. In this work, aligned fibers with two distinct nanoscale fiber diameters (808 and 386 nm) were prepared, and the astrocyte response was measured over time. Astrocytes on the large diameter fibers showed significantly increased elongation as early as 2 h after seeding and remained significantly more elongated for up to 4 days compared to those on small diameter fibers. Astrocytes extending along larger diameter fibers were better equipped to support long neurite outgrowth from dorsal root ganglia neurons, and neurite outgrowth along these astrocytes was less branched than outgrowth along astrocytes cultured on small diameter fibers. The differences in astrocyte shape observed on the small or large diameter fibers did not translate into differences in GLT-1, GFAP, or GLAST protein expression. Thus, different fiber diameters were unable to influence astrocyte protein expression uniquely. Nevertheless, astrocytes cultured in either small or large fibers significantly increased their expression of GLT-1 compared to astrocytes cultured on nonfiber (film) controls. Fibrous-induced increases in astrocyte GLT-1 expression protected astrocyte/neuron cocultures from toxicity generated by high extracellular glutamate. Alternatively, astrocytes/neurons cultured on films were less able to protect these cells from culture conditions consisting of high glutamate levels. Biomaterials, such as the fibrous materials presented here, may help stimulate astrocytes to increase GLT-1 expression and uptake more glutamate, since astrocytes are less likely to uptake glutamate in neurodegenerative pathologies or following central nervous system injury.
Collapse
Affiliation(s)
- Christopher D L Johnson
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States
| | - Jonathan M Zuidema
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Kathryn R Kearns
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States
| | - Alianna B Maguire
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States
| | - Gregory P Desmond
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States
| | - Deanna M Thompson
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States
| | - Ryan J Gilbert
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States
| |
Collapse
|
15
|
Wang J, Tian L, Chen N, Ramakrishna S, Mo X. The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:715-726. [DOI: 10.1016/j.msec.2018.06.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/27/2018] [Accepted: 06/11/2018] [Indexed: 11/16/2022]
|
16
|
Gahl TJ, Kunze A. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function. Front Neurosci 2018; 12:299. [PMID: 29867315 PMCID: PMC5962660 DOI: 10.3389/fnins.2018.00299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices.
Collapse
Affiliation(s)
| | - Anja Kunze
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
17
|
Verstraelen P, Detrez JR, Verschuuren M, Kuijlaars J, Nuydens R, Timmermans JP, De Vos WH. Dysregulation of Microtubule Stability Impairs Morphofunctional Connectivity in Primary Neuronal Networks. Front Cell Neurosci 2017; 11:173. [PMID: 28690500 PMCID: PMC5480095 DOI: 10.3389/fncel.2017.00173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022] Open
Abstract
Functionally related neurons assemble into connected networks that process and transmit electrochemical information. To do this in a coordinated manner, the number and strength of synaptic connections is tightly regulated. Synapse function relies on the microtubule (MT) cytoskeleton, the dynamics of which are in turn controlled by a plethora of MT-associated proteins, including the MT-stabilizing protein Tau. Although mutations in the Tau-encoding MAPT gene underlie a set of neurodegenerative disorders, termed tauopathies, the exact contribution of MT dynamics and the perturbation thereof to neuronal network connectivity has not yet been scrutinized. Therefore, we investigated the impact of targeted perturbations of MT stability on morphological (e.g., neurite- and synapse density) and functional (e.g., synchronous calcium bursting) correlates of connectivity in networks of primary hippocampal neurons. We found that treatment with MT-stabilizing or -destabilizing compounds impaired morphofunctional connectivity in a reversible manner. We also discovered that overexpression of MAPT induced significant connectivity defects, which were accompanied by alterations in MT dynamics and increased resistance to pharmacological MT depolymerization. Overexpression of a MAPT variant harboring the P301L point mutation in the MT-binding domain did far less, directly linking neuronal connectivity with Tau's MT binding affinity. Our results show that MT stability is a vulnerable node in tauopathies and that its precise pharmacological tuning may positively affect neuronal network connectivity. However, a critical balance in MT turnover causes it to be a difficult therapeutic target with a narrow operating window.
Collapse
Affiliation(s)
- Peter Verstraelen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
| | - Jan R. Detrez
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
| | | | - Rony Nuydens
- Janssen Research and Development, Division of Janssen Pharmaceutica N.V.Beerse, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of AntwerpAntwerp, Belgium
- Department of Molecular Biotechnology, University of GhentGhent, Belgium
| |
Collapse
|
18
|
Tilley SK, Joseph RM, Kuban KCK, Dammann OU, O’Shea TM, Fry RC. Genomic biomarkers of prenatal intrauterine inflammation in umbilical cord tissue predict later life neurological outcomes. PLoS One 2017; 12:e0176953. [PMID: 28493900 PMCID: PMC5426658 DOI: 10.1371/journal.pone.0176953] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Preterm birth is a major risk factor for neurodevelopmental delays and disorders. This study aimed to identify genomic biomarkers of intrauterine inflammation in umbilical cord tissue in preterm neonates that predict cognitive impairment at 10 years of age. STUDY DESIGN Genome-wide messenger RNA (mRNA) levels from umbilical cord tissue were obtained from 43 neonates born before 28 weeks of gestation. Genes that were differentially expressed across four indicators of intrauterine inflammation were identified and their functions examined. Exact logistic regression was used to test whether expression levels in umbilical cord tissue predicted neurocognitive function at 10 years of age. RESULTS Placental indicators of inflammation were associated with changes in the mRNA expression of 445 genes in umbilical cord tissue. Transcripts with decreased expression showed significant enrichment for biological signaling processes related to neuronal development and growth. The altered expression of six genes was found to predict neurocognitive impairment when children were 10 years old These genes include two that encode for proteins involved in neuronal development. CONCLUSION Prenatal intrauterine inflammation is associated with altered gene expression in umbilical cord tissue. A set of six of the differentially expressed genes predict cognitive impairment later in life, suggesting that the fetal environment is associated with significant adverse effects on neurodevelopment that persist into later childhood.
Collapse
Affiliation(s)
- Sloane K. Tilley
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Robert M. Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Karl C. K. Kuban
- Department of Pediatrics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Olaf U. Dammann
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - T. Michael O’Shea
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
19
|
Xia H, Sun X, Liu D, Zhou Y, Zhong D. Oriented growth of rat Schwann cells on aligned electrospun poly(methyl methacrylate) nanofibers. J Neurol Sci 2016; 369:88-95. [PMID: 27653871 DOI: 10.1016/j.jns.2016.07.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/11/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022]
Abstract
Transplanted Schwann cells have the potential to serve as a support for regenerating neurites after spinal cord injury. However, implanted Schwann cells die off rapidly once transplanted partly owing to the absence of a proper matrix support, with a glia scar and a cavity being present instead at the injury site. For this report, we evaluated aligned electrospun poly(methyl methacrylate) nanofibers as a Schwann cell-loading scaffold in vitro. By monitoring the fluorescence of green fluorescence protein-containing Schwann cells cultured on nanofibers, we found that aligned nanofibers provided better support for the cells than did non-aligned nanofibers. The cells elongated along the long axes of the aligned nanofibers and formed longer cell processes than when the substrate was non-aligned nanofibers. By coculturing Schwann cells with dorsal root ganglion neurons, it was also found that Schwann cells and neurites of dorsal root ganglion neurons could share and both elongate along the orientation of aligned nanofibers and thus they had a higher chance of colocalization than cocultured on film and non-aligned fibers, which might be beneficial to the ensuring process of myelination. The results of the study indicate that aligned electrospun nanofibers may serve as a Schwann cell-loading scaffold for future implantation research.
Collapse
Affiliation(s)
- Haijian Xia
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dan Liu
- Department of Pharmacy, Chongqing Zhongshan Hospital, Chongqing 400013, China
| | - Yudong Zhou
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Dong Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
20
|
Tay A, Schweizer FE, Di Carlo D. Micro- and nano-technologies to probe the mechano-biology of the brain. LAB ON A CHIP 2016; 16:1962-1977. [PMID: 27161943 DOI: 10.1039/c6lc00349d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biomechanical forces have been demonstrated to influence a plethora of neuronal functions across scales including gene expression, mechano-sensitive ion channels, neurite outgrowth and folding of the cortices in the brain. However, the detailed roles biomechanical forces may play in brain development and disorders has seen limited study, partly due to a lack of effective methods to probe the mechano-biology of the brain. Current techniques to apply biomechanical forces on neurons often suffer from low throughput and poor spatiotemporal resolution. On the other hand, newly developed micro- and nano-technologies can overcome these aforementioned limitations and offer advantages such as lower cost and possibility of non-invasive control of neuronal circuits. This review compares the range of conventional, micro- and nano-technological techniques that have been developed and how they have been or can be used to understand the effect of biomechanical forces on neuronal development and homeostasis.
Collapse
Affiliation(s)
- Andy Tay
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA and Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
| | - Felix E Schweizer
- Department of Neurobiology, University of California, Los Angeles, CA 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA and California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|