1
|
Reva M, Rössert C, Arnaudon A, Damart T, Mandge D, Tuncel A, Ramaswamy S, Markram H, Van Geit W. A universal workflow for creation, validation, and generalization of detailed neuronal models. PATTERNS (NEW YORK, N.Y.) 2023; 4:100855. [PMID: 38035193 PMCID: PMC10682753 DOI: 10.1016/j.patter.2023.100855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 09/12/2023] [Indexed: 12/02/2023]
Abstract
Detailed single-neuron modeling is widely used to study neuronal functions. While cellular and functional diversity across the mammalian cortex is vast, most of the available computational tools focus on a limited set of specific features characteristic of a single neuron. Here, we present a generalized automated workflow for the creation of robust electrical models and illustrate its performance by building cell models for the rat somatosensory cortex. Each model is based on a 3D morphological reconstruction and a set of ionic mechanisms. We use an evolutionary algorithm to optimize neuronal parameters to match the electrophysiological features extracted from experimental data. Then we validate the optimized models against additional stimuli and assess their generalizability on a population of similar morphologies. Compared to the state-of-the-art canonical models, our models show 5-fold improved generalizability. This versatile approach can be used to build robust models of any neuronal type.
Collapse
Affiliation(s)
- Maria Reva
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Christian Rössert
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Alexis Arnaudon
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Tanguy Damart
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Darshan Mandge
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Anıl Tuncel
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Srikanth Ramaswamy
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
- Laboratory of Neural Microcircuitry (LNMC), Brain Mind Institute, School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Werner Van Geit
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| |
Collapse
|
2
|
Ornelas-Kobayashi R, Gogeascoechea A, Sartori M. Person-Specific Biophysical Modeling of Alpha-Motoneuron Pools Driven by in vivo Decoded Neural Synaptic Input. IEEE Trans Neural Syst Rehabil Eng 2023; 31:1532-1541. [PMID: 37027671 DOI: 10.1109/tnsre.2023.3247873] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Interfacing with alpha-motoneurons (MNs) is key to understand and control motor impairment and neurorehabilitation technologies. Depending on the neurophysiological condition of each individual, MN pools exhibit distinct neuro-anatomical properties and firing behaviors. Hence, the ability to assess subject-specific characteristics of MN pools is essential for unravelling the neural mechanisms and adaptations underlying motor control, both in healthy and impaired individuals. However, measuring in vivo the properties of complete human MN pools remains an open challenge. Therefore, this work proposes a novel approach based on decoding neural discharges from human MNs in vivo for driving the metaheuristic optimization of biophysically realistic MN models. First, we show that this framework provides subject-specific estimates of MN pool properties from the tibialis anterior muscle on five healthy individuals. Second, we propose a methodology to create complete pools of in silico MNs for each subject. Lastly, we show that neural-data driven complete in silico MN pools reproduce in vivo MN firing characteristics and muscle activation profiles during force-tracking tasks involving isometric ankle dorsi-flexion, at different levels of amplitude. This approach can open new avenues for understanding human neuro-mechanics and, particularly, MN pool dynamics, in a person-specific way. Thereby enabling the development of personalized neurorehabilitation and motor restoring technologies.
Collapse
|
3
|
D'Angelo E, Jirsa V. The quest for multiscale brain modeling. Trends Neurosci 2022; 45:777-790. [PMID: 35906100 DOI: 10.1016/j.tins.2022.06.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/20/2022] [Accepted: 06/21/2022] [Indexed: 01/07/2023]
Abstract
Addressing the multiscale organization of the brain, which is fundamental to the dynamic repertoire of the organ, remains challenging. In principle, it should be possible to model neurons and synapses in detail and then connect them into large neuronal assemblies to explain the relationship between microscopic phenomena, large-scale brain functions, and behavior. It is more difficult to infer neuronal functions from ensemble measurements such as those currently obtained with brain activity recordings. In this article we consider theories and strategies for combining bottom-up models, generated from principles of neuronal biophysics, with top-down models based on ensemble representations of network activity and on functional principles. These integrative approaches are hoped to provide effective multiscale simulations in virtual brains and neurorobots, and pave the way to future applications in medicine and information technologies.
Collapse
Affiliation(s)
- Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, and Brain Connectivity Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy.
| | - Viktor Jirsa
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1106, Centre National de la Recherche Scientifique (CNRS), and University of Aix-Marseille, Marseille, France
| |
Collapse
|
4
|
Ladd A, Kim KG, Balewski J, Bouchard K, Ben-Shalom R. Scaling and Benchmarking an Evolutionary Algorithm for Constructing Biophysical Neuronal Models. Front Neuroinform 2022; 16:882552. [PMID: 35784184 PMCID: PMC9248031 DOI: 10.3389/fninf.2022.882552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022] Open
Abstract
Single neuron models are fundamental for computational modeling of the brain's neuronal networks, and understanding how ion channel dynamics mediate neural function. A challenge in defining such models is determining biophysically realistic channel distributions. Here, we present an efficient, highly parallel evolutionary algorithm for developing such models, named NeuroGPU-EA. NeuroGPU-EA uses CPUs and GPUs concurrently to simulate and evaluate neuron membrane potentials with respect to multiple stimuli. We demonstrate a logarithmic cost for scaling the stimuli used in the fitting procedure. NeuroGPU-EA outperforms the typically used CPU based evolutionary algorithm by a factor of 10 on a series of scaling benchmarks. We report observed performance bottlenecks and propose mitigation strategies. Finally, we also discuss the potential of this method for efficient simulation and evaluation of electrophysiological waveforms.
Collapse
Affiliation(s)
- Alexander Ladd
- Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Alexander Ladd
| | - Kyung Geun Kim
- Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States
| | - Jan Balewski
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kristofer Bouchard
- Helen Wills Neuroscience Institute & Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, CA, United States
- Scientific Data Division and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Roy Ben-Shalom
- Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States
- Roy Ben-Shalom
| |
Collapse
|
5
|
Naudin L, Jiménez Laredo JL, Liu Q, Corson N. Systematic generation of biophysically detailed models with generalization capability for non-spiking neurons. PLoS One 2022; 17:e0268380. [PMID: 35560186 PMCID: PMC9106219 DOI: 10.1371/journal.pone.0268380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Unlike spiking neurons which compress continuous inputs into digital signals for transmitting information via action potentials, non-spiking neurons modulate analog signals through graded potential responses. Such neurons have been found in a large variety of nervous tissues in both vertebrate and invertebrate species, and have been proven to play a central role in neuronal information processing. If general and vast efforts have been made for many years to model spiking neurons using conductance-based models (CBMs), very few methods have been developed for non-spiking neurons. When a CBM is built to characterize the neuron behavior, it should be endowed with generalization capabilities (i.e. the ability to predict acceptable neuronal responses to different novel stimuli not used during the model’s building). Yet, since CBMs contain a large number of parameters, they may typically suffer from a lack of such a capability. In this paper, we propose a new systematic approach based on multi-objective optimization which builds general non-spiking models with generalization capabilities. The proposed approach only requires macroscopic experimental data from which all the model parameters are simultaneously determined without compromise. Such an approach is applied on three non-spiking neurons of the nematode Caenorhabditis elegans (C. elegans), a well-known model organism in neuroscience that predominantly transmits information through non-spiking signals. These three neurons, arbitrarily labeled by convention as RIM, AIY and AFD, represent, to date, the three possible forms of non-spiking neuronal responses of C. elegans.
Collapse
Affiliation(s)
- Loïs Naudin
- Department of Applied Mathematics, Normandie University, Le Havre, Normandie, France
- * E-mail:
| | | | - Qiang Liu
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, SAR, China
| | - Nathalie Corson
- Department of Applied Mathematics, Normandie University, Le Havre, Normandie, France
| |
Collapse
|
6
|
Marín M, Cruz NC, Ortigosa EM, Sáez-Lara MJ, Garrido JA, Carrillo RR. On the Use of a Multimodal Optimizer for Fitting Neuron Models. Application to the Cerebellar Granule Cell. Front Neuroinform 2021; 15:663797. [PMID: 34149387 PMCID: PMC8209370 DOI: 10.3389/fninf.2021.663797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
This article extends a recent methodological workflow for creating realistic and computationally efficient neuron models whilst capturing essential aspects of single-neuron dynamics. We overcome the intrinsic limitations of the extant optimization methods by proposing an alternative optimization component based on multimodal algorithms. This approach can natively explore a diverse population of neuron model configurations. In contrast to methods that focus on a single global optimum, the multimodal method allows directly obtaining a set of promising solutions for a single but complex multi-feature objective function. The final sparse population of candidate solutions has to be analyzed and evaluated according to the biological plausibility and their objective to the target features by the expert. In order to illustrate the value of this approach, we base our proposal on the optimization of cerebellar granule cell (GrC) models that replicate the essential properties of the biological cell. Our results show the emerging variability of plausible sets of values that this type of neuron can adopt underlying complex spiking characteristics. Also, the set of selected cerebellar GrC models captured spiking dynamics closer to the reference model than the single model obtained with off-the-shelf parameter optimization algorithms used in our previous article. The method hereby proposed represents a valuable strategy for adjusting a varied population of realistic and simplified neuron models. It can be applied to other kinds of neuron models and biological contexts.
Collapse
Affiliation(s)
- Milagros Marín
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Nicolás C Cruz
- Department of Informatics, University of Almería, ceiA3, Almería, Spain
| | - Eva M Ortigosa
- Department of Computer Architecture and Technology-CITIC, University of Granada, Granada, Spain
| | - María J Sáez-Lara
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Jesús A Garrido
- Department of Computer Architecture and Technology-CITIC, University of Granada, Granada, Spain
| | - Richard R Carrillo
- Department of Computer Architecture and Technology-CITIC, University of Granada, Granada, Spain
| |
Collapse
|
7
|
Rizza MF, Locatelli F, Masoli S, Sánchez-Ponce D, Muñoz A, Prestori F, D'Angelo E. Stellate cell computational modeling predicts signal filtering in the molecular layer circuit of cerebellum. Sci Rep 2021; 11:3873. [PMID: 33594118 PMCID: PMC7886897 DOI: 10.1038/s41598-021-83209-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
The functional properties of cerebellar stellate cells and the way they regulate molecular layer activity are still unclear. We have measured stellate cells electroresponsiveness and their activation by parallel fiber bursts. Stellate cells showed intrinsic pacemaking, along with characteristic responses to depolarization and hyperpolarization, and showed a marked short-term facilitation during repetitive parallel fiber transmission. Spikes were emitted after a lag and only at high frequency, making stellate cells to operate as delay-high-pass filters. A detailed computational model summarizing these physiological properties allowed to explore different functional configurations of the parallel fiber-stellate cell-Purkinje cell circuit. Simulations showed that, following parallel fiber stimulation, Purkinje cells almost linearly increased their response with input frequency, but such an increase was inhibited by stellate cells, which leveled the Purkinje cell gain curve to its 4 Hz value. When reciprocal inhibitory connections between stellate cells were activated, the control of stellate cells over Purkinje cell discharge was maintained only at very high frequencies. These simulations thus predict a new role for stellate cells, which could endow the molecular layer with low-pass and band-pass filtering properties regulating Purkinje cell gain and, along with this, also burst delay and the burst-pause responses pattern.
Collapse
Affiliation(s)
- Martina Francesca Rizza
- Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Francesca Locatelli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Stefano Masoli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Diana Sánchez-Ponce
- Centro de Tecnología Biomédica (CTB), Technical University of Madrid, Madrid, Spain
| | - Alberto Muñoz
- Centro de Tecnología Biomédica (CTB), Technical University of Madrid, Madrid, Spain
- Departamento de Biología Celular, Complutense University of Madrid, Madrid, Spain
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, 27100, Pavia, Italy.
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
8
|
Masoli S, Ottaviani A, Casali S, D’Angelo E. Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS Comput Biol 2020; 16:e1007937. [PMID: 33378395 PMCID: PMC7837495 DOI: 10.1371/journal.pcbi.1007937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/26/2021] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
The Golgi cells are the main inhibitory interneurons of the cerebellar granular layer. Although recent works have highlighted the complexity of their dendritic organization and synaptic inputs, the mechanisms through which these neurons integrate complex input patterns remained unknown. Here we have used 8 detailed morphological reconstructions to develop multicompartmental models of Golgi cells, in which Na, Ca, and K channels were distributed along dendrites, soma, axonal initial segment and axon. The models faithfully reproduced a rich pattern of electrophysiological and pharmacological properties and predicted the operating mechanisms of these neurons. Basal dendrites turned out to be more tightly electrically coupled to the axon initial segment than apical dendrites. During synaptic transmission, parallel fibers caused slow Ca-dependent depolarizations in apical dendrites that boosted the axon initial segment encoder and Na-spike backpropagation into basal dendrites, while inhibitory synapses effectively shunted backpropagating currents. This oriented dendritic processing set up a coincidence detector controlling voltage-dependent NMDA receptor unblock in basal dendrites, which, by regulating local calcium influx, may provide the basis for spike-timing dependent plasticity anticipated by theory.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Stefano Casali
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
9
|
Cellular-resolution mapping uncovers spatial adaptive filtering at the rat cerebellum input stage. Commun Biol 2020; 3:635. [PMID: 33128000 PMCID: PMC7599228 DOI: 10.1038/s42003-020-01360-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023] Open
Abstract
Long-term synaptic plasticity is thought to provide the substrate for adaptive computation in brain circuits but very little is known about its spatiotemporal organization. Here, we combined multi-spot two-photon laser microscopy in rat cerebellar slices with realistic modeling to map the distribution of plasticity in multi-neuronal units of the cerebellar granular layer. The units, composed by ~300 neurons activated by ~50 mossy fiber glomeruli, showed long-term potentiation concentrated in the core and long-term depression in the periphery. This plasticity was effectively accounted for by an NMDA receptor and calcium-dependent induction rule and was regulated by the inhibitory Golgi cell loops. Long-term synaptic plasticity created effective spatial filters tuning the time-delay and gain of spike retransmission at the cerebellum input stage and provided a plausible basis for the spatiotemporal recoding of input spike patterns anticipated by the motor learning theory. Casali, Tognolina et al. use two-photon laser microscopy to spatially map long-term synaptic plasticity in rat cerebellar granular cells following stimulation of mossy fibers. Their data allow them to apply realistic modeling to test hypotheses about the synaptic spiking dynamics and reveal the importance of synaptic inhibition to defining these microcircuits.
Collapse
|
10
|
Marín M, Sáez-Lara MJ, Ros E, Garrido JA. Optimization of Efficient Neuron Models With Realistic Firing Dynamics. The Case of the Cerebellar Granule Cell. Front Cell Neurosci 2020; 14:161. [PMID: 32765220 PMCID: PMC7381211 DOI: 10.3389/fncel.2020.00161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/13/2020] [Indexed: 11/17/2022] Open
Abstract
Biologically relevant large-scale computational models currently represent one of the main methods in neuroscience for studying information processing primitives of brain areas. However, biologically realistic neuron models tend to be computationally heavy and thus prevent these models from being part of brain-area models including thousands or even millions of neurons. The cerebellar input layer represents a canonical example of large scale networks. In particular, the cerebellar granule cells, the most numerous cells in the whole mammalian brain, have been proposed as playing a pivotal role in the creation of somato-sensorial information representations. Enhanced burst frequency (spiking resonance) in the granule cells has been proposed as facilitating the input signal transmission at the theta-frequency band (4–12 Hz), but the functional role of this cell feature in the operation of the granular layer remains largely unclear. This study aims to develop a methodological pipeline for creating neuron models that maintain biological realism and computational efficiency whilst capturing essential aspects of single-neuron processing. Therefore, we selected a light computational neuron model template (the adaptive-exponential integrate-and-fire model), whose parameters were progressively refined using an automatic parameter tuning with evolutionary algorithms (EAs). The resulting point-neuron models are suitable for reproducing the main firing properties of a realistic granule cell from electrophysiological measurements, including the spiking resonance at the theta-frequency band, repetitive firing according to a specified intensity-frequency (I-F) curve and delayed firing under current-pulse stimulation. Interestingly, the proposed model also reproduced some other emergent properties (namely, silent at rest, rheobase and negligible adaptation under depolarizing currents) even though these properties were not set in the EA as a target in the fitness function (FF), proving that these features are compatible even in computationally simple models. The proposed methodology represents a valuable tool for adjusting AdEx models according to a FF defined in the spiking regime and based on biological data. These models are appropriate for future research of the functional implication of bursting resonance at the theta band in large-scale granular layer network models.
Collapse
Affiliation(s)
- Milagros Marín
- Department of Computer Architecture and Technology-CITIC, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - María José Sáez-Lara
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Eduardo Ros
- Department of Computer Architecture and Technology-CITIC, University of Granada, Granada, Spain
| | - Jesús A Garrido
- Department of Computer Architecture and Technology-CITIC, University of Granada, Granada, Spain
| |
Collapse
|
11
|
Valadez-Godínez S, Sossa H, Santiago-Montero R. On the accuracy and computational cost of spiking neuron implementation. Neural Netw 2019; 122:196-217. [PMID: 31689679 DOI: 10.1016/j.neunet.2019.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
Abstract
Since more than a decade ago, three statements about spiking neuron (SN) implementations have been widely accepted: 1) Hodgkin and Huxley (HH) model is computationally prohibitive, 2) Izhikevich (IZH) artificial neuron is as efficient as Leaky Integrate-and-Fire (LIF) model, and 3) IZH model is more efficient than HH model (Izhikevich, 2004). As suggested by Hodgkin and Huxley (1952), their model operates in two modes: by using the α's and β's rate functions directly (HH model) and by storing them into tables (HHT model) for computational cost reduction. Recently, it has been stated that: 1) HHT model (HH using tables) is not prohibitive, 2) IZH model is not efficient, and 3) both HHT and IZH models are comparable in computational cost (Skocik & Long, 2014). That controversy shows that there is no consensus concerning SN simulation capacities. Hence, in this work, we introduce a refined approach, based on the multiobjective optimization theory, describing the SN simulation capacities and ultimately choosing optimal simulation parameters. We have used normalized metrics to define the capacity levels of accuracy, computational cost, and efficiency. Normalized metrics allowed comparisons between SNs at the same level or scale. We conducted tests for balanced, lower, and upper boundary conditions under a regular spiking mode with constant and random current stimuli. We found optimal simulation parameters leading to a balance between computational cost and accuracy. Importantly, and, in general, we found that 1) HH model (without using tables) is the most accurate, computationally inexpensive, and efficient, 2) IZH model is the most expensive and inefficient, 3) both LIF and HHT models are the most inaccurate, 4) HHT model is more expensive and inaccurate than HH model due to α's and β's table discretization, and 5) HHT model is not comparable in computational cost to IZH model. These results refute the theory formulated over a decade ago (Izhikevich, 2004) and go more in-depth in the statements formulated by Skocik and Long (2014). Our statements imply that the number of dimensions or FLOPS in the SNs are theoretical but not practical indicators of the true computational cost. The metric we propose for the computational cost is more precise than FLOPS and was found to be invariant to computer architecture. Moreover, we found that the firing frequency used in previous works is a necessary but an insufficient metric to evaluate the simulation accuracy. We also show that our results are consistent with the theory of numerical methods and the theory of SN discontinuity. Discontinuous SNs, such LIF and IZH models, introduce a considerable error every time a spike is generated. In addition, compared to the constant input current, the random input current increases the computational cost and inaccuracy. Besides, we found that the search for optimal simulation parameters is problem-specific. That is important because most of the previous works have intended to find a general and unique optimal simulation. Here, we show that this solution could not exist because it is a multiobjective optimization problem that depends on several factors. This work sets up a renewed thesis concerning the SN simulation that is useful to several related research areas, including the emergent Deep Spiking Neural Networks.
Collapse
Affiliation(s)
- Sergio Valadez-Godínez
- Laboratorio de Robótica y Mecatrónica, Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz, S/N, Col. Nva. Industrial Vallejo, Ciudad de México, México, 07738, Mexico; División de Ingeniería Informática, Instituto Tecnológico Superior de Purísima del Rincón, Gto., México, 36413, Mexico; División de Ingenierías de Educación Superior, Universidad Virtual del Estado de Guanajuato, Gto., México, 36400, Mexico.
| | - Humberto Sossa
- Laboratorio de Robótica y Mecatrónica, Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz, S/N, Col. Nva. Industrial Vallejo, Ciudad de México, México, 07738, Mexico; Tecnológico de Monterrey, Campus Guadalajara, Av. Gral. Ramón Corona 2514, Zapopan, Jal., México, 45138, Mexico.
| | - Raúl Santiago-Montero
- División de Estudios de Posgrado e Investigación, Instituto Tecnológico de León, Av. Tecnológico S/N, León, Gto., México, 37290, Mexico.
| |
Collapse
|
12
|
Rumbell T, Kozloski J. Dimensions of control for subthreshold oscillations and spontaneous firing in dopamine neurons. PLoS Comput Biol 2019; 15:e1007375. [PMID: 31545787 PMCID: PMC6776370 DOI: 10.1371/journal.pcbi.1007375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/03/2019] [Accepted: 09/04/2019] [Indexed: 11/20/2022] Open
Abstract
Dopaminergic neurons (DAs) of the rodent substantia nigra pars compacta (SNc) display varied electrophysiological properties in vitro. Despite this, projection patterns and functional inputs from DAs to other structures are conserved, so in vivo delivery of consistent, well-timed dopamine modulation to downstream circuits must be coordinated. Here we show robust coordination by linear parameter controllers, discovered through powerful mathematical analyses of data and models, and from which consistent control of DA subthreshold oscillations (STOs) and spontaneous firing emerges. These units of control represent coordinated intracellular variables, sufficient to regulate complex cellular properties with radical simplicity. Using an evolutionary algorithm and dimensionality reduction, we discovered metaparameters, which when regressed against STO features, revealed a 2-dimensional control plane for the neuron’s 22-dimensional parameter space that fully maps the natural range of DA subthreshold electrophysiology. This plane provided a basis for spiking currents to reproduce a large range of the naturally occurring spontaneous firing characteristics of SNc DAs. From it we easily produced a unique population of models, derived using unbiased parameter search, that show good generalization to channel blockade and compensatory intracellular mechanisms. From this population of models, we then discovered low-dimensional controllers for regulating spontaneous firing properties, and gain insight into how currents active in different voltage regimes interact to produce the emergent activity of SNc DAs. Our methods therefore reveal simple regulators of neuronal function lurking in the complexity of combined ion channel dynamics. Electrophysiological activity of the neuronal membrane and concomitant ion channel properties are highly variable within groups of neurons of the same type from the same brain region. Reconciliation of the mechanisms generating neuronal activity is challenging due to the complexity of the interactions between the channel currents involved. Here we present a set of mathematical analyses that uncover the low-dimensional intracellular parameter combinations capable of regulating features of subthreshold oscillations and spontaneous firing in empirically constrained models of nigral dopaminergic neurons. This method generates, from a naive starting point, linear combinations of ion channel properties that are surprisingly capable of reliably controlling a wide variety of emergent electrophysiological activity, thereby predicting drug effects and shedding light on unsuspected compensatory mechanisms that contribute to neuronal function.
Collapse
Affiliation(s)
- Timothy Rumbell
- IBM Research, Computational Biology Center, Thomas J. Watson Research Laboratories, Yorktown Heights, New York, United States of America
- * E-mail:
| | - James Kozloski
- IBM Research, Computational Biology Center, Thomas J. Watson Research Laboratories, Yorktown Heights, New York, United States of America
| |
Collapse
|
13
|
Geminiani A, Casellato C, D'Angelo E, Pedrocchi A. Complex Electroresponsive Dynamics in Olivocerebellar Neurons Represented With Extended-Generalized Leaky Integrate and Fire Models. Front Comput Neurosci 2019; 13:35. [PMID: 31244635 PMCID: PMC6563830 DOI: 10.3389/fncom.2019.00035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/20/2019] [Indexed: 11/24/2022] Open
Abstract
The neurons of the olivocerebellar circuit exhibit complex electroresponsive dynamics, which are thought to play a fundamental role for network entraining, plasticity induction, signal processing, and noise filtering. In order to reproduce these properties in single-point neuron models, we have optimized the Extended-Generalized Leaky Integrate and Fire (E-GLIF) neuron through a multi-objective gradient-based algorithm targeting the desired input–output relationships. In this way, E-GLIF was tuned toward the unique input–output properties of Golgi cells, granule cells, Purkinje cells, molecular layer interneurons, deep cerebellar nuclei cells, and inferior olivary cells. E-GLIF proved able to simulate the complex cell-specific electroresponsive dynamics of the main olivocerebellar neurons including pacemaking, adaptation, bursting, post-inhibitory rebound excitation, subthreshold oscillations, resonance, and phase reset. The integration of these E-GLIF point-neuron models into olivocerebellar Spiking Neural Networks will allow to evaluate the impact of complex electroresponsive dynamics at the higher scales, up to motor behavior, in closed-loop simulations of sensorimotor tasks.
Collapse
Affiliation(s)
- Alice Geminiani
- NEARLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Alessandra Pedrocchi
- NEARLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
14
|
Experimentally-constrained biophysical models of tonic and burst firing modes in thalamocortical neurons. PLoS Comput Biol 2019; 15:e1006753. [PMID: 31095552 PMCID: PMC6541309 DOI: 10.1371/journal.pcbi.1006753] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/29/2019] [Accepted: 04/10/2019] [Indexed: 01/12/2023] Open
Abstract
Somatosensory thalamocortical (TC) neurons from the ventrobasal (VB) thalamus are central components in the flow of sensory information between the periphery and the cerebral cortex, and participate in the dynamic regulation of thalamocortical states including wakefulness and sleep. This property is reflected at the cellular level by the ability to generate action potentials in two distinct firing modes, called tonic firing and low-threshold bursting. Although the general properties of TC neurons are known, we still lack a detailed characterization of their morphological and electrical properties in the VB thalamus. The aim of this study was to build biophysically-detailed models of VB TC neurons explicitly constrained with experimental data from rats. We recorded the electrical activity of VB neurons (N = 49) and reconstructed morphologies in 3D (N = 50) by applying standardized protocols. After identifying distinct electrical types, we used a multi-objective optimization to fit single neuron electrical models (e-models), which yielded multiple solutions consistent with the experimental data. The models were tested for generalization using electrical stimuli and neuron morphologies not used during fitting. A local sensitivity analysis revealed that the e-models are robust to small parameter changes and that all the parameters were constrained by one or more features. The e-models, when tested in combination with different morphologies, showed that the electrical behavior is substantially preserved when changing dendritic structure and that the e-models were not overfit to a specific morphology. The models and their analysis show that automatic parameter search can be applied to capture complex firing behavior, such as co-existence of tonic firing and low-threshold bursting over a wide range of parameter sets and in combination with different neuron morphologies. Thalamocortical neurons are one of the main components of the thalamocortical system, which is implicated in key functions including sensory transmission and the transition between brain states. These functions are reflected at the cellular level by the ability to generate action potentials in two distinct modes, called burst and tonic firing. Biophysically-detailed computational modeling of these cells can provide a tool to understand the role of these neurons within thalamocortical circuitry. We started by collecting single cell experimental data by applying standardized experimental procedures in brain slices of the rat. Prior work has demonstrated that biological constraints can be integrated using multi-objective optimization to build biologically realistic models of neurons. Here, we employed similar techniques, but extended them to capture the multiple firing modes of thalamic neurons. We compared the model results with additional experimental data, test their generalization and quantitatively reject those that deviated significantly from the experimental variability. These models can be readily integrated in a data-driven pipeline to reconstruct and simulate circuit activity in the thalamocortical system.
Collapse
|
15
|
Casali S, Marenzi E, Medini C, Casellato C, D'Angelo E. Reconstruction and Simulation of a Scaffold Model of the Cerebellar Network. Front Neuroinform 2019; 13:37. [PMID: 31156416 PMCID: PMC6530631 DOI: 10.3389/fninf.2019.00037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/29/2019] [Indexed: 02/05/2023] Open
Abstract
Reconstructing neuronal microcircuits through computational models is fundamental to simulate local neuronal dynamics. Here a scaffold model of the cerebellum has been developed in order to flexibly place neurons in space, connect them synaptically, and endow neurons and synapses with biologically-grounded mechanisms. The scaffold model can keep neuronal morphology separated from network connectivity, which can in turn be obtained from convergence/divergence ratios and axonal/dendritic field 3D geometries. We first tested the scaffold on the cerebellar microcircuit, which presents a challenging 3D organization, at the same time providing appropriate datasets to validate emerging network behaviors. The scaffold was designed to integrate the cerebellar cortex with deep cerebellar nuclei (DCN), including different neuronal types: Golgi cells, granule cells, Purkinje cells, stellate cells, basket cells, and DCN principal cells. Mossy fiber inputs were conveyed through the glomeruli. An anisotropic volume (0.077 mm3) of mouse cerebellum was reconstructed, in which point-neuron models were tuned toward the specific discharge properties of neurons and were connected by exponentially decaying excitatory and inhibitory synapses. Simulations using both pyNEST and pyNEURON showed the emergence of organized spatio-temporal patterns of neuronal activity similar to those revealed experimentally in response to background noise and burst stimulation of mossy fiber bundles. Different configurations of granular and molecular layer connectivity consistently modified neuronal activation patterns, revealing the importance of structural constraints for cerebellar network functioning. The scaffold provided thus an effective workflow accounting for the complex architecture of the cerebellar network. In principle, the scaffold can incorporate cellular mechanisms at multiple levels of detail and be tuned to test different structural and functional hypotheses. A future implementation using detailed 3D multi-compartment neuron models and dynamic synapses will be needed to investigate the impact of single neuron properties on network computation.
Collapse
Affiliation(s)
- Stefano Casali
- Neurophysiology Unit, Neurocomputational Laboratory, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Elisa Marenzi
- Neurophysiology Unit, Neurocomputational Laboratory, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Chaitanya Medini
- Neurophysiology Unit, Neurocomputational Laboratory, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Claudia Casellato
- Neurophysiology Unit, Neurocomputational Laboratory, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D'Angelo
- Neurophysiology Unit, Neurocomputational Laboratory, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
16
|
Carrillo RR, Naveros F, Ros E, Luque NR. A Metric for Evaluating Neural Input Representation in Supervised Learning Networks. Front Neurosci 2019; 12:913. [PMID: 30618549 PMCID: PMC6302114 DOI: 10.3389/fnins.2018.00913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/20/2018] [Indexed: 11/13/2022] Open
Abstract
Supervised learning has long been attributed to several feed-forward neural circuits within the brain, with particular attention being paid to the cerebellar granular layer. The focus of this study is to evaluate the input activity representation of these feed-forward neural networks. The activity of cerebellar granule cells is conveyed by parallel fibers and translated into Purkinje cell activity, which constitutes the sole output of the cerebellar cortex. The learning process at this parallel-fiber-to-Purkinje-cell connection makes each Purkinje cell sensitive to a set of specific cerebellar states, which are roughly determined by the granule-cell activity during a certain time window. A Purkinje cell becomes sensitive to each neural input state and, consequently, the network operates as a function able to generate a desired output for each provided input by means of supervised learning. However, not all sets of Purkinje cell responses can be assigned to any set of input states due to the network's own limitations (inherent to the network neurobiological substrate), that is, not all input-output mapping can be learned. A key limiting factor is the representation of the input states through granule-cell activity. The quality of this representation (e.g., in terms of heterogeneity) will determine the capacity of the network to learn a varied set of outputs. Assessing the quality of this representation is interesting when developing and studying models of these networks to identify those neuron or network characteristics that enhance this representation. In this study we present an algorithm for evaluating quantitatively the level of compatibility/interference amongst a set of given cerebellar states according to their representation (granule-cell activation patterns) without the need for actually conducting simulations and network training. The algorithm input consists of a real-number matrix that codifies the activity level of every considered granule-cell in each state. The capability of this representation to generate a varied set of outputs is evaluated geometrically, thus resulting in a real number that assesses the goodness of the representation.
Collapse
Affiliation(s)
- Richard R Carrillo
- Department of Computer Architecture and Technology, University of Granada, Granada, Spain.,Centro de Investigación en Tecnologías de la Información y de las Comunicaciones (CITIC-UGR), University of Granada, Granada, Spain
| | - Francisco Naveros
- Department of Computer Architecture and Technology, University of Granada, Granada, Spain.,Centro de Investigación en Tecnologías de la Información y de las Comunicaciones (CITIC-UGR), University of Granada, Granada, Spain
| | - Eduardo Ros
- Department of Computer Architecture and Technology, University of Granada, Granada, Spain.,Centro de Investigación en Tecnologías de la Información y de las Comunicaciones (CITIC-UGR), University of Granada, Granada, Spain
| | - Niceto R Luque
- Department of Computer Architecture and Technology, University of Granada, Granada, Spain.,Centro de Investigación en Tecnologías de la Información y de las Comunicaciones (CITIC-UGR), University of Granada, Granada, Spain.,Aging in Vision and Action, Institut de la Vision, Inserm-UPMC-CNRS, Paris, France
| |
Collapse
|
17
|
Sarma GP, Lee CW, Portegys T, Ghayoomie V, Jacobs T, Alicea B, Cantarelli M, Currie M, Gerkin RC, Gingell S, Gleeson P, Gordon R, Hasani RM, Idili G, Khayrulin S, Lung D, Palyanov A, Watts M, Larson SD. OpenWorm: overview and recent advances in integrative biological simulation of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0382. [PMID: 30201845 PMCID: PMC6158220 DOI: 10.1098/rstb.2017.0382] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2018] [Indexed: 01/02/2023] Open
Abstract
The adoption of powerful software tools and computational methods from the software industry by the scientific research community has resulted in a renewed interest in integrative, large-scale biological simulations. These typically involve the development of computational platforms to combine diverse, process-specific models into a coherent whole. The OpenWorm Foundation is an independent research organization working towards an integrative simulation of the nematode Caenorhabditis elegans, with the aim of providing a powerful new tool to understand how the organism's behaviour arises from its fundamental biology. In this perspective, we give an overview of the history and philosophy of OpenWorm, descriptions of the constituent sub-projects and corresponding open-science management practices, and discuss current achievements of the project and future directions.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.
Collapse
Affiliation(s)
- Gopal P Sarma
- School of Medicine, Emory University, Atlanta, GA, USA
| | | | | | - Vahid Ghayoomie
- Laboratory of Systems Biology and Bioinformatics, University of Tehran, Tehran, Iran
| | | | | | | | - Michael Currie
- Fling Inc., Bangkok, Thailand.,Raytheon Company, Waltham, MA, USA
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Padraig Gleeson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Richard Gordon
- Embryogenesis Center, Gulf Specimen Marine Laboratory, Panacea, FL, USA.,C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Ramin M Hasani
- Cyber-Physical Systems, Technische Universität Wien, Wien, Austria
| | | | - Sergey Khayrulin
- The OpenWorm Foundation, New York, NY, USA.,Laboratory of Complex Systems Simulation, A.P. Ershov Institute of Informatics Systems, Novosibirsk, Russia.,Laboratory of Structural Bioinformatics and Molecular Modeling, Novosibirsk State University, Novosibirsk, Russia
| | - David Lung
- Cyber-Physical Systems, Technische Universität Wien, Wien, Austria
| | - Andrey Palyanov
- Laboratory of Complex Systems Simulation, A.P. Ershov Institute of Informatics Systems, Novosibirsk, Russia.,Laboratory of Structural Bioinformatics and Molecular Modeling, Novosibirsk State University, Novosibirsk, Russia
| | | | | |
Collapse
|
18
|
Abstract
The cerebellum is a central brain structure deeply integrated into major loops with the cerebral cortex, brainstem, and spinal cord. The cerebellum shows a complex regional organization consisting of modules with sagittal orientation. The cerebellum takes part in motor control and its lesions cause a movement incoordination syndrome called ataxia. Recent observations also imply involvement of the cerebellum in cognition and executive control, with an impact on pathologies like dyslexia and autism. The cerebellum operates as a forward controller learning to predict the precise timing of correlated events. The physiologic mechanisms of cerebellar functioning are still the object of intense research. The signals entering the cerebellum through the mossy fibers are processed in the granular layer and transmitted to Purkinje cells, while a collateral pathway activates the deep cerebellar nuclei (DCN). Purkinje cells in turn inhibit DCN, so that the cerebellar cortex operates as a side loop controlling the DCN. Learning is now known to occur through synaptic plasticity at multiple synapses in the granular layer, molecular layer, and DCN, extending the original concept of the Motor Learning Theory that predicted a single form of plasticity at the synapse between parallel fibers and Purkinje cells under the supervision of climbing fibers deriving from the inferior olive. Coordination derives from the precise regulation of timing and gain in the different cerebellar modules. The investigation of cerebellar dynamics using advanced physiologic recordings and computational models is now providing new clues on how the cerebellar network performs its internal computations.
Collapse
Affiliation(s)
- Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| |
Collapse
|
19
|
Masoli S, D'Angelo E. Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Front Cell Neurosci 2017; 11:278. [PMID: 28955206 PMCID: PMC5602117 DOI: 10.3389/fncel.2017.00278] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/29/2017] [Indexed: 01/24/2023] Open
Abstract
The dendritic processing in cerebellar Purkinje cells (PCs), which integrate synaptic inputs coming from hundreds of thousands granule cells and molecular layer interneurons, is still unclear. Here we have tested a leading hypothesis maintaining that the significant PC output code is represented by burst-pause responses (BPRs), by simulating PC responses in a biophysically detailed model that allowed to systematically explore a broad range of input patterns. BPRs were generated by input bursts and were more prominent in Zebrin positive than Zebrin negative (Z+ and Z-) PCs. Different combinations of parallel fiber and molecular layer interneuron synapses explained type I, II and III responses observed in vivo. BPRs were generated intrinsically by Ca-dependent K channel activation in the somato-dendritic compartment and the pause was reinforced by molecular layer interneuron inhibition. BPRs faithfully reported the duration and intensity of synaptic inputs, such that synaptic conductance tuned the number of spikes and release probability tuned their regularity in the millisecond range. Interestingly, the burst and pause of BPRs depended on the stimulated dendritic zone reflecting the different input conductance and local engagement of voltage-dependent channels. Multiple local inputs combined their actions generating complex spatio-temporal patterns of dendritic activity and BPRs. Thus, local control of intrinsic dendritic mechanisms by synaptic inputs emerges as a fundamental PC property in activity regimens characterized by bursting inputs from granular and molecular layer neurons.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| |
Collapse
|