1
|
Koh M, Anselmi F, Kaushalya SK, Hernandez DE, Bast WG, Villar PS, Chae H, Davis MB, Teja SS, Qu Z, Gradinaru V, Gupta P, Banerjee A, Albeanu DF. Axially decoupled photo-stimulation and two photon readout ( ADePT) for mapping functional connectivity of neural circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639992. [PMID: 40161637 PMCID: PMC11952351 DOI: 10.1101/2025.02.24.639992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
All optical physiology in vivo provides a conduit for investigating the function of neural circuits in 3-D. Here, we report a new strategy for flexible, axially-decoupled photo-stimulation and two photon readout (ADePT) of neuronal activity. To achieve axially-contained widefield optogenetic patterned stimulation, we couple a digital micro-mirror device illuminated by a solid-state laser with a motorized holographic diffuser. In parallel, we use multiphoton imaging of neural activity across different z-planes. We use ADePT to analyze the excitatory and inhibitory functional connectivity of the mouse early olfactory system. Specifically, we control the activity of individual input glomeruli on the olfactory bulb surface, and map the ensuing responses of output mitral and tufted cell bodies in deeper layers. This approach identifies cohorts of sister mitral and tufted cells, whose firing is driven by the same parent glomerulus, and also reveals their differential inhibition by other glomeruli. In addition, selective optogenetic activation of glomerular GABAergic/dopaminergic (DAT+) interneurons triggers dense, but spatially heterogeneous suppression of mitral and tufted cell baseline activity and odor responses, further demonstrating specificity in the inhibitory olfactory bulb connectivity. In summary, ADePT enables high-throughput functional connectivity mapping in optically accessible brain regions.
Collapse
Affiliation(s)
- Matthew Koh
- CSHL School for Biological Sciences
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | | | | | | | | - Pablo S. Villar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Honggoo Chae
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Martin B. Davis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Sadhu Sai Teja
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Zhe Qu
- California Institute of Technology, Pasadena, CA, 91125
| | | | - Priyanka Gupta
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Arkarup Banerjee
- CSHL School for Biological Sciences
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Dinu F. Albeanu
- CSHL School for Biological Sciences
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
2
|
Kaspar C, Ivanenko A, Lehrich J, Klingauf J, Pernice WHP. Biohybrid Photonic Platform for Subcellular Stimulation and Readout of In Vitro Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304561. [PMID: 38164885 DOI: 10.1002/advs.202304561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Targeted manipulation of neural activity via light has become an indispensable tool for gaining insights into the intricate processes governing single neurons and complex neural networks. To shed light onto the underlying interaction mechanisms, it is crucial to achieve precise control of individual neural activity, as well as a spatial read-out resolution on the nanoscale. Here, a versatile photonic platform with subcellular resolution for stimulation and monitoring of in-vitro neurons is demonstrated. Low-loss photonic waveguides are fabricated on glass substrates using nanoimprint lithography and featuring a loss of only -0.9 ± 0.2 dB cm-1 at 489 nm and are combined with optical fiber-based waveguide-access and backside total internal reflection fluorescence microscopy. Neurons are grown on the bio-functionalized photonic chip surface and, expressing the light-sensitive ion channel Channelrhodopsin-2, are stimulated within the evanescent field penetration depth of 57 nm of the biocompatible waveguides. The versatility and cost-efficiency of the platform, along with the possible subcellular resolution, enable tailor-made investigations of neural interaction dynamics with defined spatial control and high throughput.
Collapse
Affiliation(s)
- Corinna Kaspar
- Institute of Physics, University of Muenster, Heisenbergstr. 11, 48149, Muenster, Germany
- Center for Soft Nanoscience, University of Muenster, Busso-Peuss-Str. 10, 48149, Muenster, Germany
| | - Alexander Ivanenko
- Center for Soft Nanoscience, University of Muenster, Busso-Peuss-Str. 10, 48149, Muenster, Germany
- Institute of Medical Physics and Biophysics, University of Muenster, Robert-Koch-Str. 31, 48149, Muenster, Germany
| | - Julia Lehrich
- Center for Soft Nanoscience, University of Muenster, Busso-Peuss-Str. 10, 48149, Muenster, Germany
- Institute of Medical Physics and Biophysics, University of Muenster, Robert-Koch-Str. 31, 48149, Muenster, Germany
| | - Jürgen Klingauf
- Center for Soft Nanoscience, University of Muenster, Busso-Peuss-Str. 10, 48149, Muenster, Germany
- Institute of Medical Physics and Biophysics, University of Muenster, Robert-Koch-Str. 31, 48149, Muenster, Germany
| | - Wolfram H P Pernice
- Institute of Physics, University of Muenster, Heisenbergstr. 11, 48149, Muenster, Germany
- Center for Soft Nanoscience, University of Muenster, Busso-Peuss-Str. 10, 48149, Muenster, Germany
- Kirchhoff-Institut for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Telliez C, De Sars V, Emiliani V, Ronzitti E. Descanned fast light targeting (deFLiT) two-photon optogenetics. BIOMEDICAL OPTICS EXPRESS 2023; 14:6222-6232. [PMID: 38420304 PMCID: PMC10898566 DOI: 10.1364/boe.499445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 03/02/2024]
Abstract
Two-photon light-targeting optogenetics allows controlling selected subsets of neurons with near single-cell resolution and high temporal precision. To push forward this approach, we recently proposed a fast light-targeting strategy (FLiT) to rapidly scan multiple holograms tiled on a spatial light modulator (SLM). This allowed generating sub-ms timely-controlled switch of light patterns enabling to reduce the power budget for multi-target excitation and increase the temporal precision for relative spike tuning in a circuit. Here, we modified the optical design of FLiT by including a de-scan unit (deFLiT) to keep the holographic illumination centered at the middle of the objective pupil independently of the position of the tiled hologram on the SLM. This enables enlarging the number of usable holograms and reaching extended on-axis excitation volumes, and therefore increasing even further the power gain and temporal precision of conventional FLiT.
Collapse
Affiliation(s)
- Cecile Telliez
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Vincent De Sars
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Valentina Emiliani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Emiliano Ronzitti
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| |
Collapse
|
4
|
Bollmann Y, Modol L, Tressard T, Vorobyev A, Dard R, Brustlein S, Sims R, Bendifallah I, Leprince E, de Sars V, Ronzitti E, Baude A, Adesnik H, Picardo MA, Platel JC, Emiliani V, Angulo-Garcia D, Cossart R. Prominent in vivo influence of single interneurons in the developing barrel cortex. Nat Neurosci 2023; 26:1555-1565. [PMID: 37653166 DOI: 10.1038/s41593-023-01405-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/13/2023] [Indexed: 09/02/2023]
Abstract
Spontaneous synchronous activity is a hallmark of developing brain circuits and promotes their formation. Ex vivo, synchronous activity was shown to be orchestrated by a sparse population of highly connected GABAergic 'hub' neurons. The recent development of all-optical methods to record and manipulate neuronal activity in vivo now offers the unprecedented opportunity to probe the existence and function of hub cells in vivo. Using calcium imaging, connectivity analysis and holographic optical stimulation, we show that single GABAergic, but not glutamatergic, neurons influence population dynamics in the barrel cortex of non-anaesthetized mouse pups. Single GABAergic cells mainly exert an inhibitory influence on both spontaneous and sensory-evoked population bursts. Their network influence scales with their functional connectivity, with highly connected hub neurons displaying the strongest impact. We propose that hub neurons function in tailoring intrinsic cortical dynamics to external sensory inputs.
Collapse
Affiliation(s)
- Yannick Bollmann
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Laura Modol
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Thomas Tressard
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Artem Vorobyev
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Robin Dard
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Sophie Brustlein
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Ruth Sims
- Wavefront-Engineering Microscopy Group, Photonics Department, Vision Institute, Sorbonne University, INSERM, CNRS, Paris, France
| | - Imane Bendifallah
- Wavefront-Engineering Microscopy Group, Photonics Department, Vision Institute, Sorbonne University, INSERM, CNRS, Paris, France
| | - Erwan Leprince
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Vincent de Sars
- Wavefront-Engineering Microscopy Group, Photonics Department, Vision Institute, Sorbonne University, INSERM, CNRS, Paris, France
| | - Emiliano Ronzitti
- Wavefront-Engineering Microscopy Group, Photonics Department, Vision Institute, Sorbonne University, INSERM, CNRS, Paris, France
| | - Agnès Baude
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Hillel Adesnik
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Michel Aimé Picardo
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Jean-Claude Platel
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Valentina Emiliani
- Wavefront-Engineering Microscopy Group, Photonics Department, Vision Institute, Sorbonne University, INSERM, CNRS, Paris, France
| | - David Angulo-Garcia
- Departamento de Matemáticas y Estadística, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales, Colombia
| | - Rosa Cossart
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
5
|
Bounds HA, Sadahiro M, Hendricks WD, Gajowa M, Gopakumar K, Quintana D, Tasic B, Daigle TL, Zeng H, Oldenburg IA, Adesnik H. All-optical recreation of naturalistic neural activity with a multifunctional transgenic reporter mouse. Cell Rep 2023; 42:112909. [PMID: 37542722 PMCID: PMC10755854 DOI: 10.1016/j.celrep.2023.112909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 08/07/2023] Open
Abstract
Determining which features of the neural code drive behavior requires the ability to simultaneously read out and write in neural activity patterns with high precision across many neurons. All-optical systems that combine two-photon calcium imaging and targeted photostimulation enable the activation of specific, functionally defined groups of neurons. However, these techniques are unable to test how patterns of activity across a population contribute to computation because of an inability to both read and write cell-specific firing rates. To overcome this challenge, we make two advances: first, we introduce a genetic line of mice for Cre-dependent co-expression of a calcium indicator and a potent soma-targeted microbial opsin. Second, using this line, we develop a method for read-out and write-in of precise population vectors of neural activity by calibrating the photostimulation to each cell. These advances offer a powerful and convenient platform for investigating the neural codes of computation and behavior.
Collapse
Affiliation(s)
- Hayley A Bounds
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Masato Sadahiro
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - William D Hendricks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Marta Gajowa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Karthika Gopakumar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel Quintana
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ian Antón Oldenburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Faini G, Tanese D, Molinier C, Telliez C, Hamdani M, Blot F, Tourain C, de Sars V, Del Bene F, Forget BC, Ronzitti E, Emiliani V. Ultrafast light targeting for high-throughput precise control of neuronal networks. Nat Commun 2023; 14:1888. [PMID: 37019891 PMCID: PMC10074378 DOI: 10.1038/s41467-023-37416-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Two-photon, single-cell resolution optogenetics based on holographic light-targeting approaches enables the generation of precise spatiotemporal neuronal activity patterns and thus a broad range of experimental applications, such as high throughput connectivity mapping and probing neural codes for perception. Yet, current holographic approaches limit the resolution for tuning the relative spiking time of distinct cells to a few milliseconds, and the achievable number of targets to 100-200, depending on the working depth. To overcome these limitations and expand the capabilities of single-cell optogenetics, we introduce an ultra-fast sequential light targeting (FLiT) optical configuration based on the rapid switching of a temporally focused beam between holograms at kHz rates. We used FLiT to demonstrate two illumination protocols, termed hybrid- and cyclic-illumination, and achieve sub-millisecond control of sequential neuronal activation and high throughput multicell illumination in vitro (mouse organotypic and acute brain slices) and in vivo (zebrafish larvae and mice), while minimizing light-induced thermal rise. These approaches will be important for experiments that require rapid and precise cell stimulation with defined spatio-temporal activity patterns and optical control of large neuronal ensembles.
Collapse
Affiliation(s)
- Giulia Faini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Dimitrii Tanese
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Clément Molinier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Cécile Telliez
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Massilia Hamdani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Francois Blot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Christophe Tourain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Vincent de Sars
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Benoît C Forget
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Emiliano Ronzitti
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| | - Valentina Emiliani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| |
Collapse
|
7
|
Resta F, Montagni E, de Vito G, Scaglione A, Allegra Mascaro AL, Pavone FS. Large-scale all-optical dissection of motor cortex connectivity shows a segregated organization of mouse forelimb representations. Cell Rep 2022; 41:111627. [PMID: 36351410 PMCID: PMC10073205 DOI: 10.1016/j.celrep.2022.111627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
In rodent motor cortex, the rostral forelimb area (RFA) and the caudal forelimb area (CFA) are major actors in orchestrating the control of complex forelimb movements. However, their intrinsic connectivity and reciprocal functional organization are still unclear, limiting our understanding of how the brain coordinates and executes voluntary movements. Here, we causally probe cortical connectivity and activation patterns triggered by transcranial optogenetic stimulation of ethologically relevant complex movements exploiting a large-scale all-optical method in awake mice. Results show specific activation features for each movement class, providing evidence for a segregated functional organization of CFA and RFA. Importantly, we identify a second discrete lateral grasping representation area, namely the lateral forelimb area (LFA), with unique connectivity and activation patterns. Therefore, we propose the LFA as a distinct forelimb representation in the mouse somatotopic motor map.
Collapse
Affiliation(s)
- Francesco Resta
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Elena Montagni
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy
| | - Alessandro Scaglione
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Neuroscience Institute, National Research Council, 56124 Pisa, Italy.
| | - Francesco Saverio Pavone
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy; National Institute of Optics, National Research Council, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Papaioannou S, Medini P. Advantages, Pitfalls, and Developments of All Optical Interrogation Strategies of Microcircuits in vivo. Front Neurosci 2022; 16:859803. [PMID: 35837124 PMCID: PMC9274136 DOI: 10.3389/fnins.2022.859803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
The holy grail for every neurophysiologist is to conclude a causal relationship between an elementary behaviour and the function of a specific brain area or circuit. Our effort to map elementary behaviours to specific brain loci and to further manipulate neural activity while observing the alterations in behaviour is in essence the goal for neuroscientists. Recent advancements in the area of experimental brain imaging in the form of longer wavelength near infrared (NIR) pulsed lasers with the development of highly efficient optogenetic actuators and reporters of neural activity, has endowed us with unprecedented resolution in spatiotemporal precision both in imaging neural activity as well as manipulating it with multiphoton microscopy. This readily available toolbox has introduced a so called all-optical physiology and interrogation of circuits and has opened new horizons when it comes to precisely, fast and non-invasively map and manipulate anatomically, molecularly or functionally identified mesoscopic brain circuits. The purpose of this review is to describe the advantages and possible pitfalls of all-optical approaches in system neuroscience, where by all-optical we mean use of multiphoton microscopy to image the functional response of neuron(s) in the network so to attain flexible choice of the cells to be also optogenetically photostimulated by holography, in absence of electrophysiology. Spatio-temporal constraints will be compared toward the classical reference of electrophysiology methods. When appropriate, in relation to current limitations of current optical approaches, we will make reference to latest works aimed to overcome these limitations, in order to highlight the most recent developments. We will also provide examples of types of experiments uniquely approachable all-optically. Finally, although mechanically non-invasive, all-optical electrophysiology exhibits potential off-target effects which can ambiguate and complicate the interpretation of the results. In summary, this review is an effort to exemplify how an all-optical experiment can be designed, conducted and interpreted from the point of view of the integrative neurophysiologist.
Collapse
|
9
|
Ricci P, Marchetti M, Sorelli M, Turrini L, Resta F, Gavryusev V, de Vito G, Sancataldo G, Vanzi F, Silvestri L, Pavone FS. Power-effective scanning with AODs for 3D optogenetic applications. JOURNAL OF BIOPHOTONICS 2022; 15:e202100256. [PMID: 35000289 DOI: 10.1002/jbio.202100256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 05/18/2023]
Abstract
Two-photon (2P) excitation is a cornerstone approach widely employed in neuroscience microscopy for deep optical access and sub-micrometric-resolution light targeting into the brain. However, besides structural and functional imaging, 2P optogenetic stimulations are less routinary, especially in 3D. This is because of the adopted scanning systems, often feebly effective, slow and mechanically constricted. Faster illumination can be achieved through acousto-optic deflectors (AODs) although their applicability to large volumes excitation has been limited by large efficiency drop along the optical axis. Here, we present a new AOD-based scheme for 2P 3D scanning that improves the power delivery between different illumination planes. We applied this approach to photostimulate an optogenetic actuator in zebrafish larvae, demonstrating the method efficiency observing increased activity responses and uniform activation probabilities from neuronal clusters addressed in the volume. This novel driving scheme can open to new AOD applications in neuroscience, allowing more effective 3D interrogation in large neuronal networks.
Collapse
Affiliation(s)
- Pietro Ricci
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Physics and Astronomy, University of Florence, Florence
| | | | - Michele Sorelli
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Physics and Astronomy, University of Florence, Florence
| | - Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Physics and Astronomy, University of Florence, Florence
| | - Francesco Resta
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Physics and Astronomy, University of Florence, Florence
| | - Vladislav Gavryusev
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Physics and Astronomy, University of Florence, Florence
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Biology, University of Florence, Florence, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Physics and Astronomy, University of Florence, Florence
- National Institute of Optics, Florence, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Florence
- Department of Physics and Astronomy, University of Florence, Florence
- L4T-Light4Tech, Florence, Italy
- National Institute of Optics, Florence, Italy
| |
Collapse
|
10
|
Adesnik H, Abdeladim L. Probing neural codes with two-photon holographic optogenetics. Nat Neurosci 2021; 24:1356-1366. [PMID: 34400843 PMCID: PMC9793863 DOI: 10.1038/s41593-021-00902-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Optogenetics ushered in a revolution in how neuroscientists interrogate brain function. Because of technical limitations, the majority of optogenetic studies have used low spatial resolution activation schemes that limit the types of perturbations that can be made. However, neural activity manipulations at finer spatial scales are likely to be important to more fully understand neural computation. Spatially precise multiphoton holographic optogenetics promises to address this challenge and opens up many new classes of experiments that were not previously possible. More specifically, by offering the ability to recreate extremely specific neural activity patterns in both space and time in functionally defined ensembles of neurons, multiphoton holographic optogenetics could allow neuroscientists to reveal fundamental aspects of the neural codes for sensation, cognition and behavior that have been beyond reach. This Review summarizes recent advances in multiphoton holographic optogenetics that substantially expand its capabilities, highlights outstanding technical challenges and provides an overview of the classes of experiments it can execute to test and validate key theoretical models of brain function. Multiphoton holographic optogenetics could substantially accelerate the pace of neuroscience discovery by helping to close the loop between experimental and theoretical neuroscience, leading to fundamental new insights into nervous system function and disorder.
Collapse
Affiliation(s)
- Hillel Adesnik
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Lamiae Abdeladim
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
11
|
Hartzell EJ, Terr J, Chen W. Engineering a Blue Light Inducible SpyTag System (BLISS). J Am Chem Soc 2021; 143:8572-8577. [PMID: 34077186 DOI: 10.1021/jacs.1c03198] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The SpyCatcher/SpyTag protein conjugation system has recently exploded in popularity due to its fast kinetics and high yield under biologically favorable conditions in both in vitro and intracellular settings. The utility of this system could be expanded by introducing the ability to spatially and temporally control the conjugation event. Taking inspiration from photoreceptor proteins in nature, we designed a method to integrate light dependency into the protein conjugation reaction. The light-oxygen-voltage domain 2 of Avena sativa (AsLOV2) undergoes a dramatic conformational change in its c-terminal Jα-helix in response to blue light. By inserting SpyTag into the different locations of the Jα-helix, we created a blue light inducible SpyTag system (BLISS). In this design, the SpyTag is blocked from reacting with the SpyCatcher in the dark, but upon irradiation with blue light, the Jα-helix of the AsLOV2 undocks to expose the SpyTag. We tested several insertion sites and characterized the kinetics. We found three variants with dynamic ranges over 15, which were active within different concentration ranges. These could be tuned using SpyCatcher variants with different reaction kinetics. Further, the reaction could be instantaneously quenched by removing light. We demonstrated the spatial aspect of this light control mechanism through photopatterning of two fluorescent proteins. This system offers opportunities for many other biofabrication and optogenetics applications.
Collapse
Affiliation(s)
- Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Justin Terr
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
12
|
Morgante P, Guruge C, Ouedraogo YP, Nesnas N, Peverati R. Competition between cyclization and unusual Norrish type I and type II nitro-acyl migration pathways in the photouncaging of 1-acyl-7-nitroindoline revealed by computations. Sci Rep 2021; 11:1396. [PMID: 33446751 DOI: 10.26434/chemrxiv.11991651.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/04/2020] [Indexed: 05/21/2023] Open
Abstract
The 7-nitroindolinyl family of caging chromophores has received much attention in the past two decades. However, its uncaging mechanism is still not clearly understood. In this study, we performed state-of-the-art density functional theory calculations to unravel the photo-uncaging mechanism in its entirety, and we compared the probabilities of all plausible pathways. We found competition between a classical cyclization and an acyl migration pathway, and here we explain the electronic and steric reasons behind such competition. The migration mechanism possesses the characteristics of a combined Norrish type I and a 1,6-nitro-acyl variation of a Norrish type II mechanism, which is reported here for the first time. We also found negligible energetic differences in the uncaging mechanisms of the 4-methoxy-5,7-dinitroindolinyl (MDNI) cages and their mononitro analogues (MNI). We traced the experimentally observed improved quantum yields of MDNI to a higher population of the reactants in the triplet surface. This fact is supported by a more favorable intersystem crossing due to the availability of a higher number of triplet excited states with the correct symmetry in MDNI than in MNI. Our findings may pave the way for improved cage designs that possess higher quantum yields and a more efficient agonist release.
Collapse
Affiliation(s)
- Pierpaolo Morgante
- Chemistry Program, Florida Institute of Technology, 150 W. University Blvd, Melbourne, FL, 32901, USA
| | - Charitha Guruge
- Chemistry Program, Florida Institute of Technology, 150 W. University Blvd, Melbourne, FL, 32901, USA
| | - Yannick P Ouedraogo
- Chemistry Program, Florida Institute of Technology, 150 W. University Blvd, Melbourne, FL, 32901, USA
| | - Nasri Nesnas
- Chemistry Program, Florida Institute of Technology, 150 W. University Blvd, Melbourne, FL, 32901, USA.
| | - Roberto Peverati
- Chemistry Program, Florida Institute of Technology, 150 W. University Blvd, Melbourne, FL, 32901, USA.
| |
Collapse
|
13
|
Competition between cyclization and unusual Norrish type I and type II nitro-acyl migration pathways in the photouncaging of 1-acyl-7-nitroindoline revealed by computations. Sci Rep 2021; 11:1396. [PMID: 33446751 PMCID: PMC7809399 DOI: 10.1038/s41598-020-79701-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022] Open
Abstract
The 7-nitroindolinyl family of caging chromophores has received much attention in the past two decades. However, its uncaging mechanism is still not clearly understood. In this study, we performed state-of-the-art density functional theory calculations to unravel the photo-uncaging mechanism in its entirety, and we compared the probabilities of all plausible pathways. We found competition between a classical cyclization and an acyl migration pathway, and here we explain the electronic and steric reasons behind such competition. The migration mechanism possesses the characteristics of a combined Norrish type I and a 1,6-nitro-acyl variation of a Norrish type II mechanism, which is reported here for the first time. We also found negligible energetic differences in the uncaging mechanisms of the 4-methoxy-5,7-dinitroindolinyl (MDNI) cages and their mononitro analogues (MNI). We traced the experimentally observed improved quantum yields of MDNI to a higher population of the reactants in the triplet surface. This fact is supported by a more favorable intersystem crossing due to the availability of a higher number of triplet excited states with the correct symmetry in MDNI than in MNI. Our findings may pave the way for improved cage designs that possess higher quantum yields and a more efficient agonist release.
Collapse
|
14
|
Abstract
Optical manipulation is a powerful way to control neural activity in vitro and in vivo with millisecond precision. Patterning of light provides the remarkable ability to simultaneously target spatially segregated neurons from a population. Commercially available projectors provide one of the simplest and most economical ways of achieving spatial light modulation at millisecond timescales. Here, we describe the protocol for constructing a projector-based spatio-temporal light patterning system integrated with a microscope on a typical electrophysiology rig. The set-up is well suited for applications requiring rapid, distinct, and combinatorial inputs, akin to brain activity. This equipment involved is fairly economical (<$5000 including all optical and mechanical components), and the set-up is easy to assemble and program.
Collapse
Affiliation(s)
- Aanchal Bhatia
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, Karnataka, India
| | - Sahil Moza
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, Karnataka, India
| | - Upinder S Bhalla
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, Karnataka, India.
| |
Collapse
|
15
|
Functional interrogation of neural circuits with virally transmitted optogenetic tools. J Neurosci Methods 2020; 345:108905. [PMID: 32795553 DOI: 10.1016/j.jneumeth.2020.108905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
The vertebrate brain comprises a plethora of cell types connected by intertwined pathways. Optogenetics enriches the neuroscientific tool set for disentangling these neuronal circuits in a manner which exceeds the spatio-temporal precision of previously existing techniques. Technically, optogenetics can be divided in three types of optical and genetic combinations: (1) it is primarily understood as the manipulation of the activity of genetically modified cells (typically neurons) with light, i.e. optical actuators. (2) A second combination refers to visualizing the activity of genetically modified cells (again typically neurons), i.e. optical sensors. (3) A completely different interpretation of optogenetics refers to the light activated expression of a genetically induced construct. Here, we focus on the first two types of optogenetics, i.e. the optical actuators and sensors in an attempt to give an overview into the topic. We first cover methods to express opsins into neurons and introduce strategies of targeting specific neuronal populations in different animal species. We then summarize combinations of optogenetics with behavioral read out and neuronal imaging. Finally, we give an overview of the current state-of-the-art and an outlook on future perspectives.
Collapse
|
16
|
Schuetzenberger A, Borst A. Seeing Natural Images through the Eye of a Fly with Remote Focusing Two-Photon Microscopy. iScience 2020; 23:101170. [PMID: 32502966 PMCID: PMC7270611 DOI: 10.1016/j.isci.2020.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/02/2020] [Accepted: 05/12/2020] [Indexed: 11/30/2022] Open
Abstract
Visual systems of many animals, including the fruit fly Drosophila, represent the surrounding space as 2D maps, formed by populations of neurons. Advanced genetic tools make the fly visual system especially well accessible. However, in typical in vivo preparations for two-photon calcium imaging, relatively few neurons can be recorded at the same time. Here, we present an extension to a conventional two-photon microscope, based on remote focusing, which enables real-time rotation of the imaging plane, and thus flexible alignment to cellular structures, without resolution or speed trade-off. We simultaneously record from over 100 neighboring cells spanning the 2D retinotopic map. We characterize its representation of moving natural images, which we find is comparable to noise predictions. Our method increases throughput 10-fold and allows us to visualize a significant fraction of the fly's visual field. Furthermore, our system can be applied in general for a more flexible investigation of neural circuits.
Collapse
Affiliation(s)
- Anna Schuetzenberger
- Department Circuits - Computation - Models, Max-Planck-Institute of Neurobiology, 82152 Planegg, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, 82152 Planegg, Germany.
| | - Alexander Borst
- Department Circuits - Computation - Models, Max-Planck-Institute of Neurobiology, 82152 Planegg, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, 82152 Planegg, Germany.
| |
Collapse
|
17
|
Papagiakoumou E, Ronzitti E, Emiliani V. Scanless two-photon excitation with temporal focusing. Nat Methods 2020; 17:571-581. [PMID: 32284609 DOI: 10.1038/s41592-020-0795-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 02/28/2020] [Indexed: 11/09/2022]
Abstract
Temporal focusing, with its ability to focus light in time, enables scanless illumination of large surface areas at the sample with micrometer axial confinement and robust propagation through scattering tissue. In conventional two-photon microscopy, widely used for the investigation of intact tissue in live animals, images are formed by point scanning of a spatially focused pulsed laser beam, resulting in limited temporal resolution of the excitation. Replacing point scanning with temporally focused widefield illumination removes this limitation and represents an important milestone in two-photon microscopy. Temporal focusing uses a diffusive or dispersive optical element placed in a plane conjugate to the objective focal plane to generate position-dependent temporal pulse broadening that enables axially confined multiphoton absorption, without the need for tight spatial focusing. Many techniques have benefitted from temporal focusing, including scanless imaging, super-resolution imaging, photolithography, uncaging of caged neurotransmitters and control of neuronal activity via optogenetics.
Collapse
Affiliation(s)
- Eirini Papagiakoumou
- Wavefront-Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne University, Inserm S968, CNRS UMR7210, Fondation Voir et Entendre, Paris, France
| | - Emiliano Ronzitti
- Wavefront-Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne University, Inserm S968, CNRS UMR7210, Fondation Voir et Entendre, Paris, France
| | - Valentina Emiliani
- Wavefront-Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne University, Inserm S968, CNRS UMR7210, Fondation Voir et Entendre, Paris, France.
| |
Collapse
|
18
|
Colón-Ramos DA, La Riviere P, Shroff H, Oldenbourg R. Transforming the development and dissemination of cutting-edge microscopy and computation. Nat Methods 2019; 16:667-669. [PMID: 31363203 PMCID: PMC7643542 DOI: 10.1038/s41592-019-0475-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We propose a network of National Imaging Centers that provide collaborative, interdisciplinary spaces needed for developing, applying and teaching advanced biological imaging techniques. Our proposal is based on recommendations from an NSF sponsored workshop on realizing the promise of innovations in imaging and computation for biological discovery.
Collapse
Affiliation(s)
- Daniel A Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, San Juan, Puerto Rico, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Patrick La Riviere
- Marine Biological Laboratory, Woods Hole, MA, USA
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Hari Shroff
- Marine Biological Laboratory, Woods Hole, MA, USA
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
19
|
Optogenetic approaches to study the mammalian brain. Curr Opin Struct Biol 2019; 57:157-163. [PMID: 31082625 DOI: 10.1016/j.sbi.2019.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/30/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022]
Abstract
Optogenetics has revolutionized neurobiological research by allowing to disentangle intricate neuronal circuits at a spatio-temporal precision unmatched by other techniques. Here, we review current advances of optogenetic applications in mammals, especially focusing on freely moving animals. State-of-the-art strategies allow the targeted expression of opsins in neuronal subpopulations, defined either by genetic cell type or neuronal projection pattern. Optogenetic manipulations of these subpopulations become particularly powerful when combined with behavioral paradigms and neurophysiological readout techniques. Thereby, specific roles can be assigned to identified cells. All-optical approaches with the opportunity to write complex three dimensional patterns into neuronal networks have recently emerged. While clinical implications of the new tool set seem tempting, we emphasize here the role of optogenetics for basic research.
Collapse
|