1
|
Song H, Guo Z, Xie K, Liu X, Yang X, Shen R, Wang D. Crotonylation of MCM6 enhances chemotherapeutics sensitivity of breast cancer via inducing DNA replication stress. Cell Prolif 2025; 58:e13759. [PMID: 39477811 PMCID: PMC11839194 DOI: 10.1111/cpr.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 02/21/2025] Open
Abstract
Breast cancer is associated with high morbidity and mortality, which are closely influenced by protein post-translational modifications (PTMs). Lysine crotonylation (Kcr) serves as a newly identified PTM type that plays a role in various biological processes; however, its involvement in breast cancer progression remains unclear. Minichromosome maintenance 6 (MCM6) is a critical component of DNA replication and has been previous confirmed to exhibit a significant role in tumorigenesis. Despite this, a comprehensive analysis of MCM6, particularly regarding its modifications in breast cancer is lacking. In this study, we found MCM6 is upregulated in breast invasive carcinoma (BRCA) and is associated with poorer overall survival by regulating the DNA damage repair mechanisms. Furthermore, MCM6-knockdown resulted in decreased cell proliferation and inhibited the DNA replication, leading to DNA replication stress and sustained DNA damage, thereby enhancing the chemotherapeutic sensitivity of breast cancer. Additionally, SIRT7-mediated crotonylation of MCM6 at K599 (MCM6-K599cr) was significantly upregulated in response to DNA replication stress, primarily due to the disassemebly of the MCM2-7 complex and regulated by RNF8-mediated ubiquitination. Concurrently, kaempferol, which acts as a regulator of SIRT7, was found to enhance the Kcr level of MCM6, reducing tumour weight, particular when combined with paclitaxel, highlighting its potential chemotherapeutic target for BRCA therapy.
Collapse
Affiliation(s)
- Haoyun Song
- School of Basic Medical SciencesLanzhou UniversityGansuChina
| | - Zhao Guo
- School of Basic Medical SciencesLanzhou UniversityGansuChina
| | - Kun Xie
- School of Basic Medical SciencesLanzhou UniversityGansuChina
| | - Xiangwen Liu
- School of Basic Medical SciencesLanzhou UniversityGansuChina
| | - Xuguang Yang
- School of Basic Medical SciencesLanzhou UniversityGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityGansuChina
| | - Degui Wang
- School of Basic Medical SciencesLanzhou UniversityGansuChina
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorLanzhouGansu ProvinceChina
| |
Collapse
|
2
|
Zeng Y, Sun ML, Liu D, Huang Y, Xie S, Zhao YX, Wu ZX, Liu Y, Ma G, Xie L, Dang YT, Hao LY, Wang QH, Wang HJ, Yang L, Xue ZY, Pan ZQ. Kv3.1 Interaction with UBR5 Is Required for Chronic Inflammatory Pain. Mol Neurobiol 2025; 62:429-444. [PMID: 38865078 DOI: 10.1007/s12035-024-04259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
Chronic inflammatory pain caused by neuronal hyperactivity is a common and refractory disease. Kv3.1, a member of the Kv3 family of voltage-dependent K+ channels, is a major determinant of the ability of neurons to generate high-frequency action potentials. However, little is known about its role in chronic inflammatory pain. Here, we show that although Kv3.1 mRNA expression was unchanged, Kv3.1 protein expression was decreased in the dorsal spinal horn of mice after plantar injection of complete Freund's adjuvant (CFA), a mouse model of inflammatory pain. Upregulating Kv3.1 expression alleviated CFA-induced mechanical allodynia and heat hyperalgesia, whereas downregulating Kv3.1 induced nociception-like behaviors. Additionally, we found that ubiquitin protein ligase E3 component n-recognin 5 (UBR5), a key factor in the initiation of chronic pain, binds directly to Kv3.1 to drive its ubiquitin degradation. Intrathecal injection of the peptide TP-CH-401, a Kv3.1 ubiquitination motif sequence, rescued the decrease in Kv3.1 expression and Kv currents through competitive binding to UBR5, and consequently attenuated mechanical and thermal hypersensitivity. These findings demonstrate a previously unrecognized pathway of Kv3.1 abrogation by UBR5 and indicate that Kv3.1 is critically involved in the regulation of nociceptive behavior. Kv3.1 is thus a promising new target for treating inflammatory pain.
Collapse
Affiliation(s)
- Ying Zeng
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Meng-Lan Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Di Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Shan Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Ya-Xuan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Zi-Xuan Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Ya Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Gan Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Ling Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Yu-Tao Dang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Ling-Yun Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Hong-Jun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Zhou-Ya Xue
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China.
- Department of Anesthesiology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224008, China.
| | - Zhi-Qiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China.
| |
Collapse
|
3
|
Guo Z, Song H, Tian Y, Xu J, Zhang G, Guo Y, Shen R, Wang D. SiRNF8 Delivered by DNA Framework Nucleic Acid Effectively Sensitizes Chemotherapy in Colon Cancer. Int J Nanomedicine 2024; 19:171-188. [PMID: 38204601 PMCID: PMC10777867 DOI: 10.2147/ijn.s437859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Background The evident side effects and decreased drug sensitivity significantly restrict the use of chemotherapy. However, nanoparticles based on biomaterials are anticipated to address this challenge. Methods Through bioinformatics analysis and colon cancer samples, we initially investigated the expression level of RNF8 in colon cancer. Next, we constructed nanocarrier for delivering siRNF8 based on DNA tetrahedron (si-Tet), and Doxorubicin (DOX) was further intercalated into the DNA structure (si-DOX-Tet) for combination therapy. Further, the effects and mechanism of RNF8 inhibition on the sensitivity of colon cancer cells to DOX chemotherapy have also been studied. Results RNF8 expression was increased in colon cancer. Agarose gel electrophoresis, transmission electron microscopy, and size distribution and potential analysis confirmed the successful preparation of the two nanoparticles, with particle sizes of 10.29 and 37.29 nm, respectively. Fluorescence imaging reveals that the carriers can be internalized into colon cancer cells and escape from lysosomes after 12 hours of treatment, effectively delivering siRNF8 and DOX. Importantly, Western blot analysis verified treatment with 50nM si-Tet silenced RNF8 expression by approximately 50% in colon cancer cells, and combined treatment significantly inhibited cell proliferation. Furthermore, the CCK-8 assay demonstrated that si-Tet treatment enhanced the sensitivity of colon cancer cells to the three chemotherapeutic drugs. Significant more DNA damage was detected after treatment with both si-Tet or si-DOX-Tet. Further flow cytometry analysis revealed that si-DOX-Tet treatment led to significantly more apoptosis, approximately 1.6-fold higher than treatment with DOX alone. Mechanistically, inhibiting RNF8 led to decreased ABCG2 expression and DOX efflux, but increased DNA damage, thereby enhancing the chemotherapeutic effect of DOX. Conclusion We have successfully constructed si-DOX-Tet. By inhibiting the expression of RNF8, it enhances the chemotherapy sensitivity of DOX. Therefore, this tetrahedral FNA nanocarrier offers a new approach for the combined treatment of colon cancer.
Collapse
Affiliation(s)
- Zhao Guo
- Department of Anatomy and Histology, Lanzhou University School of Basic Medical Sciences, Lanzhou, 730000, People’s Republic of China
| | - Haoyun Song
- Department of Anatomy and Histology, Lanzhou University School of Basic Medical Sciences, Lanzhou, 730000, People’s Republic of China
| | - Yingxia Tian
- Department of Internal Medicine, Gansu Provincial Academic Institute for Medical Research, Lanzhou, 730050, People’s Republic of China
| | - Jie Xu
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Guokun Zhang
- Department of Anatomy and Histology, Lanzhou University School of Basic Medical Sciences, Lanzhou, 730000, People’s Republic of China
| | - Yanan Guo
- Department of Anatomy and Histology, Lanzhou University School of Basic Medical Sciences, Lanzhou, 730000, People’s Republic of China
| | - Rong Shen
- Department of Anatomy and Histology, Lanzhou University School of Basic Medical Sciences, Lanzhou, 730000, People’s Republic of China
| | - Degui Wang
- Department of Anatomy and Histology, Lanzhou University School of Basic Medical Sciences, Lanzhou, 730000, People’s Republic of China
| |
Collapse
|
4
|
Zhang G, Ji P, Xia P, Song H, Guo Z, Hu X, Guo Y, Yuan X, Song Y, Shen R, Wang D. Identification and targeting of cancer-associated fibroblast signature genes for prognosis and therapy in Cutaneous melanoma. Comput Biol Med 2023; 167:107597. [PMID: 37875042 DOI: 10.1016/j.compbiomed.2023.107597] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) play pivotal roles in tumor invasion and metastasis. However, studies on CAF biomarkers in Cutaneous Melanoma (CM) are still scarce. This study aimed to explore the potential CAF biomarkers in CM, propose the potential therapeutic targets, and provide new insights for targeted therapy of CAFs in CM. METHODS We utilized weighted gene co-expression network analysis to identify CAF signature genes in CM, and conducted comprehensive bioinformatics analysis on the CAF risk score established by these genes. Moreover, single-cell sequencing analysis, spatial transcriptome analysis, and cell experiments were utilized for verifying the expression and distribution pattern of signature genes. Furthermore, molecular docking was employed to screen potential target drugs. RESULTS FBLN1 and COL5A1, two crucial CAF signature genes, were screened to establish the CAF risk score. Subsequently, a comprehensive bioinformatic analysis of the CAF risk score revealed that high-risk score group was significantly enriched in pathways associated with tumor progression. Besides, CAF risk score was significantly negatively correlated with clinical prognosis, immunotherapy response, and tumor mutational burden in CM patients. In addition, FBLN1 and COL5A1 were further identified as CAF-specific biomarkers in CM by multi-omics analysis and experimental validation. Eventually, based on these two targets, Mifepristone and Dexamethasone were screened as potential anti-CAFs drugs. CONCLUSION The findings indicated that FBLN1 and COL5A1 were the CAF signature genes in CM, which were associated with the progression, treatment, and prognosis of CM. The comprehensive exploration of CAF signature genes is expected to provide new insight for clinical CM therapy.
Collapse
Affiliation(s)
- Guokun Zhang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Pengfei Ji
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Peng Xia
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Haoyun Song
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Zhao Guo
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Xiaohui Hu
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Xinyi Yuan
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Yanfeng Song
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu, 730000, China.
| |
Collapse
|
5
|
Sun JKL, Wong GCN, Chow KHM. Cross-talk between DNA damage response and the central carbon metabolic network underlies selective vulnerability of Purkinje neurons in ataxia-telangiectasia. J Neurochem 2023; 166:654-677. [PMID: 37319113 DOI: 10.1111/jnc.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Cerebellar ataxia is often the first and irreversible outcome in the disease of ataxia-telangiectasia (A-T), as a consequence of selective cerebellar Purkinje neuronal degeneration. A-T is an autosomal recessive disorder resulting from the loss-of-function mutations of the ataxia-telangiectasia-mutated ATM gene. Over years of research, it now becomes clear that functional ATM-a serine/threonine kinase protein product of the ATM gene-plays critical roles in regulating both cellular DNA damage response and central carbon metabolic network in multiple subcellular locations. The key question arises is how cerebellar Purkinje neurons become selectively vulnerable when all other cell types in the brain are suffering from the very same defects in ATM function. This review intended to comprehensively elaborate the unexpected linkages between these two seemingly independent cellular functions and the regulatory roles of ATM involved, their integrated impacts on both physical and functional properties, hence the introduction of selective vulnerability to Purkinje neurons in the disease will be addressed.
Collapse
Affiliation(s)
- Jacquelyne Ka-Li Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Genper Chi-Ngai Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
6
|
Guo Y, Shen R, Yang K, Wang Y, Song H, Liu X, Cheng X, Wu R, Song Y, Wang D. RNF8 enhances the sensitivity of PD-L1 inhibitor against melanoma through ubiquitination of galectin-3 in stroma. Cell Death Discov 2023; 9:205. [PMID: 37391451 DOI: 10.1038/s41420-023-01500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/19/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
The failure of melanoma immunotherapy can be mediated by immunosuppression in the tumor microenvironment (TME), and insufficient activation of effector T cells against the tumor. Here, we show that inhibition of galectin-3 (gal-3) enhances the infiltration of T cells in TME and improves the sensitivity of anti-PD-L1 therapy. We identify that RNF8 downregulated the expression of gal-3 by K48-polyubiquitination and promoted gal-3 degradation via the ubiquitin-proteasome system. RNF8 deficiency in the host but sufficiency in implanted melanoma results in immune exclusion and tumor progression due to the upregulation of gal-3. Upregulation of gal-3 decreased the immune cell infiltration by restricting IL-12 and IFN-γ. Inhibition of gal-3 reverses immunosuppression and induces immune cell infiltration in the tumor microenvironment. Moreover, gal-3 inhibitor treatment can increase the sensitivity of PD-L1 inhibitors via increasing immune cell infiltration and enhancing immune response in tumors. This study reveals a previously unrecognized immunoregulation function of RNF8 and provides a promising strategy for the therapy of "cold" tumors. Tremendous effects of melanoma treatment can be achieved by facilitating immune cell infiltration combined with anti-PD-L1 treatment.
Collapse
Affiliation(s)
- Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Keren Yang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Yutong Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Haoyun Song
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Xiangwen Liu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Xin Cheng
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Rile Wu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Yanfeng Song
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China.
- NHC Key Laboratory of diagnosis and therapy of Gastrointestinal Tumor, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Guo Y, Shen R, Wang F, Wang Y, Xia P, Wu R, Liu X, Ye W, Tian Y, Wang D. Carbon ion irradiation induces DNA damage in melanoma and optimizes the tumor microenvironment based on the cGAS-STING pathway. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04577-6. [PMID: 36745223 DOI: 10.1007/s00432-023-04577-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/05/2023] [Indexed: 02/07/2023]
Abstract
PURPOSES Increased number of studies reveal the crucial role of the Cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway in anti-tumor immunity. In this study, we aim to explore the effect of cGAS/STING on tumor immune microenvironment of melanoma after carbon ion radiotherapy (CIRT) and the underlying mechanism. METHODS C57BL/6 mouse tumor models were used to evaluate the efficacy of different treatments (X-ray, carbon ion, PD-L1 inhibitor and combination therapies) on tumor growth and process. Mass cytometry was performed to assess tumor-infiltrating lymphocytes (TILs). DNA damage response (DDR) and cGAS/STING pathway were investigated by immunofluorescence-co-localization assays, γ-H2AX, P53-binding protein 1 (53BP1), Breast Cancer 1 (BRCA1), and cGAS measurements. RESULTS Carbon ion irradiation caused more DNA damages and cGAS-STING pathway activation compared with X-ray irradiation, and the former slowed the melanoma growth in syngeneic model. Although X-ray irradiation is not sensitive for melanoma treatment, carbon ion irradiation showed a significant anti-tumor effect for melanoma treatment. TILs analysis revealed that CIRT boosted the infiltration of natural killer (NK), CD4+, and CD8+ T cells, meanwhile increased the number of immune checkpoint (programmed death-1, PD-1, lymphocyte activation gene 3, LAG-3 and T-cell immunoglobulin and mucin domain-containing protein 3, TIM-3). Moreover, CIRT increased PD-L1 exposure on cell surface compared with X-ray group. Furthermore, CIRT combined with PD-L1 inhibitor therapy increased the number of T cells and NK cells in melanoma, and slowed the growth of melanoma compared with other therapies. CONCLUSIONS Our findings showed that CIRT displayed biological effects by increasing DNA damages of tumor cells and improving immunity in melanoma, which indicated that CIRT might be a potential synergetic treatment for radiotherapy and radioimmunotherapy in melanoma patients. Our works put forward a new insight to provide an effective strategy for melanoma therapy. These findings may help in the design of strategies on melanoma in clinical studies.
Collapse
Affiliation(s)
- Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Fang Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China.,Medical Experimental Centre, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Yutong Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Peng Xia
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Rile Wu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Xiangwen Liu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China.,State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China.,Department of Internal Medicine, Gansu Provincial Academic Institute for Medical Research, Lanzhou, 730050, China.,Medical Experimental Centre, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Weichun Ye
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China.
| | - Yingxia Tian
- Department of Internal Medicine, Gansu Provincial Academic Institute for Medical Research, Lanzhou, 730050, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China. .,Medical Experimental Centre, Lanzhou University, Lanzhou, 73000, Gansu, China.
| |
Collapse
|
8
|
Wong GCN, Chow KHM. DNA Damage Response-Associated Cell Cycle Re-Entry and Neuronal Senescence in Brain Aging and Alzheimer's Disease. J Alzheimers Dis 2023; 94:S429-S451. [PMID: 35848025 PMCID: PMC10473156 DOI: 10.3233/jad-220203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/15/2022]
Abstract
Chronological aging is by far the strongest risk factor for age-related dementia and Alzheimer's disease. Senescent cells accumulated in the aging and Alzheimer's disease brains are now recognized as the keys to describing such an association. Cellular senescence is a classic phenomenon characterized by stable cell arrest, which is thought to be applicable only to dividing cells. Emerging evidence indicates that fully differentiated post-mitotic neurons are also capable of becoming senescent, with roles in contributing to both brain aging and disease pathogenesis. The key question that arises is the identity of the upstream triggers and the molecular mechanisms that underly such changes. Here, we highlight the potential role of persistent DNA damage response as the major driver of senescent phenotypes and discuss the current evidence and molecular mechanisms that connect DNA repair infidelity, cell cycle re-entry and terminal fate decision in committing neuronal cell senescence.
Collapse
Affiliation(s)
- Genper Chi-Ngai Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
9
|
Song H, Shen R, Liu X, Yang X, Xie K, Guo Z, Wang D. Histone post-translational modification and the DNA damage response. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
10
|
Ye Q, Wang J, Liu X, Liu Z, BaZong L, Ma J, Shen R, Ye W, Zhang W, Wang D. The Role of RAD6B and PEDF in Retinal Degeneration. Neuroscience 2021; 480:19-31. [PMID: 34774969 DOI: 10.1016/j.neuroscience.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
RAD6B is an E2 ubiquitin-conjugating enzyme, playing an important role in DNA damage repair, gene expression, senescence, apoptosis and protein degradation. However, the specific mechanism between ubiquitin and retinal degeneration requires more investigation. Pigment epithelium-derived factor (PEDF) has a potent neurotrophic effect on the retina, protecting retinal neurons and photoreceptors from cell death caused by pathological damage. In this study, we found that loss of RAD6B leads to retinal degeneration in mice, especially in old age. Affymetrix microarray analysis showed that the PEDF signal was changed in RAD6B deficient groups. The expression of γ-H2AX, β-Gal, P53, Caspase-3, P21 and P16 was increased significantly in retinas of RAD6B knockout (KO) mice. Our studies suggest that RAD6B and PEDF play an important role in the health of retina, whereas the absence of RAD6B accelerates the degeneration.
Collapse
Affiliation(s)
- Qiang Ye
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; Department of Ophthalmology, The Second Hospital of Lanzhou University, 82 Cuiying Door, Lanzhou 730000, China
| | - Jiaqi Wang
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Xiangwen Liu
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Zihua Liu
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - LuoSong BaZong
- Department of Ophthalmology, The Second Hospital of Lanzhou University, 82 Cuiying Door, Lanzhou 730000, China
| | - Jinhai Ma
- Department of Ophthalmology, The Second Hospital of Lanzhou University, 82 Cuiying Door, Lanzhou 730000, China
| | - Rong Shen
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China.
| | - Weichun Ye
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Wenfang Zhang
- Department of Ophthalmology, The Second Hospital of Lanzhou University, 82 Cuiying Door, Lanzhou 730000, China.
| | - Degui Wang
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China.
| |
Collapse
|
11
|
Chao CC, Shen PW, Tzeng TY, Kung HJ, Tsai TF, Wong YH. Human iPSC-Derived Neurons as A Platform for Deciphering the Mechanisms behind Brain Aging. Biomedicines 2021; 9:1635. [PMID: 34829864 PMCID: PMC8615703 DOI: 10.3390/biomedicines9111635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
With an increased life expectancy among humans, aging has recently emerged as a major focus in biomedical research. The lack of in vitro aging models-especially for neurological disorders, where access to human brain tissues is limited-has hampered the progress in studies on human brain aging and various age-associated neurodegenerative diseases at the cellular and molecular level. In this review, we provide an overview of age-related changes in the transcriptome, in signaling pathways, and in relation to epigenetic factors that occur in senescent neurons. Moreover, we explore the current cell models used to study neuronal aging in vitro, including immortalized cell lines, primary neuronal culture, neurons directly converted from fibroblasts (Fib-iNs), and iPSC-derived neurons (iPSC-iNs); we also discuss the advantages and limitations of these models. In addition, the key phenotypes associated with cellular senescence that have been observed by these models are compared. Finally, we focus on the potential of combining human iPSC-iNs with genome editing technology in order to further our understanding of brain aging and neurodegenerative diseases, and discuss the future directions and challenges in the field.
Collapse
Affiliation(s)
- Chuan-Chuan Chao
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Department of Neurology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po-Wen Shen
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tsai-Yu Tzeng
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA
| | - Ting-Fen Tsai
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Hui Wong
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
12
|
Schmidt MF, Gan ZY, Komander D, Dewson G. Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Cell Death Differ 2021; 28:570-590. [PMID: 33414510 PMCID: PMC7862249 DOI: 10.1038/s41418-020-00706-7] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are characterised by progressive damage to the nervous system including the selective loss of vulnerable populations of neurons leading to motor symptoms and cognitive decline. Despite millions of people being affected worldwide, there are still no drugs that block the neurodegenerative process to stop or slow disease progression. Neuronal death in these diseases is often linked to the misfolded proteins that aggregate within the brain (proteinopathies) as a result of disease-related gene mutations or abnormal protein homoeostasis. There are two major degradation pathways to rid a cell of unwanted or misfolded proteins to prevent their accumulation and to maintain the health of a cell: the ubiquitin–proteasome system and the autophagy–lysosomal pathway. Both of these degradative pathways depend on the modification of targets with ubiquitin. Aging is the primary risk factor of most neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. With aging there is a general reduction in proteasomal degradation and autophagy, and a consequent increase of potentially neurotoxic protein aggregates of β-amyloid, tau, α-synuclein, SOD1 and TDP-43. An often over-looked yet major component of these aggregates is ubiquitin, implicating these protein aggregates as either an adaptive response to toxic misfolded proteins or as evidence of dysregulated ubiquitin-mediated degradation driving toxic aggregation. In addition, non-degradative ubiquitin signalling is critical for homoeostatic mechanisms fundamental for neuronal function and survival, including mitochondrial homoeostasis, receptor trafficking and DNA damage responses, whilst also playing a role in inflammatory processes. This review will discuss the current understanding of the role of ubiquitin-dependent processes in the progressive loss of neurons and the emergence of ubiquitin signalling as a target for the development of much needed new drugs to treat neurodegenerative disease. ![]()
Collapse
Affiliation(s)
- Marlene F Schmidt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia
| | - Zhong Yan Gan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia
| | - David Komander
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
13
|
Ma Y, Song Y, Shen R, Li P, Ding H, Guo Z, Liu X, Wang D. Loss of RAD6B induces degeneration of the cochlea in mice. Biochem Biophys Res Commun 2020; 531:402-408. [PMID: 32868078 DOI: 10.1016/j.bbrc.2020.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 01/11/2023]
Abstract
Presbycusis is a form of age-related hearing loss (AHL). Many studies have shown that the degeneration of various structures in the cochlea of the inner ear is related to AHL, and DNA damage is an important factor leading to the above process. As an E2 ubiquitin-conjugated enzyme, RAD6B plays an important role in DNA damage repair (DDR) through histone ubiquitination. However, the molecular mechanism is still unclear. In this study, we investigated the role of RAD6B in the morphological changes and DDR mechanisms in aging-related degeneration of the cochlea of mice. We observed that the hair cells, stria vascularis and spiral ganglion in the cochlea of the RAD6B knockout mice showed significant degenerative changes and abnormal expression of proteins associated with DDR mechanisms compared with those of the littermate wild-type mice. In conclusion, our results suggest that the deletion of RAD6B may lead to abnormalities in DDR, thereby accelerating the degeneration of various structures in the cochlea and senescence and apoptosis of cochlea cells.
Collapse
Affiliation(s)
- Yangping Ma
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yanfeng Song
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Rong Shen
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Panpan Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Han Ding
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zhao Guo
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiangwen Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Degui Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
14
|
Sabirzhanov B, Makarevich O, Barrett JP, Jackson IL, Glaser EP, Faden AI, Stoica BA. Irradiation-Induced Upregulation of miR-711 Inhibits DNA Repair and Promotes Neurodegeneration Pathways. Int J Mol Sci 2020; 21:ijms21155239. [PMID: 32718090 PMCID: PMC7432239 DOI: 10.3390/ijms21155239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/16/2022] Open
Abstract
Radiotherapy for brain tumors induces neuronal DNA damage and may lead to neurodegeneration and cognitive deficits. We investigated the mechanisms of radiation-induced neuronal cell death and the role of miR-711 in the regulation of these pathways. We used in vitro and in vivo models of radiation-induced neuronal cell death. We showed that X-ray exposure in primary cortical neurons induced activation of p53-mediated mechanisms including intrinsic apoptotic pathways with sequential upregulation of BH3-only molecules, mitochondrial release of cytochrome c and AIF-1, as well as senescence pathways including upregulation of p21WAF1/Cip1. These pathways of irradiation-induced neuronal apoptosis may involve miR-711-dependent downregulation of pro-survival genes Akt and Ang-1. Accordingly, we demonstrated that inhibition of miR-711 attenuated degradation of Akt and Ang-1 mRNAs and reduced intrinsic apoptosis after neuronal irradiation; likewise, administration of Ang-1 was neuroprotective. Importantly, irradiation also downregulated two novel miR-711 targets, DNA-repair genes Rad50 and Rad54l2, which may impair DNA damage responses, amplifying the stimulation of apoptotic and senescence pathways and contributing to neurodegeneration. Inhibition of miR-711 rescued Rad50 and Rad54l2 expression after neuronal irradiation, enhancing DNA repair and reducing p53-dependent apoptotic and senescence pathways. Significantly, we showed that brain irradiation in vivo persistently elevated miR-711, downregulated its targets, including pro-survival and DNA-repair molecules, and is associated with markers of neurodegeneration, not only across the cortex and hippocampus but also specifically in neurons isolated from the irradiated brain. Our data suggest that irradiation-induced miR-711 negatively modulates multiple pro-survival and DNA-repair mechanisms that converge to activate neuronal intrinsic apoptosis and senescence. Using miR-711 inhibitors to block the development of these regulated neurodegenerative pathways, thus increasing neuronal survival, may be an effective neuroprotective strategy.
Collapse
Affiliation(s)
- Boris Sabirzhanov
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
- Correspondence: (B.S.); (B.A.S.)
| | - Oleg Makarevich
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
| | - James P. Barrett
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
| | - Isabel L. Jackson
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF 700-B, Baltimore, MD 21201, USA;
| | - Ethan P. Glaser
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
| | - Alan I. Faden
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
| | - Bogdan A. Stoica
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD 21201, USA
- Correspondence: (B.S.); (B.A.S.)
| |
Collapse
|