1
|
Sung Y, Gotina L, Kim KH, Lee JY, Shin S, Aziz H, Kang DM, Liu X, Hong NK, Lee HG, Lee JS, Ku H, Jeong C, Pae AN, Lim S, Chang YT, Kim YK. NeuM: A Neuron-Selective Probe Incorporates into Live Neuronal Membranes via Enhanced Clathrin-Mediated Endocytosis in Primary Neurons. Angew Chem Int Ed Engl 2024; 63:e202312942. [PMID: 38062619 DOI: 10.1002/anie.202312942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 01/10/2024]
Abstract
The development of a small-molecule probe designed to selectively target neurons would enhance the exploration of intricate neuronal structures and functions. Among such probes, NeuO stands out as the pioneer and has gained significant traction in the field of research. Nevertheless, neither the mechanism behind neuron-selectivity nor the cellular localization has been determined. Here, we introduce NeuM, a derivative of NeuO, designed to target neuronal cell membranes. Furthermore, we elucidate the mechanism behind the selective neuronal membrane trafficking that distinguishes neurons. In an aqueous buffer, NeuM autonomously assembles into micellar structures, leading to the quenching of its fluorescence (Φ=0.001). Upon exposure to neurons, NeuM micelles were selectively internalized into neuronal endosomes via clathrin-mediated endocytosis. Through the endocytic recycling pathway, NeuM micelles integrate into neuronal membrane, dispersing fluorescent NeuM molecules in the membrane (Φ=0.61). Molecular dynamics simulations demonstrated that NeuM, in comparison to NeuO, possesses optimal lipophilicity and molecular length, facilitating its stable incorporation into phospholipid layers. The stable integration of NeuM within neuronal membrane allows the prolonged monitoring of neurons, as well as the visualization of intricate neuronal structures.
Collapse
Affiliation(s)
- Yoonsik Sung
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Lizaveta Gotina
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Kyu Hyeon Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Jung Yeol Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seulgi Shin
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hira Aziz
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Dong Min Kang
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Xiao Liu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Na-Kyeong Hong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hong-Guen Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Hyeyeong Ku
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Cherlhyun Jeong
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ae Nim Pae
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Sungsu Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yun Kyung Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| |
Collapse
|
2
|
Kim HY, Sinha I, Sears KE, Kuperwasser C, Rauner G. Expanding the evo-devo toolkit: generation of 3D mammary tissue from diverse mammals. Development 2024; 151:dev202134. [PMID: 38276965 PMCID: PMC10905751 DOI: 10.1242/dev.202134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
The varying pathways of mammary gland development across species and evolutionary history are underexplored, largely due to a lack of model systems. Recent progress in organoid technology holds the promise of enabling in-depth studies of the developmental adaptations that have occurred throughout the evolution of different species, fostering beneficial phenotypes. The practical application of this technology for mammary glands has been mostly confined to rodents and humans. In the current study, we have successfully created next-generation 3D mammary gland organoids from eight eutherian mammals and the first branched organoid of a marsupial mammary gland. Using mammary organoids, we identified a role for ROCK protein in regulating branching morphogenesis, a role that manifests differently in organoids from different mammals. This finding demonstrates the utility of the 3D organoid model for understanding the evolution and adaptations of signaling pathways. These achievements highlight the potential for organoid models to expand our understanding of mammary gland biology and evolution, and their potential utility in studies of lactation or breast cancer.
Collapse
Affiliation(s)
- Hahyung Y. Kim
- Department of Developmental, Chemical & Molecular Biology, Tufts University, Boston, MA 02111, USA
| | - Ishani Sinha
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Karen E. Sears
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Chemical & Molecular Biology, Tufts University, Boston, MA 02111, USA
- Laboratory for the Convergence of Biomedical, Physical, and Engineering Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Gat Rauner
- Department of Developmental, Chemical & Molecular Biology, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
3
|
Baričević Z, Pongrac M, Ivaničić M, Hreščak H, Tomljanović I, Petrović A, Cojoc D, Mladinic M, Ban J. SOX2 and SOX9 Expression in Developing Postnatal Opossum ( Monodelphis domestica) Cortex. Biomolecules 2024; 14:70. [PMID: 38254670 PMCID: PMC10813269 DOI: 10.3390/biom14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
(1) Background: Central nervous system (CNS) development is characterized by dynamic changes in cell proliferation and differentiation. Key regulators of these transitions are the transcription factors such as SOX2 and SOX9. SOX2 is involved in the maintenance of progenitor cell state and neural stem cell multipotency, while SOX9, expressed in neurogenic niches, plays an important role in neuron/glia switch with predominant expression in astrocytes in the adult brain. (2) Methods: To validate SOX2 and SOX9 expression patterns in developing opossum (Monodelphis domestica) cortex, we used immunohistochemistry (IHC) and the isotropic fractionator method on fixed cortical tissue from comparable postnatal ages, as well as dissociated primary neuronal cultures. (3) Results: Neurons positive for both neuronal (TUJ1 or NeuN) and stem cell (SOX2) markers were identified, and their presence was confirmed with all methods and postnatal age groups (P4-6, P6-18, and P30) analyzed. SOX9 showed exclusive staining in non-neuronal cells, and it was coexpressed with SOX2. (4) Conclusions: The persistence of SOX2 expression in developing cortical neurons of M. domestica during the first postnatal month implies the functional role of SOX2 during neuronal differentiation and maturation, which was not previously reported in opossums.
Collapse
Affiliation(s)
- Zrinko Baričević
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.P.); (M.I.); (H.H.); (I.T.); (A.P.); (M.M.)
| | - Marta Pongrac
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.P.); (M.I.); (H.H.); (I.T.); (A.P.); (M.M.)
| | - Matea Ivaničić
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.P.); (M.I.); (H.H.); (I.T.); (A.P.); (M.M.)
| | - Helena Hreščak
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.P.); (M.I.); (H.H.); (I.T.); (A.P.); (M.M.)
| | - Ivana Tomljanović
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.P.); (M.I.); (H.H.); (I.T.); (A.P.); (M.M.)
| | - Antonela Petrović
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.P.); (M.I.); (H.H.); (I.T.); (A.P.); (M.M.)
| | - Dan Cojoc
- CNR-IOM, Materials Foundry, National Research Council of Italy, 34149 Trieste, Italy;
| | - Miranda Mladinic
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.P.); (M.I.); (H.H.); (I.T.); (A.P.); (M.M.)
| | - Jelena Ban
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.P.); (M.I.); (H.H.); (I.T.); (A.P.); (M.M.)
| |
Collapse
|
4
|
Baričević Z, Ayar Z, Leitao SM, Mladinic M, Fantner GE, Ban J. Label-Free Long-Term Methods for Live Cell Imaging of Neurons: New Opportunities. BIOSENSORS 2023; 13:404. [PMID: 36979616 PMCID: PMC10046152 DOI: 10.3390/bios13030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Time-lapse light microscopy combined with in vitro neuronal cultures has provided a significant contribution to the field of Developmental Neuroscience. The establishment of the neuronal polarity, i.e., formation of axons and dendrites, key structures responsible for inter-neuronal signaling, was described in 1988 by Dotti, Sullivan and Banker in a milestone paper that continues to be cited 30 years later. In the following decades, numerous fluorescently labeled tags and dyes were developed for live cell imaging, providing tremendous advancements in terms of resolution, acquisition speed and the ability to track specific cell structures. However, long-term recordings with fluorescence-based approaches remain challenging because of light-induced phototoxicity and/or interference of tags with cell physiology (e.g., perturbed cytoskeletal dynamics) resulting in compromised cell viability leading to cell death. Therefore, a label-free approach remains the most desirable method in long-term imaging of living neurons. In this paper we will focus on label-free high-resolution methods that can be successfully used over a prolonged period. We propose novel tools such as scanning ion conductance microscopy (SICM) or digital holography microscopy (DHM) that could provide new insights into live cell dynamics during neuronal development and regeneration after injury.
Collapse
Affiliation(s)
- Zrinko Baričević
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.M.)
| | - Zahra Ayar
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland; (Z.A.); (S.M.L.)
| | - Samuel M. Leitao
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland; (Z.A.); (S.M.L.)
| | - Miranda Mladinic
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.M.)
| | - Georg E. Fantner
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland; (Z.A.); (S.M.L.)
| | - Jelena Ban
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.M.)
| |
Collapse
|
5
|
Ban J, Mladinic M. Monodelphis domestica: a new source of mammalian primary neurons in vitro. Neural Regen Res 2022; 17:1726-1727. [PMID: 35017420 PMCID: PMC8820690 DOI: 10.4103/1673-5374.332139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Jelena Ban
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Miranda Mladinic
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
6
|
Petrović A, Ban J, Ivaničić M, Tomljanović I, Mladinic M. The Role of ATF3 in Neuronal Differentiation and Development of Neuronal Networks in Opossum Postnatal Cortical Cultures. Int J Mol Sci 2022; 23:ijms23094964. [PMID: 35563354 PMCID: PMC9100162 DOI: 10.3390/ijms23094964] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
Activating transcription factor 3 (ATF3), a member of the ATF/cAMP response element-binding (CREB) family, is upregulated by various intracellular and extracellular signals such as injury and signals related to cell proliferation. ATF3 also belongs to the regeneration-associated genes (RAG) group of transcription factors. RAG and ATF/CREB transcription factors that play an important role in embryonic neuronal development and PNS regeneration may also be involved in postnatal neuronal differentiation and development, as well as in the regeneration of the injured CNS. Here we investigated the effect of ATF3 in differentiation, neural outgrowth, network formation, and regeneration after injury using postnatal dissociated cortical neurons derived from neonatal opossums (Monodelphis domestica). Our results show that RAG and ATF genes are differentially expressed in early differentiated neurons versus undifferentiated neurospheres and that many members of those families, ATF3 in particular, are upregulated in cortical cultures obtained from younger animals that have the ability to fully functionally regenerate spinal cord after injury. In addition, we observed different intracellular localization of ATF3 that shifts from nuclear (in neuronal progenitors) to cytoplasmic (in more mature neurons) during neuronal differentiation. The ATF3 inhibition, pharmacological or by specific antibody, reduced the neurite outgrowth and differentiation and caused increased cell death in early differentiating cortical neuronal cultures, suggesting the importance of ATF3 in the CNS development of neonatal opossums. Finally, we investigated the regeneration capacity of primary cortical cultures after mechanical injury using the scratch assay. Remarkably, neonatal opossum-derived cultures retain their capacity to regenerate for up to 1 month in vitro. Inhibition of ATF3 correlates with reduced neurite outgrowth and regeneration after injury. These results indicate that ATF3, and possibly other members of RAG and ATF/CREB family of transcription factors, have an important role both during cortical postnatal development and in response after injury.
Collapse
|
7
|
Epigenetic clock and methylation studies in marsupials: opossums, Tasmanian devils, kangaroos, and wallabies. GeroScience 2022; 44:1825-1845. [PMID: 35449380 PMCID: PMC9213610 DOI: 10.1007/s11357-022-00569-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/10/2022] [Indexed: 11/13/2022] Open
Abstract
The opossum (Monodelphis domestica), with its sequenced genome, ease of laboratory care and experimental manipulation, and unique biology, is the most used laboratory marsupial. Using the mammalian methylation array, we generated DNA methylation data from n = 100 opossum samples from the ear, liver, and tail. We contrasted postnatal development and later aging effects in the opossum methylome with those in mouse (Mus musculus, C57BL/6 J strain) and other marsupial species such as Tasmanian devil, kangaroos, and wallabies. While the opossum methylome is similar to that of mouse during postnatal development, it is distinct from that shared by other mammals when it comes to the age-related gain of methylation at target sites of polycomb repressive complex 2. Our immunohistochemical staining results provide additional support for the hypothesis that PRC2 activity increases with later aging in mouse tissues but remains constant in opossum tissues. We present several epigenetic clocks for opossums that are distinguished by their compatibility with tissue type (pan-tissue and blood clock) and species (opossum and human). Two dual-species human-opossum pan-tissue clocks accurately measure chronological age and relative age, respectively. The human-opossum epigenetic clocks are expected to provide a significant boost to the attractiveness of opossum as a biological model. Additional epigenetic clocks for Tasmanian devil, red kangaroos and other species of the genus Macropus may aid species conservation efforts.
Collapse
|
8
|
Guo Y, Zhao J, Xu Q, Gao S, Liu M, Zhang C, Schinckel AP, Zhou B. Identification of Functional Single Nucleotide Polymorphisms in the Porcine SLC6A4 Gene Associated with Aggressive Behavior in Weaned Pigs after Mixing. J Anim Sci 2022; 100:6568350. [PMID: 35419600 PMCID: PMC9115910 DOI: 10.1093/jas/skac131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/08/2022] [Indexed: 11/12/2022] Open
Abstract
Variation in genes of the serotonergic system influence aggressive behavior by affecting serotonin levels in the central and cortical nervous system. SLC6A4 (serotonin transporter) is a master regulator of 5-HT signaling and involved in the regulation of aggressive behavior in humans and rodents. To identify potential functional single nucleotide polymorphisms (SNPs) for the porcine SLC6A4 gene associated with aggressive behavior, a total of 500 pigs (268 barrows and 232 gilts) were selected and mixed in 51 pens. Their behavior was recorded and observed for 72 h after mixing. Based on a composite aggressive score (CAS), the most aggressive and the least aggressive pigs within each pen were selected separately (a total of 204 pigs). Ear tissue was sampled to extract genomic DNA. Eight SNPs in the 5'-flanking region, coding region, and 3'-untranslated region (3'-UTR) of SLC6A4 were genotyped, of which 6 SNPs had significant differences (P < 0.05) in allele frequency between the most aggressive and least aggressive pigs. Luciferase activity was greater in plasmids of genotype GG than plasmids of genotype CC of rs345058216 (P < 0.01). Computational analysis nominated MAZ as putative transcription factor (TF) with higher probability to bind the SLC6A4 promoter at the SNP (rs345058216) site. Also, we demonstrated that MAZ overexpression modulates SLC6A4 promoter activity in allele-specific manner with an in vitro assay. In addition, we demonstrated that SLC6A4 was a direct target of miR-671-5p. The dual luciferase reporter gene assay and cell transfection were performed to examine the role of miR-671-5p in regulating SLC6A4 expression. The luciferase assays revealed that the SNP rs332335871 affects regulation of miR-671-5p in SLC6A4 expression. After overexpression of miR-671-5p in porcine primary neural cells, the SLC6A4 mRNA levels can be significantly reduced. In conclusion, we here found that miR-671-5p and MAZ mediated porcine SLC6A4 expression level, which provides the possible molecular mechanism of aggressive behavior.
Collapse
Affiliation(s)
- Yanli Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Siyuan Gao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, USA
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Tomljanović I, Petrović A, Ban J, Mladinic M. Proteomic analysis of opossum Monodelphis domestica spinal cord reveals the changes of proteins related to neurodegenerative diseases during developmental period when neuroregeneration stops being possible. Biochem Biophys Res Commun 2022; 587:85-91. [PMID: 34864550 DOI: 10.1016/j.bbrc.2021.11.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022]
Abstract
One of the major challenges of modern neurobiology concerns the inability of the adult mammalian central nervous system (CNS) to regenerate and repair itself after injury. It is still unclear why the ability to regenerate CNS is lost during evolution and development and why it becomes very limited in adult mammals. A convenient model to study cellular and molecular basis of this loss is neonatal opossum (Monodelphis domestica). Opossums are marsupials that are born very immature with the unique possibility to successfully regenerate postnatal spinal cord after injury in the first two weeks of their life, after which this ability abbruptly stops. Using comparative proteomic approach we identified the proteins that are differentially distributed in opossum spinal tissue that can and cannot regenerate after injury, among which stand out the proteins related to neurodegenerative diseases (NDD), such as Huntington, Parkinson and Alzheimer's disease, previously detected by comparative transcriptomics on the analog tissue. The different distribution of the selected proteins detected by comparative proteomics was further confirmed by Western blot (WB), and the changes in the expression of related genes were analysed by quantitative reverse transcription PCR (qRT-PCR). Furthermore, we explored the cellular localization of the selected proteins using immunofluorescent microscopy. To our knowledge, this is the first report on proteins differentially present in developing, non-injured mammalian spinal cord tissue with different regenerative capacities. The results of this study indicate that the proteins known to have an important role in the pathophysiology of neurodegeneration in aged CNS, could also have an important phyisological role during CNS postnatal development and in neuroregeneration process.
Collapse
Affiliation(s)
- Ivana Tomljanović
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Antonela Petrović
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Jelena Ban
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Miranda Mladinic
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia.
| |
Collapse
|