1
|
Wahaab A, Mustafa BE, Hameed M, Batool H, Tran Nguyen Minh H, Tawaab A, Shoaib A, Wei J, Rasgon JL. An Overview of Zika Virus and Zika Virus Induced Neuropathies. Int J Mol Sci 2024; 26:47. [PMID: 39795906 PMCID: PMC11719530 DOI: 10.3390/ijms26010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Flaviviruses pose a major public health concern across the globe. Among them, Zika virus (ZIKV) is an emerging and reemerging arthropod-borne flavivirus that has become a major international public health problem following multiple large outbreaks over the past two decades. The majority of infections caused by ZIKV exhibit mild symptoms. However, the virus has been found to be associated with a variety of congenital neural abnormalities, including microcephaly in children and Guillain-Barre syndrome in adults. The exact prediction of the potential of ZIKV transmission is still enigmatic and underlines the significance of routine detection of the virus in suspected areas. ZIKV transmission from mother to fetus (including fetal abnormalities), viral presence in immune-privileged areas, and sexual transmission demonstrate the challenges in understanding the factors governing viral persistence and pathogenesis. This review illustrates the transmission patterns, epidemiology, control strategies (through vaccines, antivirals, and vectors), oncolytic aspects, molecular insights into neuro-immunopathogenesis, and other neuropathies caused by ZIKV. Additionally, we summarize in vivo and in vitro models that could provide an important platform to study ZIKV pathogenesis and the underlying governing cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Abdul Wahaab
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Bahar E Mustafa
- School of Veterinary Science, Faculty of Science, The University of Melbourne, Melbourne, VIC 3030, Australia;
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
- Center for Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Department of Otolaryngology-Head and Neck Surgery, Department of Pathology and Immunology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hira Batool
- Chughtai Lab, Head Office, 7-Jail Road, Main Gulberg, Lahore 54000, Pakistan;
| | - Hieu Tran Nguyen Minh
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Abdul Tawaab
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Anam Shoaib
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Jason L. Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Rivera-Franco N, López-Alvarez D, Castillo A, Aristizabal E, Puiu D, Salzberg SL, Pardo CA, Parra B. Genomic variability in Zika virus in GBS cases in Colombia. PLoS One 2024; 19:e0313545. [PMID: 39561198 PMCID: PMC11575819 DOI: 10.1371/journal.pone.0313545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024] Open
Abstract
Major clusters of Guillain-Barré Syndrome (GBS) emerged during the Zika virus (ZIKV) outbreaks in the South Pacific and the Americas from 2014 to 2016. The factors contributing to GBS susceptibility in ZIKV infection remain unclear, although considerations of viral variation, patient susceptibility, environmental influences, and other potential factors have been hypothesized. Studying the role of viral genetic factors has been challenging due to the low viral load and rapid viral clearance from the blood after the onset of Zika symptoms. The prolonged excretion of ZIKV in urine by the time of GBS onset, when the virus is no longer present in the blood, provides an opportunity to unravel whether specific ZIKV mutations are related to the development of GBS in certain individuals. This study aimed to investigate the association between specific ZIKV genotypes and the development of GBS, taking advantage of a unique collection of ZIKV-positive urine samples obtained from GBS cases and controls during the 2016 ZIKV outbreak in Colombia. Utilizing Oxford-Nanopore technology, we conducted complete genome sequencing of ZIKV in biological samples from 15 patients with GBS associated with ZIKV and 17 with ZIKV infection without neurological complications. ZIKV genotypes in Colombia exhibited distribution across three clades (average bootstrap of 90.9±14.9%), with two clades dominating the landscape. A comparative analysis of ZIKV genomes from GBS and non-neurological complications, alongside 1368 previously reported genomes, revealed no significant distinctions between the two groups. Both genotypes were similarly distributed among observed clades in Colombia. Furthermore, no variations were identified in the amino acid composition of the viral genome between the two groups. Our findings suggest that GBS in ZIKV infection is perhaps associated with patient susceptibility and/or other para- or post-infectious immune-mediated mechanisms rather than with specific ZIKV genome variations.
Collapse
Affiliation(s)
- Nelson Rivera-Franco
- Laboratorio de Técnicas y Análisis Ómicos-TAOLab/CiBioFi, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali, Valle del Cauca, Colombia
- Grupo VIREM-Virus Emergentes y Enfermedad, Escuela de Ciencias Básicas, Facultad de Salud, Universidad del Valle, Cali, Valle del Cauca, Colombia
- Department of Neurology & Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Diana López-Alvarez
- Laboratorio de Técnicas y Análisis Ómicos-TAOLab/CiBioFi, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali, Valle del Cauca, Colombia
- Grupo VIREM-Virus Emergentes y Enfermedad, Escuela de Ciencias Básicas, Facultad de Salud, Universidad del Valle, Cali, Valle del Cauca, Colombia
- Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Palmira, Valle del Cauca, Colombia
| | - Andrés Castillo
- Laboratorio de Técnicas y Análisis Ómicos-TAOLab/CiBioFi, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali, Valle del Cauca, Colombia
| | - Erica Aristizabal
- Grupo VIREM-Virus Emergentes y Enfermedad, Escuela de Ciencias Básicas, Facultad de Salud, Universidad del Valle, Cali, Valle del Cauca, Colombia
| | - Daniela Puiu
- Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Steven L Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Carlos A Pardo
- Department of Neurology & Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Beatriz Parra
- Grupo VIREM-Virus Emergentes y Enfermedad, Escuela de Ciencias Básicas, Facultad de Salud, Universidad del Valle, Cali, Valle del Cauca, Colombia
| |
Collapse
|
3
|
Barbosa MD, Costa A, Prieto-Oliveira P, Andreata-Santos R, Peter CM, Zanotto PMA, Janini LMR. Proposal of Model for Evaluation of Viral Kinetics of African/Asian/Brazilian- Zika virus Strains (Step Growth Curve) in Trophoblastic Cell Lines. Viruses 2023; 15:1446. [PMID: 37515134 PMCID: PMC10386092 DOI: 10.3390/v15071446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The Zika virus (ZIKV) epidemic brought new discoveries regarding arboviruses, especially flaviviruses, as ZIKV was described as sexually and vertically transmitted. The latter shows severe consequences for the embryo/fetus, such as congenital microcephaly and deficiency of the neural system, currently known as Congenital ZIKV Syndrome (CZS). To better understand ZIKV dynamics in trophoblastic cells present in the first trimester of pregnancy (BeWo, HTR-8, and control cell HuH-7), an experiment of viral kinetics was performed for African MR766 low passage and Asian-Brazilian IEC ZIKV lineages. The results were described independently and demonstrated that the three placental cells lines are permissive and susceptible to ZIKV. We noticed cytopathic effects that are typical in in vitro viral infection in BeWo and HTR-8. Regarding kinetics, MR766lp showed peaks of viral loads in 24 and 48 hpi for all cell types tested, as well as marked cells death after peak production. On the other hand, the HTR-8 lineage inoculated with ZIKV-IEC exhibited increased viral production in 144 hpi, with a peak between 24 and 96 hpi. Furthermore, IEC had peak variations of viral production for BeWo in 144 hpi. Considering such in vitro results, the hypothesis that maternal fetal transmission is probably a way of virus transmission between the mother and the embryo/fetus is maintained.
Collapse
Affiliation(s)
- Márcia Duarte Barbosa
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-000, Brazil
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Discipline of Microbiology, Federal University of São Paulo, São Paulo 04039-032, Brazil
| | - Anderson Costa
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Discipline of Microbiology, Federal University of São Paulo, São Paulo 04039-032, Brazil
| | - Paula Prieto-Oliveira
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, NC 28223, USA
| | - Robert Andreata-Santos
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Discipline of Microbiology, Federal University of São Paulo, São Paulo 04039-032, Brazil
| | - Cristina M Peter
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Discipline of Microbiology, Federal University of São Paulo, São Paulo 04039-032, Brazil
| | - Paolo M A Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Luiz Mario Ramos Janini
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Discipline of Microbiology, Federal University of São Paulo, São Paulo 04039-032, Brazil
| |
Collapse
|
4
|
He J, Yang L, Chang P, Yang S, Wang Y, Lin S, Tang Q, Zhang Y. Zika Virus Induces Degradation of the Numb Protein Required through Embryonic Neurogenesis. Viruses 2023; 15:1258. [PMID: 37376558 DOI: 10.3390/v15061258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus and causes an infection associated with congenital Zika syndrome and Guillain-Barre syndrome. The mechanism of ZIKV-mediated neuropathogenesis is not well understood. In this study, we discovered that ZIKV induces degradation of the Numb protein, which plays a crucial role in neurogenesis by allowing asymmetric cell division during embryonic development. Our data show that ZIKV reduced the Numb protein level in a time- and dose-dependent manner. However, ZIKV infection appears to have minimal effect on the Numb transcript. Treatment of ZIKV-infected cells with a proteasome inhibitor restores the Numb protein level, which suggests the involvement of the ubiquitin-proteasome pathway. In addition, ZIKV infection shortens the half-life of the Numb protein. Among the ZIKV proteins, the capsid protein significantly reduces the Numb protein level. Immunoprecipitation of the Numb protein co-precipitates the capsid protein, indicating the interaction between these two proteins. These results provide insights into the ZIKV-cell interaction that might contribute to its impact on neurogenesis.
Collapse
Affiliation(s)
- Jia He
- Molecular Virology Laboratory, Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Liping Yang
- Molecular Virology Laboratory, Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Peixi Chang
- Molecular Virology Laboratory, Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Shixing Yang
- Molecular Virology Laboratory, Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Yu Wang
- Molecular Virology Laboratory, Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Shaoli Lin
- Molecular Virology Laboratory, Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Yanjin Zhang
- Molecular Virology Laboratory, Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
5
|
Leon KE, Khalid MM, Flynn RA, Fontaine KA, Nguyen TT, Kumar GR, Simoneau CR, Tomar S, Jimenez-Morales D, Dunlap M, Kaye J, Shah PS, Finkbeiner S, Krogan NJ, Bertozzi C, Carette JE, Ott M. Nuclear accumulation of host transcripts during Zika Virus Infection. PLoS Pathog 2023; 19:e1011070. [PMID: 36603024 PMCID: PMC9847913 DOI: 10.1371/journal.ppat.1011070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/18/2023] [Accepted: 12/17/2022] [Indexed: 01/06/2023] Open
Abstract
Zika virus (ZIKV) infects fetal neural progenitor cells (NPCs) causing severe neurodevelopmental disorders in utero. Multiple pathways involved in normal brain development are dysfunctional in infected NPCs but how ZIKV centrally reprograms these pathways remains unknown. Here we show that ZIKV infection disrupts subcellular partitioning of host transcripts critical for neurodevelopment in NPCs and functionally link this process to the up-frameshift protein 1 (UPF1). UPF1 is an RNA-binding protein known to regulate decay of cellular and viral RNAs and is less expressed in ZIKV-infected cells. Using infrared crosslinking immunoprecipitation and RNA sequencing (irCLIP-Seq), we show that a subset of mRNAs loses UPF1 binding in ZIKV-infected NPCs, consistent with UPF1's diminished expression. UPF1 target transcripts, however, are not altered in abundance but in subcellular localization, with mRNAs accumulating in the nucleus of infected or UPF1 knockdown cells. This leads to diminished protein expression of FREM2, a protein required for maintenance of NPC identity. Our results newly link UPF1 to the regulation of mRNA transport in NPCs, a process perturbed during ZIKV infection.
Collapse
Affiliation(s)
- Kristoffer E. Leon
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
- Medical Scientist Training Program, University of California, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, United States of America
| | - Mir M. Khalid
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Ryan A. Flynn
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Krystal A. Fontaine
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Thong T. Nguyen
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - G. Renuka Kumar
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Camille R. Simoneau
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, United States of America
| | - Sakshi Tomar
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - David Jimenez-Morales
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Mariah Dunlap
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Julia Kaye
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Priya S. Shah
- Departments of Chemical Engineering and Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Steven Finkbeiner
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, United States of America
- Departments of Neurology and Physiology, University of California, San Francisco, California, United States of America
| | - Nevan J. Krogan
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Carolyn Bertozzi
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| |
Collapse
|
6
|
Zika Virus Exploits Lipid Rafts to Infect Host Cells. Viruses 2022; 14:v14092059. [PMID: 36146865 PMCID: PMC9506595 DOI: 10.3390/v14092059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
Several flaviviruses such as Hepatitis C virus, West Nile virus, Dengue virus and Japanese Encephalitis virus exploit the raft platform to enter host cells whereas the involvement of lipid rafts in Zika virus–host cell interaction has not yet been demonstrated. Zika virus disease is caused by a flavivirus transmitted by Aedes spp. Mosquitoes, although other mechanisms such as blood transfusion, sexual and maternal–fetal transmission have been demonstrated. Symptoms are generally mild, such as fever, rash, joint pain and conjunctivitis, but neurological complications, including Guillain-Barré syndrome, have been associated to this viral infection. During pregnancy, it can cause microcephaly and other congenital abnormalities in the fetus, as well as pregnancy complications, representing a serious health threat. In this study, we show for the first time that Zika virus employs cell membrane lipid rafts as a portal of entry into Vero cells. We previously demonstrated that the antifungal drug Amphotericin B (AmphB) hampers a microbe–host cell interaction through the disruption of lipid raft architecture. Here, we found that Amphotericin B by the same mechanism of action inhibits both Zika virus cell entry and replication. These data encourage further studies on the off-label use of Amphotericin B in Zika virus infections as a new and alternate antiviral therapy.
Collapse
|
7
|
Zheng J, Yue R, Yang R, Wu Q, Wu Y, Huang M, Chen X, Lin W, Huang J, Chen X, Jiang Y, Yang B, Liao Y. Visualization of Zika Virus Infection via a Light-Initiated Bio-Orthogonal Cycloaddition Labeling Strategy. Front Bioeng Biotechnol 2022; 10:940511. [PMID: 35875483 PMCID: PMC9305201 DOI: 10.3389/fbioe.2022.940511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Zika virus (ZIKV) is a re-emerging flavivirus that leads to devastating consequences for fetal development. It is crucial to visualize the pathogenicity activities of ZIKV ranging from infection pathways to immunity processes, but the accurate labeling of ZIKV remains challenging due to the lack of a reliable labeling technique. We introduce the photo-activated bio-orthogonal cycloaddition to construct a fluorogenic probe for the labeling and visualizing of ZIKV. Via a simple UV photoirradiation, the fluorogenic probes could be effectively labeled on the ZIKV. We demonstrated that it can be used for investigating the interaction between ZIKV and diverse cells and avoiding the autofluorescence phenomenon in traditional immunofluorescence assay. Thus, this bioorthogonal-enabled labeling strategy can serve as a promising approach to monitor and understand the interaction between the ZIKV and host cells.
Collapse
Affiliation(s)
- Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Rui Yue
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Qikang Wu
- Department of Clinical Laboratory, The First People’s Hospital of Foshan, Foshan, China
- Department of Burn Surgery & Department of Rheumatology, The First People’s Hospital of Foshan, Foshan, China
| | - Yunxia Wu
- Department of Clinical Laboratory, The First People’s Hospital of Foshan, Foshan, China
- Department of Burn Surgery & Department of Rheumatology, The First People’s Hospital of Foshan, Foshan, China
| | - Mingxing Huang
- Department of Infectious Disease, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xu Chen
- Department of Infectious Disease, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Weiqiang Lin
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jialin Huang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xiaodong Chen
- Department of Clinical Laboratory, The First People’s Hospital of Foshan, Foshan, China
- Department of Burn Surgery & Department of Rheumatology, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Xiaodong Chen, ; Yideng Jiang, ; Bin Yang, ; Yuhui Liao,
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
- *Correspondence: Xiaodong Chen, ; Yideng Jiang, ; Bin Yang, ; Yuhui Liao,
| | - Bin Yang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Xiaodong Chen, ; Yideng Jiang, ; Bin Yang, ; Yuhui Liao,
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Disease, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
- *Correspondence: Xiaodong Chen, ; Yideng Jiang, ; Bin Yang, ; Yuhui Liao,
| |
Collapse
|
8
|
Pathogenesis and Manifestations of Zika Virus-Associated Ocular Diseases. Trop Med Infect Dis 2022; 7:tropicalmed7060106. [PMID: 35736984 PMCID: PMC9229560 DOI: 10.3390/tropicalmed7060106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/18/2022] Open
Abstract
Zika virus (ZIKV) is mosquito-borne flavivirus that caused a significant public health concern in French Polynesia and South America. The two major complications that gained the most media attention during the ZIKV outbreak were Guillain-Barré syndrome (GBS) and microcephaly in newborn infants. The two modes of ZIKV transmission are the vector-borne and non-vector borne modes of transmission. Aedes aegypti and Aedes albopictus are the most important vectors of ZIKV. ZIKV binds to surface receptors on permissive cells that support infection and replication, such as neural progenitor cells, dendritic cells, dermal fibroblasts, retinal pigment epithelial cells, endothelial cells, macrophages, epidermal keratinocytes, and trophoblasts to cause infection. The innate immune response to ZIKV infection is mediated by interferons and natural killer cells, whereas the adaptive immune response is mediated by CD8+T cells, Th1 cells, and neutralizing antibodies. The non-structural proteins of ZIKV, such as non-structural protein 5, are involved in the evasion of the host's immune defense mechanisms. Ocular manifestations of ZIKV arise from the virus' ability to cross both the blood-brain barrier and blood-retinal barrier, as well as the blood-aqueous barrier. Most notably, this results in the development of GBS, a rare neurological complication in acute ZIKV infection. This can yield ocular symptoms and signs. Additionally, infants to whom ZIKV is transmitted congenitally develop congenital Zika syndrome (CZS). The ocular manifestations are widely variable, and include nonpurulent conjunctivitis, anterior uveitis, keratitis, trabeculitis, congenital glaucoma, microphthalmia, hypoplastic optic disc, and optic nerve pallor. There are currently no FDA approved therapeutic agents for treating ZIKV infections and, as such, a meticulous ocular examination is an important aspect of the diagnosis. This review utilized several published articles regarding the ocular findings of ZIKV, antiviral immune responses to ZIKV infection, and the pathogenesis of ocular manifestations in individuals with ZIKV infection. This review summarizes the current knowledge on the viral immunology of ZIKV, interactions between ZIKV and the host's immune defense mechanism, pathological mechanisms, as well as anterior and posterior segment findings associated with ZIKV infection.
Collapse
|