1
|
Mancuso S, Bhalerao A, Cucullo L. Advances and Challenges of Bioassembly Strategies in Neurovascular In Vitro Modeling: An Overview of Current Technologies with a Focus on Three-Dimensional Bioprinting. Int J Mol Sci 2024; 25:11000. [PMID: 39456783 PMCID: PMC11506837 DOI: 10.3390/ijms252011000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Bioassembly encompasses various techniques such as bioprinting, microfluidics, organoids, and self-assembly, enabling advances in tissue engineering and regenerative medicine. Advancements in bioassembly technologies have enabled the precise arrangement and integration of various cell types to more closely mimic the complexity functionality of the neurovascular unit (NVU) and that of other biodiverse multicellular tissue structures. In this context, bioprinting offers the ability to deposit cells in a spatially controlled manner, facilitating the construction of interconnected networks. Scaffold-based assembly strategies provide structural support and guidance cues for cell growth, enabling the formation of complex bio-constructs. Self-assembly approaches utilize the inherent properties of cells to drive the spontaneous organization and interaction of neuronal and vascular components. However, recreating the intricate microarchitecture and functional characteristics of a tissue/organ poses additional challenges. Advancements in bioassembly techniques and materials hold great promise for addressing these challenges. The further refinement of bioprinting technologies, such as improved resolution and the incorporation of multiple cell types, can enhance the accuracy and complexity of the biological constructs; however, developing bioinks that support the growth of cells, viability, and functionality while maintaining compatibility with the bioassembly process remains an unmet need in the field, and further advancements in the design of bioactive and biodegradable scaffolds will aid in controlling cell adhesion, differentiation, and vascularization within the engineered tissue. Additionally, integrating advanced imaging and analytical techniques can provide real-time monitoring and characterization of bioassembly, aiding in quality control and optimization. While challenges remain, ongoing research and technological advancements propel the field forward, paving the way for transformative developments in neurovascular research and tissue engineering. This work provides an overview of the advancements, challenges, and future perspectives in bioassembly for fabricating neurovascular constructs with an add-on focus on bioprinting technologies.
Collapse
Affiliation(s)
- Salvatore Mancuso
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA; (S.M.); (A.B.)
| | - Aditya Bhalerao
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA; (S.M.); (A.B.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, 586 Pioneer Dr, 460 O’Dowd Hall, Rochester, MI 48309, USA
| |
Collapse
|
2
|
Miao K, Xia X, Zou Y, Shi B. Small Scale, Big Impact: Nanotechnology-Enhanced Drug Delivery for Brain Diseases. Mol Pharm 2024; 21:3777-3799. [PMID: 39038108 DOI: 10.1021/acs.molpharmaceut.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Central nervous system (CNS) diseases, ranging from brain cancers to neurodegenerative disorders like dementia and acute conditions such as strokes, have been heavily burdening healthcare and have a direct impact on patient quality of life. A significant hurdle in developing effective treatments is the presence of the blood-brain barrier (BBB), a highly selective barrier that prevents most drugs from reaching the brain. The tight junctions and adherens junctions between the endothelial cells and various receptors expressed on the cells make the BBB form a nonfenestrated and highly selective structure that is crucial for brain homeostasis but complicates drug delivery. Nanotechnology offers a novel pathway to circumvent this barrier, with nanoparticles engineered to ferry drugs across the BBB, protect drugs from degradation, and deliver medications to the designated area. After years of development, nanoparticle optimization, including sizes, shapes, surface modifications, and targeting ligands, can enable nanomaterials tailored to specific brain drug delivery settings. Moreover, smart nano drug delivery systems can respond to endogenous and exogenous stimuli that control subsequent drug release. Here, we address the importance of the BBB in brain disease treatment, summarize different delivery routes for brain drug delivery, discuss the cutting-edge nanotechnology-based strategies for brain drug delivery, and further offer valuable insights into how these innovations in nanoparticle technology could revolutionize the treatment of CNS diseases, presenting a promising avenue for noninvasive, targeted therapeutic interventions.
Collapse
Affiliation(s)
- Kaiting Miao
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xue Xia
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yan Zou
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Bingyang Shi
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
3
|
Raghav D, Shukla S, Jadiya P. Mitochondrial calcium signaling in non-neuronal cells: Implications for Alzheimer's disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167169. [PMID: 38631408 PMCID: PMC11111334 DOI: 10.1016/j.bbadis.2024.167169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Mitochondrial dysregulation is pivotal in Alzheimer's disease (AD) pathogenesis. Calcium governs vital mitochondrial processes impacting energy conversion, oxidative stress, and cell death signaling. Disruptions in mitochondrial calcium (mCa2+) handling induce calcium overload and trigger the opening of mitochondrial permeability transition pore, ensuing energy deprivation and resulting in AD-related neuronal cell death. However, the role of mCa2+ in non-neuronal cells (microglia, astrocytes, oligodendrocytes, endothelial cells, and pericytes) remains elusive. This review provides a comprehensive exploration of mitochondrial heterogeneity and calcium signaling, offering insights into specific differences among various brain cell types in AD.
Collapse
Affiliation(s)
- Darpan Raghav
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Shatakshi Shukla
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
4
|
Kim YJ, Shin YK, Seo E, Seol GH. Astrocytes Reduce Store-Operated Ca 2+ Entry in Microglia under the Conditions of an Inflammatory Stimulus and Muscarinic Receptor Blockade. Pharmaceuticals (Basel) 2022; 15:ph15121521. [PMID: 36558972 PMCID: PMC9783111 DOI: 10.3390/ph15121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammation and loss of cholinergic transmission are involved in neurodegenerative diseases, but possible interactions between them within neurons, astrocytes, and microglia have not yet been investigated. We aimed to compare store-operated Ca2+ entry (SOCE) in neurons, astrocytes, and microglia following cholinergic dysfunction in combination with (or without) an inflammatory stimulus and to investigate the effects of linalyl acetate (LA) on this process. We used the SH-SY5Y, U373, and BV2 cell lines related to neurons, astrocytes, and microglia, respectively. Scopolamine or lipopolysaccharide (LPS) was used to antagonize the muscarinic receptors or induce inflammatory responses, respectively. The concentration of intracellular Ca2+ was measured using Fura-2 AM. Treatment with scopolamine and LPS significantly increased SOCE in the neuron-like cells and microglia but not in the scopolamine-pretreated astrocytes. LA significantly reduced SOCE in the scopolamine-pretreated neuron-like cells and microglia exposed to LPS, which was partially inhibited by the Na+-K+ ATPase inhibitor ouabain and the Na+/Ca2+ exchanger (NCX) inhibitor Ni2+. Notably, SOCE was significantly reduced in the LPS plus scopolamine-pretreated cells mixed with astrocytes and microglia, with a two-fold increase in the applied number of astrocytes. LA may be useful in protecting neurons and microglia by reducing elevated SOCE that is induced by inflammatory responses and inhibiting the muscarinic receptors via Na+-K+ ATPase and the forward mode of NCX. Astrocytes may protect microglia by reducing increased SOCE under the conditions of inflammation and a muscarinic receptor blockade.
Collapse
Affiliation(s)
- Yoo Jin Kim
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea
- BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - You Kyoung Shin
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Eunhye Seo
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea
- BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Correspondence:
| |
Collapse
|
5
|
Ding J, Huang J, Tang X, Shen L, Hu S, He J, Liu T, Yu Z, Liu Y, Wang Q, Wang J, Zhao N, Qi X, Huang J. Low and high dose methamphetamine differentially regulate synaptic structural plasticity in cortex and hippocampus. Front Cell Neurosci 2022; 16:1003617. [PMID: 36406748 PMCID: PMC9666390 DOI: 10.3389/fncel.2022.1003617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/19/2022] [Indexed: 03/24/2024] Open
Abstract
Psychostimulants, such as methamphetamine (METH) can induce structural remodeling of synapses by remodeling presynaptic and postsynaptic morphology. Escalating or long-lasting high dose METH accounts for neurodegeneration by targeting multiple neurotransmitters. However, the effects of low dose METH on synaptic structure and the modulation mechanism remain elusive. This study aims to assess the effects of low dose (2 mg/kg) and high dose (10 mg/kg) of METH on synaptic structure alternation in hippocampus and prefrontal cortex (PFC) and to reveal the underlying mechanism involved in the process. Low dose METH promoted spine formation, synaptic number increase, post-synaptic density length elongation, and memory function. High dose of METH induced synaptic degeneration, neuronal number loss and memory impairment. Moreover, high dose, but not low dose, of METH caused gliosis in PFC and hippocampus. Mechanism-wise, low dose METH inactivated ras-related C3 botulinum toxin substrate 1 (Rac1) and activated cell division control protein 42 homolog (Cdc42); whereas high dose METH inactivated Cdc42 and activated Rac1. We provided evidence that low and high doses of METH differentially regulate synaptic plasticity in cortex and hippocampus.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jian Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiang Tang
- Department of Children Rehabilitation, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lingyi Shen
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaojiao He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Zhixing Yu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yubo Liu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Na Zhao
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Yang L, Li Z, Xu Z, Zhang B, Liu A, Zheng F, Zhan J. Protective Effects of Cannabinoid Type 2 Receptor Against Microglia Overactivation and Neuronal Pyroptosis in Sepsis-Associated Encephalopathy. Neuroscience 2022; 493:99-108. [PMID: 35460837 DOI: 10.1016/j.neuroscience.2022.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/22/2022]
Abstract
Sepsis-associated encephalopathy (SAE) has close association with long-term cognitive deficits, resulting in increased mortality. The mechanism of SAE is complicate, including excessive microglial activation and neuroinflammation. Pyroptosis is a type of proinflammatory cell death program. Cannabinoid type 2 receptor (CB2R) has been proved to be effective in neuronal protection and survival promotion. Microglia play a role in CB2R mediated neuronal protection when neurons are exposed to noxious stimuli. However, the underlying mechanisms involved in this process still remain to be explored. Previous studies have demonstrated that CB2R can reduce sepsis-induced lung injury by inhibiting pyroptosis. Here, SAE model was established by cecal ligation and puncture (CLP). Open field test (OFT), novel object recognition test (NORT), and Morris water maze (MWM) test were performed to assess cognitive function. Brain samples were obtained to detect cell injury, cytokine, CB2R and pyroptosis-associated protein expression by Hematoxylin-Eosin (HE) staining, Enzyme-linked immunosorbent assay (ELISA), Western blotting and Immunofluorescence staining. CLP could induce microglia hyperactivation and neuronal pyroptosis, aggravating brain tissue destruction and cognitive dysfunction. The activation of CB2R could have a protective effect against SAE by inhibiting microglia activity and neuronal pyroptosis. This will provide a new therapeutic option for the treatment of SAE.
Collapse
Affiliation(s)
- Liu Yang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Zhen Li
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Zujin Xu
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Bin Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Anpeng Liu
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Feng Zheng
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, People's Republic of China.
| | - Jia Zhan
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Takahashi S. Metabolic Contribution and Cerebral Blood Flow Regulation by Astrocytes in the Neurovascular Unit. Cells 2022; 11:cells11050813. [PMID: 35269435 PMCID: PMC8909328 DOI: 10.3390/cells11050813] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The neurovascular unit (NVU) is a conceptual framework that has been proposed to better explain the relationships between the neural cells and blood vessels in the human brain, focused mainly on the brain gray matter. The major components of the NVU are the neurons, astrocytes (astroglia), microvessels, pericytes, and microglia. In addition, we believe that oligodendrocytes should also be included as an indispensable component of the NVU in the white matter. Of all these components, astrocytes in particular have attracted the interest of researchers because of their unique anatomical location; these cells are interposed between the neurons and the microvessels of the brain. Their location suggests that astrocytes might regulate the cerebral blood flow (CBF) in response to neuronal activity, so as to ensure an adequate supply of glucose and oxygen to meet the metabolic demands of the neurons. In fact, the adult human brain, which accounts for only 2% of the entire body weight, consumes approximately 20–25% of the total amount of glucose and oxygen consumed by the whole body. The brain needs a continuous supply of these essential energy sources through the CBF, because there are practically no stores of glucose or oxygen in the brain; both acute and chronic cessation of CBF can adversely affect brain functions. In addition, another important putative function of the NVU is the elimination of heat and waste materials produced by neuronal activity. Recent evidence suggests that astrocytes play pivotal roles not only in supplying glucose, but also fatty acids and amino acids to neurons. Loss of astrocytic support can be expected to lead to malfunction of the NVU as a whole, which underlies numerous neurological disorders. In this review, we shall focus on historical and recent findings with regard to the metabolic contributions of astrocytes in the NVU.
Collapse
Affiliation(s)
- Shinichi Takahashi
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi 350-1298, Japan; ; Tel.: +81-42-984-4111 (ext. 7412) or +81-3-3353-1211 (ext. 62613); Fax: +81-42-984-0664 or +81-3-3357-5445
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|