1
|
Gorudko IV, Grigorieva DV, Gusakov GA, Baran LV, Reut VE, Sak EV, Baimler IV, Simakin AV, Dorokhov AS, Izmailov AY, Serov DA, Gudkov SV. Rod and spherical selenium nanoparticles: Physicochemical properties and effects on red blood cells and neutrophils. Biochim Biophys Acta Gen Subj 2025; 1869:130777. [PMID: 39983791 DOI: 10.1016/j.bbagen.2025.130777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
The influence of selenium (Se) nanoparticles in the form of rods (SeNrs) and spheres (SeSps), synthesized by laser ablation, on the structural and functional properties of human blood erythrocytes and neutrophils was studied for anticancer activity in vitro. SeNrs and SeSps do not have cytotoxicity towards neutrophils and do not cause hemolysis. The elastic modulus and resistance of erythrocytes to HOCl-induced hemolysis increased after binding of Se nanoparticles to the plasma membrane. The interaction of Se nanoparticles with neutrophils is accompanied by their actin-dependent macropinocytosis, triggering intracellular signaling processes leading to the assembly and activation of NADPH oxidase. Comparative analysis of the effects of SeNrs and SeSps on cells showed that they have similar effects. This may be due to the fact that SeNrs interact with the cell surface with their end faces, and, therefore, have the same initial contact with the plasma membrane as SeSps. However, SeSps and SeNrs showed chronic cytotoxicity after 48 h incubation, indicating the need to find ways to reduce their toxicity further. Further use of Se nanoparticles in anisotropic form in biomedical research for the development of therapeutic agents seems promising.
Collapse
Affiliation(s)
- Irina V Gorudko
- Belarusian State University, Nezavisimosti Av. 4, 220030 Minsk, Belarus
| | | | - Grigory A Gusakov
- A.N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, Kurchatova St. 7, 220045 Minsk, Belarus
| | - Lyudmila V Baran
- Belarusian State University, Nezavisimosti Av. 4, 220030 Minsk, Belarus
| | - Veronika E Reut
- Belarusian State University, Nezavisimosti Av. 4, 220030 Minsk, Belarus
| | - Ekaterina V Sak
- Belarusian State University, Nezavisimosti Av. 4, 220030 Minsk, Belarus
| | - Ilya V Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Alexey S Dorokhov
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Andrey Yu Izmailov
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Dmitriy A Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia; Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Institute, Gagarin av. 23, 603105 Nizhny Novgorod, Russia.
| |
Collapse
|
2
|
Severyukhina MS, Ojomoko LO, Shelukhina IV, Kudryavtsev DS, Kryukova EV, Epifanova LA, Denisova DA, Averin AS, Ismailova AM, Shaykhutdinova ER, Dyachenko IA, Egorova NS, Murashev AN, Tsetlin VI, Utkin YN. Non-conventional toxin WTX and its disulfide-fixed synthetic fragments: Interaction with nicotinic acetylcholine receptors and reduction of blood pressure. Int J Biol Macromol 2025; 288:138626. [PMID: 39667465 DOI: 10.1016/j.ijbiomac.2024.138626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Non-conventional snake venom toxins, such as WTX from the cobra Naja kaouthia, are three-finger proteins containing a fifth disulfide bond in the N-terminal polypeptide loop I and inhibiting α7 and muscle-type nicotinic acetylcholine receptors (nAChRs). Because the central polypeptide loop II of non-conventional toxins plays an important role in their biological activity, we synthesized several WTX loop II fragments with two cysteine residues added at the N- and C-termini and oxidized to form a disulfide bond. The inhibition by peptides of several nAChRs subtypes was investigated using different methods and the effects of peptides on the rat arterial pressure and heart rate were analyzed. The synthetic fragments inhibited α7 and muscle-type nAChRs more potently than WTX. We showed for the first time that WTX and its fragments inhibited α9α10 as well as neuronal α3β2 and α4β2 nAChRs, again the synthetic fragments being more potent than WTX. The loop II fragments reduced blood pressure more potently than WTX in normotensive, awake rats. In connection with this, the WTX cardiovascular effects were analyzed and it was found that toxin very weakly affected parameters of papillary muscle contractions with no influence on aortic ring contractility. The observed effects were not so significant to explain the decrease in BP, the hemodynamic effects of WTX appearing not to result from direct influence on the myocardium and blood vessels. The synthetic fragments of the N- and C-terminal loops I and III were inactive in all tests. Thus, both in inhibition of all analyzed nAChR subtypes and in reduction of blood pressure, fragments of the central loop II were more active than WTX. This appears to be a first indication for three-finger proteins that the fragments of the central loop II are more active than the native toxin.
Collapse
Affiliation(s)
- Maria S Severyukhina
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia; PushchGENI - Branch of BIOTECH University, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Lucy O Ojomoko
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Irina V Shelukhina
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Denis S Kudryavtsev
- PushchGENI - Branch of BIOTECH University, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Elena V Kryukova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Lybov A Epifanova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Daria A Denisova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Alexey S Averin
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Alina M Ismailova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia; PushchGENI - Branch of BIOTECH University, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Elvira R Shaykhutdinova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia; PushchGENI - Branch of BIOTECH University, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Igor A Dyachenko
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia
| | - Natalya S Egorova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Arkady N Murashev
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia
| | - Victor I Tsetlin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Yuri N Utkin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia.
| |
Collapse
|
3
|
Mishra S, Mishra Y, Kumar A. Marine-derived bioactive compounds for neuropathic pain: pharmacology and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03667-7. [PMID: 39797987 DOI: 10.1007/s00210-024-03667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management. Marine organisms, including fungi, algae, cone snails, sponges, soft corals, tunicates, and fish, produce a diverse range of secondary metabolites with significant pharmacological properties. These include peptides (e.g., conopeptides, piscidin 1), non-peptides (e.g., guanidinium toxins, astaxanthin, docosahexaenoic acid, fucoidan, apigenin, fumagillin, aaptamine, flexibilide, excavatolide B, capnellenes, austrasulfones, lemnalol), and crude extracts (e.g., Spirulina platensis, Dunaliella salina, Cliothosa aurivilli). These compounds exhibit diverse mechanisms of action, such as modulating ion channels (e.g., transient receptor potential channels, voltage-gated sodium, calcium, and potassium channels, and G protein-coupled inwardly rectifying potassium channels), interacting with cell-surface receptors (e.g., nicotinic acetylcholine, NMDA, kainate, GABAB, and neurotensin receptors), inhibiting norepinephrine transporters, reducing oxidative stress, and attenuating neuroinflammation. These effects collectively contribute to alleviating nerve degeneration and symptoms of neuropathic pain, including hyperalgesia, allodynia, and associated psychomotor disturbances. Marine-derived bioactive compounds represent promising alternatives to conventional neuropathic pain treatments, to advance their development and assess their integration into neuropathic pain management strategies.
Collapse
Affiliation(s)
- Swapnil Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
| |
Collapse
|
4
|
Azam L, Christensen SB, Riaz Z, Kendell A, Cull J, Hone AJ, McIntosh JM. α9-Containing Nicotinic Acetylcholine Receptors Are Required for RgIA-5474 Attenuation of Chemotherapy-Induced Neuropathic Pain. ACS Pharmacol Transl Sci 2024; 7:3935-3944. [PMID: 39698293 PMCID: PMC11651205 DOI: 10.1021/acsptsci.4c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Nicotinic acetylcholine receptors containing the α9 subunit have been mechanistically implicated in alleviating chemotherapy-induced neuropathic pain. However, the cell types that underlie these effects are currently unknown. RgIA-5474 is a recently developed, synthetic α-conotoxin analog that is a potent antagonist of human α9α10 nAChRs. We used germline α9 subunit knockout mice, CD3+ T-cell depletion, and conditional knockdown of the α9 subunit in immune cells to examine the role of α9-containing nAChRs that mediate RgIA-5474 alleviation of oxaliplatin-induced neuropathic pain. RgIA-5474 potently and selectively blocked mouse α9α10 nAChRs. A one-time oxaliplatin injection resulted in cold allodynia that was reversed by RgIA-5474 administration in the wild type but not in α9 germline knockout mice. RgIA-5474 also failed to produce analgesia in CD3+ T-cell-depleted male and female animals. Conditional knockdown of the α9 subunit in immune cells of mice by the CreloxP system also eliminated the therapeutic effects of RgIA-5474 in both male and female mice. These results indicate that the α9 nAChR subunit is necessary for the analgesic effects of RgIA-5474 and implicate α9-containing nAChRs in immune cells as a nonopioid target for treating neuropathic pain.
Collapse
Affiliation(s)
- Layla Azam
- School
of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sean B. Christensen
- School
of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Zoha Riaz
- School
of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Anne Kendell
- School
of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jennison Cull
- School
of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Arik J. Hone
- School
of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
- MIRECC,
George E. Whalen Veterans Affair Medical Center, Salt Lake City, Utah 84148, United States
| | - J. Michael McIntosh
- School
of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
- Psychiatry, University of Utah, Salt Lake City, Utah 84108, United States
- George
E. Whalen Veterans Affair Medical Center, Salt Lake City, Utah 84148, United States
| |
Collapse
|
5
|
Astashev ME, Serov DA, Tankanag AV, Knyazeva IV, Dorokhov AA, Simakin AV, Gudkov SV. Study of the Synchronization and Transmission of Intracellular Signaling Oscillations in Cells Using Bispectral Analysis. BIOLOGY 2024; 13:685. [PMID: 39336112 PMCID: PMC11428995 DOI: 10.3390/biology13090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
The oscillation synchronization analysis in biological systems will expand our knowledge about the response of living systems to changes in environmental conditions. This knowledge can be used in medicine (diagnosis, therapy, monitoring) and agriculture (increasing productivity, resistance to adverse effects). Currently, the search is underway for an informative, accurate and sensitive method for analyzing the synchronization of oscillatory processes in cell biology. It is especially pronounced in analyzing the concentration oscillations of intracellular signaling molecules in electrically nonexcitable cells. The bispectral analysis method could be applied to assess the characteristics of synchronized oscillations of intracellular mediators. We chose endothelial cells from mouse microvessels as model cells. Concentrations of well-studied calcium and nitric oxide (NO) were selected for study in control conditions and well-described stress: heating to 40 °C and hyperglycemia. The bispectral analysis allows us to accurately evaluate the proportion of synchronized cells, their synchronization degree, and the amplitude and frequency of synchronized calcium and NO oscillations. Heating to 40 °C increased cell synchronization for calcium but decreased for NO oscillations. Hyperglycemia abolished this effect. Heating to 40 °C changed the frequencies and increased the amplitudes of synchronized oscillations of calcium concentration and the NO synthesis rate. The first part of this paper describes the principles of the bispectral analysis method and equations and modifications of the method we propose. In the second part of this paper, specific examples of the application of bispectral analysis to assess the synchronization of living cells in vitro are presented. The discussion compares the capabilities of bispectral analysis with other analytical methods in this field.
Collapse
Affiliation(s)
- Maxim E Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Dmitriy A Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Arina V Tankanag
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Inna V Knyazeva
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Artem A Dorokhov
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Institute, Gagarin av. 23, 603105 Nizhny Novgorod, Russia
| |
Collapse
|
6
|
Wang H, Li X, Qiao Y, Wang M, Wang W, McIntosh JM, Zhangsun D, Luo S. αO-Conotoxin GeXIVA[1,2] Reduced Neuropathic Pain and Changed Gene Expression in Chronic Oxaliplatin-Induced Neuropathy Mice Model. Mar Drugs 2024; 22:49. [PMID: 38276651 PMCID: PMC10821445 DOI: 10.3390/md22010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting painful neuropathy that occurs commonly during cancer management, which often leads to the discontinuation of medication. Previous studies suggest that the α9α10 nicotinic acetylcholine receptor (nAChR)-specific antagonist αO-conotoxin GeXIVA[1,2] is effective in CIPN models; however, the related mechanisms remain unclear. Here, we analyzed the preventive effect of GeXIVA[1,2] on neuropathic pain in the long-term oxaliplatin injection-induced CIPN model. At the end of treatment, lumbar (L4-L6) spinal cord was extracted, and RNA sequencing and bioinformatic analysis were performed to investigate the potential genes and pathways related to CIPN and GeXIVA[1,2]. GeXIVA[1,2] inhibited the development of mechanical allodynia induced by chronic oxaliplatin treatment. Repeated injections of GeXIVA[1,2] for 3 weeks had no effect on the mice's normal pain threshold or locomotor activity and anxiety-like behavior, as evaluated in the open field test (OFT) and elevated plus maze (EPM). Our RNA sequencing results identified 209 differentially expressed genes (DEGs) in the CIPN model, and simultaneously injecting GeXIVA[1,2] with oxaliplatin altered 53 of the identified DEGs. These reverted genes were significantly enriched in immune-related pathways represented by the cytokine-cytokine receptor interaction pathway. Our findings suggest that GeXIVA[1,2] could be a potential therapeutic compound for chronic oxaliplatin-induced CIPN management.
Collapse
Affiliation(s)
- Huanbai Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (H.W.); (X.L.); (Y.Q.); (W.W.)
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China;
| | - Xiaodan Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (H.W.); (X.L.); (Y.Q.); (W.W.)
| | - Yamin Qiao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (H.W.); (X.L.); (Y.Q.); (W.W.)
| | - Meiting Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China;
| | - Wen Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (H.W.); (X.L.); (Y.Q.); (W.W.)
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China;
| | - J. Michael McIntosh
- Department of Biology and Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA;
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT 84108, USA
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (H.W.); (X.L.); (Y.Q.); (W.W.)
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China;
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (H.W.); (X.L.); (Y.Q.); (W.W.)
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China;
| |
Collapse
|
7
|
Richter K, Grau V. Signaling of nicotinic acetylcholine receptors in mononuclear phagocytes. Pharmacol Res 2023; 191:106727. [PMID: 36966897 DOI: 10.1016/j.phrs.2023.106727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/28/2023]
Abstract
Nicotinic acetylcholine receptors are not only expressed by the nervous system and at the neuro-muscular junction but also by mononuclear phagocytes, which belong to the innate immune system. Mononuclear phagocyte is an umbrella term for monocytes, macrophages, and dendritic cells. These cells play pivotal roles in host defense against infection but also in numerous often debilitating diseases that are characterized by exuberant inflammation. Nicotinic acetylcholine receptors of the neuronal type dominate in these cells, and their stimulation is mainly associated with anti-inflammatory effects. Although the cholinergic modulation of mononuclear phagocytes is of eminent clinical relevance for the prevention and treatment of inflammatory diseases and neuropathic pain, we are only beginning to understand the underlying mechanisms on the molecular level. The purpose of this review is to report and critically discuss the current knowledge on signal transduction mechanisms elicited by nicotinic acetylcholine receptors in mononuclear phagocytes.
Collapse
Affiliation(s)
- Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany; German Centre for Lung Research (DZL), Giessen, Germany; Cardiopulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
8
|
Margiotta F, Micheli L, Ciampi C, Ghelardini C, McIntosh JM, Di Cesare Mannelli L. Conus regius-Derived Conotoxins: Novel Therapeutic Opportunities from a Marine Organism. Mar Drugs 2022; 20:773. [PMID: 36547920 PMCID: PMC9783627 DOI: 10.3390/md20120773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Conus regius is a marine venomous mollusk of the Conus genus that captures its prey by injecting a rich cocktail of bioactive disulfide bond rich peptides called conotoxins. These peptides selectively target a broad range of ion channels, membrane receptors, transporters, and enzymes, making them valuable pharmacological tools and potential drug leads. C. regius-derived conotoxins are particularly attractive due to their marked potency and selectivity against specific nicotinic acetylcholine receptor subtypes, whose signalling is involved in pain, cognitive disorders, drug addiction, and cancer. However, the species-specific differences in sensitivity and the low stability and bioavailability of these conotoxins limit their clinical development as novel therapeutic agents for these disorders. Here, we give an overview of the main pharmacological features of the C. regius-derived conotoxins described so far, focusing on the molecular mechanisms underlying their potential therapeutic effects. Additionally, we describe adoptable chemical engineering solutions to improve their pharmacological properties for future potential clinical translation.
Collapse
Affiliation(s)
- Francesco Margiotta
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy
| | - Clara Ciampi
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy
| | - J. Michael McIntosh
- George E. Wohlen Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA
- School of Biological Sciences University of Utah, Salt Lake City, UT 84112, USA
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy
| |
Collapse
|
9
|
Huynh PN, Christensen SB, McIntosh JM. RgIA4 Prevention of Acute Oxaliplatin-Induced Cold Allodynia Requires α9-Containing Nicotinic Acetylcholine Receptors and CD3 + T-Cells. Cells 2022; 11:cells11223561. [PMID: 36428990 PMCID: PMC9688540 DOI: 10.3390/cells11223561] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy-induced neuropathic pain is a debilitating and dose-limiting side effect. Oxaliplatin is a third-generation platinum and antineoplastic compound that is commonly used to treat colorectal cancer and commonly yields neuropathic side effects. Available drugs such as duloxetine provide only modest benefits against oxaliplatin-induced neuropathy. A particularly disruptive symptom of oxaliplatin is painful cold sensitivity, known as cold allodynia. Previous studies of the Conus regius peptide, RgIA, and its analogs have demonstrated relief from oxaliplatin-induced cold allodynia, yielding improvement that persists even after treatment cessation. Moreover, underlying inflammatory and neuronal protection were shown at the cellular level in chronic constriction nerve injury models, consistent with disease-modifying effects. Despite these promising preclinical outcomes, the underlying molecular mechanism of action of RgIA4 remains an area of active investigation. This study aimed to determine the necessity of the α9 nAChR subunit and potential T-cell mechanisms in RgIA4 efficacy against acute oxaliplatin-induced cold allodynia. A single dose of oxaliplatin (10 mg/kg) was utilized followed by four daily doses of RgIA4. Subcutaneous administration of RgIA4 (40 µg/kg) prevented cold allodynia in wildtype mice but not in mice lacking the α9 nAChR-encoding gene, chrna9. RgIA4 also failed to reverse allodynia in mice depleted of CD3+ T-cells. In wildtype mice treated with oxaliplatin, quantitated circulating T-cells remained unaffected by RgIA4. Together, these results show that RgIA4 requires both chrna9 and CD3+ T-cells to exert its protective effects against acute cold-allodynia produced by oxaliplatin.
Collapse
Affiliation(s)
- Peter N. Huynh
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Correspondence:
| | - Sean B. Christensen
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - J. Michael McIntosh
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT 84112, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|