1
|
Qin T, Jin Y, Qin Y, Yuan F, Lu H, Hu J, Cao Y, Li C. Enhancing m6A modification in the motor cortex facilitates corticospinal tract remodeling after spinal cord injury. Neural Regen Res 2025; 20:1749-1763. [PMID: 39104113 PMCID: PMC11688564 DOI: 10.4103/nrr.nrr-d-23-01477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/26/2023] [Accepted: 02/06/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202506000-00026/figure1/v/2024-08-05T133530Z/r/image-tiff Spinal cord injury typically causes corticospinal tract disruption. Although the disrupted corticospinal tract can self-regenerate to a certain degree, the underlying mechanism of this process is still unclear. N6-methyladenosine (m6A) modifications are the most common form of epigenetic regulation at the RNA level and play an essential role in biological processes. However, whether m6A modifications participate in corticospinal tract regeneration after spinal cord injury remains unknown. We found that expression of methyltransferase 14 protein (METTL14) in the locomotor cortex was high after spinal cord injury and accompanied by elevated m6A levels. Knockdown of Mettl14 in the locomotor cortex was not favorable for corticospinal tract regeneration and neurological recovery after spinal cord injury. Through bioinformatics analysis and methylated RNA immunoprecipitation-quantitative polymerase chain reaction, we found that METTL14 regulated Trib2 expression in an m6A-regulated manner, thereby activating the mitogen-activated protein kinase pathway and promoting corticospinal tract regeneration. Finally, we administered syringin, a stabilizer of METTL14, using molecular docking. Results confirmed that syringin can promote corticospinal tract regeneration and facilitate neurological recovery by stabilizing METTL14. Findings from this study reveal that m6A modification is involved in the regulation of corticospinal tract regeneration after spinal cord injury.
Collapse
Affiliation(s)
- Tian Qin
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuxin Jin
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yiming Qin
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yong Cao
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Chengjun Li
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Xian Z, Tian L, Yao Z, Cao L, Jia Z, Li G. Mechanism of N6-Methyladenosine Modification in the Pathogenesis of Depression. Mol Neurobiol 2025; 62:5484-5500. [PMID: 39551913 DOI: 10.1007/s12035-024-04614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
N6-methyladenosine (m6A) is one of the most common post-transcriptional RNA modifications, which plays a critical role in various bioprocesses such as immunological processes, stress response, cell self-renewal, and proliferation. The abnormal expression of m6A-related proteins may occur in the central nervous system, affecting neurogenesis, synapse formation, brain development, learning and memory, etc. Accumulating evidence is emerging that dysregulation of m6A contributes to the initiation and progression of psychiatric disorders including depression. Until now, the specific pathogenesis of depression has not been comprehensively clarified, and further investigations are warranted. Stress, inflammation, neurogenesis, and synaptic plasticity have been implicated as possible pathophysiological mechanisms underlying depression, in which m6A is extensively involved. Considering the extensive connections between depression and neurofunction and the critical role of m6A in regulating neurological function, it has been increasingly proposed that m6A may have an important role in the pathogenesis of depression; however, the results and the specific molecular mechanisms of how m6A methylation is involved in major depressive disorder (MDD) were varied and not fully understood. In this review, we describe the underlying molecular mechanisms between m6A and depression from several aspects including inflammation, stress, neuroplasticity including neurogenesis, and brain structure, which contain the interactions of m6A with cytokines, the HPA axis, BDNF, and other biological molecules or mechanisms in detail. Finally, we summarized the perspectives for the improved understanding of the pathogenesis of depression and the development of more effective treatment approaches for this disorder.
Collapse
Affiliation(s)
- Zhuohang Xian
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Liangjing Tian
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhixuan Yao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Cao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhilin Jia
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Gangqin Li
- Department of Forensic Psychiatry, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Peng J, He J, Hu X, Xia Y. GPR30 Inhibits Neuronal Apoptosis After Subarachnoid Hemorrhage by Activating the Wnt/β-Catenin Pathway in a m6A-dependent Manner. Mol Neurobiol 2025:10.1007/s12035-025-04867-9. [PMID: 40131697 DOI: 10.1007/s12035-025-04867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Neuronal apoptosis is associated with early brain injury after subarachnoid hemorrhage (SAH). In this study, the regulatory effects of GPR30 on neuronal apoptosis after SAH, METTL14 expression, and the Wnt/β-catenin pathway were investigated. SAH models were constructed in vitro in neurons and in vivo in rats. We found that the GPR30 protein was downregulated in OxyHB-stimulated neurons and SAH rat brain tissue. The GPR30 agonist G1 decreased iNOS levels and apoptosis in OxyHB-stimulated neurons. G1 increased m6A levels in OxyHB-stimulated neurons, increased the expression of METTL14 and Bcl-2, and reduced Caspase-3 and Bax levels. The GPR30 inhibitor G15 had the opposite effect as G1. METTL14 overexpression increased m6A levels in OxyHB-stimulated neurons; increased the expression of METTL14, Wnt1, β-catenin, and Bcl-2; decreased Caspase-3 and Bax levels; and inhibited apoptosis. The Wnt inhibitor IWR-1 abrogated the effects of METTL14 overexpression in OxyHB-stimulated neurons. In vivo, the results revealed that G1 decreased the mNSS, cerebral edema score, and caspase-3, IL-6, IL-1β, Bax, and p-β-catenin expression; inhibited apoptosis and nitric oxide production; and increased GPR30, IFN-γ, TGF-β1, METTL14, Wnt1, and β-catenin expression. G15 had the opposite effect of G1. METTL14 knockdown abrogated the effects of G1 in SAH model rats. Our results suggest that GPR30 inhibits neuronal apoptosis after SAH via Wnt/β-catenin pathway regulation and METTL14-mediated m6A modification, providing a new therapeutic target for SAH.
Collapse
Affiliation(s)
- Jun Peng
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No.43, Renmin Avenue, Meilan District, Haikou, 570000, China
| | - Jun He
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No.43, Renmin Avenue, Meilan District, Haikou, 570000, China
| | - Xiqi Hu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No.43, Renmin Avenue, Meilan District, Haikou, 570000, China
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No.43, Renmin Avenue, Meilan District, Haikou, 570000, China.
| |
Collapse
|
4
|
Wang Y, Ling S, Feng H, Hua J, Han Z, Chai R. Recent Advances in the Mutual Regulation of m6A Modification and Non-Coding RNAs in Atherosclerosis. Int J Gen Med 2025; 18:1047-1073. [PMID: 40026815 PMCID: PMC11871936 DOI: 10.2147/ijgm.s508197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Atherosclerosis, a progressive inflammatory disease of the arteries, remains a leading cause of cardiovascular morbidity and mortality worldwide. Recent years have witnessed the pivotal role of N6-methyladenosine (m6A) RNA methylation in regulating various biological processes, including those implicated in atherosclerosis. Current evidence suggested that m6A regulators (writers, erasers, and readers) participated in the modification of multiple non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), thereby affecting their metabolism and functions. Meanwhile, ncRNAs have also emerged as key modulator of m6A regulators expression in turn. Therefore, understanding the mutual regulation between m6A modifications and ncRNAs is of great significance to identify novel therapeutic targets for atherosclerosis and has great clinical application prospects. This review aims to summarize the recent advances in the reciprocal regulation and provide insights into the interaction between m6A modification and ncRNAs in the context of atherosclerosis.
Collapse
Affiliation(s)
- Yanlu Wang
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, People’s Republic of China
| | - Sisi Ling
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, People’s Republic of China
| | - Hao Feng
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, People’s Republic of China
| | - Junkai Hua
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, People’s Republic of China
| | - Zhiyu Han
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, People’s Republic of China
| | - Renjie Chai
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, People’s Republic of China
| |
Collapse
|
5
|
Cui LG, Zhai MM, Yin JJ, Wang ZM, Wang SH, Zhou YJ, Li PP, Wang Y, Xia L, Wang P, Cha XX, Zhang LR, Han SN. Targeting the ALKBH5-NLRP3 positive feedback loop alleviates cardiomyocyte pyroptosis after myocardial infarction. Eur J Pharmacol 2025; 989:177247. [PMID: 39746531 DOI: 10.1016/j.ejphar.2024.177247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Several studies have associated the epitranscriptomic RNA modification of N6-methyladenosine (m6A) with cardiovascular diseases; however, how m6A modification affects cardiomyocyte pyroptosis after myocardial infarction (MI) remains unknown. Here, we showed that AlkB homolog 5 (ALKBH5), an m6A demethylase, is crucial in cardiomyocyte pyroptosis after MI. We used MI rat and mouse models, a cell hypoxia model of rat primary cardiomyocytes (RCMs), and rat embryonic ventricle cell line (H9c2) to explore the functional role of m6A modification and ALKBH5 in the heart and cardiomyocytes. Using plasmids and small interfering RNAs, the expressions of ALKBH5 and NOD-like receptor family pyrin domain-containing 3 (NLRP3) were determined to study their functions in regulating cardiomyocyte m6A and pyroptosis, respectively. We characterized the role of ALKBH5, which exhibited elevated expression in the ischemic heart tissue of rats and mice and hypoxic cardiomyocytes (RCMs and H9c2 cells). ALKBH5 knockdown alleviated hypoxia-induced H9c2 cell pyroptosis by inhibiting NLRP3 inflammasome activation, whereas ALKBH5 overexpression had the opposite effect. NLRP3 knockdown alleviated hypoxia-induced H9c2 cardiomyocyte pyroptosis by inhibiting ALKBH5 expression, whereas NLRP3 overexpression had the opposite effect. Mechanistically, ALKBH5 mediated m6A modification of NLRP3 mRNA in an IGF2BP2-dependent manner, and NLRP3, as a nuclear transcription factor, regulated the ALKBH5 transcription process. Targeting the ALKBH5-NLRP3 loop with the small-molecule inhibitors alleviated cardiomyocyte pyroptosis. Our results highlight that ALKBH5-NLRP3 forms a positive feedback loop that promotes cardiomyocyte pyroptosis after MI. Therefore, inhibiting the ALKBH5-NLRP3 loop is a potential strategy for treating cardiovascular diseases.
Collapse
MESH Headings
- Animals
- Pyroptosis/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Rats
- AlkB Homolog 5, RNA Demethylase/metabolism
- AlkB Homolog 5, RNA Demethylase/genetics
- AlkB Homolog 5, RNA Demethylase/antagonists & inhibitors
- Myocardial Infarction/pathology
- Myocardial Infarction/metabolism
- Mice
- Male
- Feedback, Physiological/drug effects
- Cell Line
- Mice, Inbred C57BL
- Cell Hypoxia
- Rats, Sprague-Dawley
- Adenosine/analogs & derivatives
- Adenosine/metabolism
Collapse
Affiliation(s)
- Liu-Gen Cui
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Miao-Miao Zhai
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian-Jian Yin
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Zhi-Mo Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shu-Hui Wang
- Department of Ultrasound, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yue-Jiao Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Pei-Pei Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yang Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Xia
- Department of Anesthesiology in Surgery Branch, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xue-Xiang Cha
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Ji X, Huang Z, Zhou C, Wang Y, Geng D, Zhang G, Kang Y, Cui R, Wang J, Zhang T. Esketamine alleviates depressive-like behavior in neuropathic pain mice through the METTL3-GluA1 pathway. Cell Biol Toxicol 2025; 41:38. [PMID: 39875576 PMCID: PMC11775062 DOI: 10.1007/s10565-024-09975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/21/2024] [Indexed: 01/30/2025]
Abstract
Esketamine, a newly developed antidepressant, is the subject of this research which seeks to explore its impact on depressive symptoms in neuropathic pain mice and the potential molecular mechanisms involved. Through transcriptome sequencing and bioinformatics analysis combined with in vivo studies, it was identified that esketamine markedly boosts the levels of the m6A methyltransferase METTL3 and the AMPA receptor GluA1 subunit. Esketamine activates METTL3, allowing it to bind with GluA1 mRNA, promoting m6A modification, thereby enhancing GluA1 expression at synapses. Through this mechanism, esketamine may reduce depressive-like behavior in neuropathic pain mice, providing new insights into the potential applications of esketamine and novel therapeutic avenues for neuropathic pain and depressive behavior.
Collapse
Affiliation(s)
- Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhimin Huang
- Department of Stomatology, Peoples Hospital, Shizhu Tujia Autonomous County, Chongqing, 409100, China
| | - Chenming Zhou
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Dongliang Geng
- Changan Dental Clinic, Xinqidian Dental Medical Services Co., Ltd, Shijiazhuang, 050000, China
| | - Guoliang Zhang
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Cui
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jinyang Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Tianyun Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang, 050017, China.
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China.
- Laboratory of Neurobiology, Hebei Medical University, Zhongshan Donglu No.361, Shijiazhuang, 050017, China.
| |
Collapse
|
7
|
Liu L, Zhao YJ, Zhang F. RNA methylation modifications in neurodegenerative diseases: Focus on their enzyme system. J Adv Res 2025:S2090-1232(25)00027-X. [PMID: 39765326 DOI: 10.1016/j.jare.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs) constitute a significant public health challenge, as they are increasingly contributing to global mortality and morbidity, particularly among the elderly population. Pathogenesis of NDs is intricate and multifactorial. Recently, post-transcriptional modifications (PTMs) of RNA, with a particular focus on mRNA methylation, have been gaining increasing attention. At present, several regulatory genes associated with mRNA methylation have been identified and closely associated with neurodegenerative disorders. AIM OF REVIEW This review aimed to summarize the RNA methylation enzymes system, including the writer, reader, and eraser proteins and delve into their functions in the central nervous system (CNS), hoping to open new avenues for exploring the mechanisms and therapeutic strategies for NDs. KEY SCIENTIFIC CONCEPTS OF REVIEW Recently, studies have highlighted the critical role of RNA methylation in the development and function of the CNS, and abnormalities in this process may contribute to brain damage and NDs, aberrant expression of enzymes involved in RNA methylation has been implicated in the onset and development of NDs.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Jia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
8
|
Li F, Wang F, Wang L, Wang J, Wei S, Meng J, Li Y, Feng L, Jiang P. m6A reader YTHDC2 mediates NCOA4 mRNA stability affecting ferritinophagy to alleviate secondary injury after intracerebral haemorrhage. Epigenetics 2024; 19:2326868. [PMID: 38465865 PMCID: PMC10936596 DOI: 10.1080/15592294.2024.2326868] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/01/2024] [Indexed: 03/12/2024] Open
Abstract
Oxidative stress and neuronal dysfunction caused by intracerebral haemorrhage (ICH) can lead to secondary injury. The m6A modification has been implicated in the progression of ICH. This study aimed to investigate the role of the m6A reader YTHDC2 in ICH-induced secondary injury. ICH models were established in rats using autologous blood injection, and neuronal cell models were induced with Hemin. Experiments were conducted to overexpress YTH domain containing 2 (YTHDC2) and examine its effects on neuronal dysfunction, brain injury, and neuronal ferritinophagy. RIP-qPCR and METTL3 silencing were performed to investigate the regulation of YTHDC2 on nuclear receptor coactivator 4 (NCOA4). Finally, NCOA4 overexpression was used to validate the regulatory mechanism of YTHDC2 in ICH. The study found that YTHDC2 expression was significantly downregulated in the brain tissues of ICH rats. However, YTHDC2 overexpression improved neuronal dysfunction and reduced brain water content and neuronal death after ICH. Additionally, it reduced levels of ROS, NCOA4, PTGS2, and ATG5 in the brain tissues of ICH rats, while increasing levels of FTH and FTL. YTHDC2 overexpression also decreased levels of MDA and Fe2+ in the serum, while promoting GSH synthesis. In neuronal cells, YTHDC2 overexpression alleviated Hemin-induced injury, which was reversed by Erastin. Mechanistically, YTHDC2-mediated m6A modification destabilized NCOA4 mRNA, thereby reducing ferritinophagy and alleviating secondary injury after ICH. However, the effects of YTHDC2 were counteracted by NCOA4 overexpression. Overall, YTHDC2 plays a protective role in ICH-induced secondary injury by regulating NCOA4-mediated ferritinophagy.
Collapse
Affiliation(s)
- Fengfeng Li
- Department of Neurosurgery, Tengzhou Central People’s Hospital, Jining Medical University, Tengzhou, China
| | - Fang Wang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China
| | - Lei Wang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China
| | - Jianhua Wang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China
| | - Shanshan Wei
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junjun Meng
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China
| | - Yanan Li
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China
| | - Lei Feng
- Department of Neurosurgery, Jining First People’s Hospital, Shandong First Medical University, Jining, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
| |
Collapse
|
9
|
Muluh TA, Fu Q, Ai X, Wang C, Chen W, Zheng X, Wang W, Wang M, Shu XS, Ying Y. Targeting Ferroptosis as an Advance Strategy in Cancer Therapy. Antioxid Redox Signal 2024; 41:616-636. [PMID: 38959114 DOI: 10.1089/ars.2024.0608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Significance: This study innovates by systematically integrating the molecular mechanisms of iron death and its application in cancer therapy. By deeply analyzing the interaction between iron death and the tumor microenvironment, the study provides a new theoretical basis for cancer treatment and directions for developing more effective treatment strategies. In addition, the study points to critical issues and barriers that need to be addressed in future research, providing valuable insights into the use of iron death in clinical translation. Recent Advances: These findings are expected to drive further advances in cancer treatment, bringing patients more treatment options and hope. Through this paper, we see the great potential of iron death in cancer treatment and look forward to more research results being translated into clinical applications in the future to contribute to the fight against cancer. Critical Issues: In today's society, cancer is still one of the major diseases threatening human health. Despite advances in existing treatments, cancer recurrence and drug resistance remain a severe problem. These problems increase the difficulty of treatment and bring a substantial physical and mental burden to patients. Therefore, finding new treatment strategies to overcome these challenges has become significant. Future Directions: The study delved into the molecular basis of iron death in tumor biology. It proposed a conceptual framework to account for the interaction of iron death with the tumor immune microenvironment, guide treatment selection, predict efficacy, explore combination therapies, and identify new therapeutic targets to overcome cancer resistance to standard treatments, peeving a path for future research and clinical translation of ferroptosis as a potential strategy in cancer therapy. Antioxid. Redox Signal. 41, 616-636. [Figure: see text].
Collapse
Affiliation(s)
- Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Qianqian Fu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiaojiao Ai
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Changfeng Wang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wei Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiangyi Zheng
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wei Wang
- Shanghai Waker Bioscience Co., Ltd., Shanghai, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xing-Sheng Shu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Ying Ying
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
10
|
Jiang X, Yan F, Geng Y, Cheng X, Zhang S, Zhao T, Guo J, Dai Z, Gao J, Yue X, Zhao M, Zhu L. ALKBH5 deficiency attenuates oxygen-glucose deprivation-induced injury in mouse brain microvascular endothelial cells in an m6A dependent manner. Exp Neurol 2024; 380:114910. [PMID: 39098715 DOI: 10.1016/j.expneurol.2024.114910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Structural and functional alterations in brain microvascular endothelial cells (BMECs) caused by oxygen-glucose deprivation (OGD) are involved in the pathogenesis of various brain disorders. AlkB homolog 5 (ALKBH5) is a primary m6A demethylase that regulates various cell processes, but its distinct roles in BMEC function remain to be clarified. In the present study, in mouse middle cerebral artery occlusion (MCAO) model, knockout of ALKBH5 reduced neurological deficits, infarct volumes and tissue apoptosis caused by ischemia/reperfusion injury. Evans blue leakage and decreased expression of the tight junction protein ZO-1 and Occludin were also attenuated by ALKBH5 knockout. During the exploration of the underlying mechanisms of the role of ALKBH5 in BMECs, we found that the expression of ALKBH5 was induced at both the mRNA and protein levels by hypoxia; however, its protein stability was impaired by OGD treatment. Knockdown of ALKBH5 expression increased total m6A levels and alleviated OGD-induced BMEC injury. At the same time, the selective ALKBH5 inhibitor Cpd 20m also exhibited a protective effect on cell injury. In contrast, overexpression of ALKBH5 increased the sensitivity of BMECs to OGD. Interestingly, the m6A sequencing data revealed that knockdown of ALKBH5altered the expression of many genes via m6A upregulation. The gene expression alterations were verified by real-time PCR. Taken together, our results suggest that ALKBH5, as well as its target genes, plays important roles in the regulation of brain microvascular endothelial cell function through its RNA demethylase activity.
Collapse
Affiliation(s)
- Xiufang Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Feng Yan
- Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yanan Geng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiang Cheng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shaojie Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; Chinese PLA Medical School, Beijing 100853, China
| | - Tong Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jianjun Guo
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhonghua Dai
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jiayue Gao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiangpei Yue
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ming Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; School of Pharmaceutical Sciences, University of South China, Hengyang 421001, China.
| |
Collapse
|
11
|
Xu Y, Liu W, Ren L. Role of m6A RNA Methylation in Ischemic Stroke. Mol Neurobiol 2024; 61:6997-7008. [PMID: 38363537 DOI: 10.1007/s12035-024-04029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Ischemic stroke is a prominent contributor to global morbidity and mortality rates. The intricate and diverse mechanisms underlying ischemia-reperfusion injury remain poorly comprehended. RNA methylation, an emerging epigenetic modification, plays a crucial role in regulating numerous biological processes, including immunity, DNA damage response, tumorigenesis, metastasis, stem cell renewal, adipocyte differentiation, circadian rhythms, cellular development and differentiation, and cell division. Among the various RNA modifications, N6-methyladenosine (m6A) modification stands as the most prevalent in mammalian mRNA. Recent studies have demonstrated the crucial involvement of m6A modification in the pathophysiological progression of ischemic stroke. This review aims to elucidate the advancements in ischemic stroke-specific investigations pertaining to m6A modification, consolidate the underlying mechanisms implicated in the participation of m6A modification during the onset of ischemic stroke, and deliberate on the potential of m6A modification as a viable therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Wenqiang Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230000, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230000, China
| | - Lijie Ren
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| |
Collapse
|
12
|
Zhang L, Bai W, Peng Y, Lin Y, Tian M. Role of O-GlcNAcylation in Central Nervous System Development and Injuries: A Systematic Review. Mol Neurobiol 2024; 61:7075-7091. [PMID: 38367136 DOI: 10.1007/s12035-024-04045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
The development of central nervous system (CNS) can form perceptual, memory, and cognitive functions, while injuries to CNS often lead to severe neurological dysfunction and even death. As one of the prevalent post-translational modifications (PTMs), O-GlcNAcylation has recently attracted great attentions due to its functions in regulating the activity, subcellular localization, and stability of target proteins. It has been indicated that O-GlcNAcylation could interact with phosphorylation, ubiquitination, and methylation to jointly regulate the function and activity of proteins. Furthermore, a growing number of studies have suggested that O-GlcNAcylation played an important role in the CNS. During development, O-GlcNAcylation participated in the neurogenesis, neuronal development, and neuronal function. In addition, O-GlcNAcylation was involved in the progress of CNS injuries including ischemic stroke, subarachnoid hemorrhage (SAH), and intracerebral hemorrhage (ICH) and played a crucial role in the improvement of brain damage such as attenuating cognitive impairment, inhibiting neuroinflammation, suppressing endoplasmic reticulum (ER) stress, and maintaining blood-brain barrier (BBB) integrity. Therefore, O-GlcNAcylation showed great promise as a potential target in CNS development and injuries. In this article, we presented a review highlighting the role of O-GlcNAcylation in CNS development and injuries. Hence, on the basis of these properties and effects, intervention with O-GlcNAcylation may be developed as therapeutic agents for CNS diseases.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, Nanjing, People's Republic of China
| | - Wanshan Bai
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, Nanjing, People's Republic of China
| | - Yaonan Peng
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, Nanjing, People's Republic of China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, Nanjing, People's Republic of China
| | - Mi Tian
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Jiangsu Province, Nanjing, People's Republic of China.
| |
Collapse
|
13
|
Li L, Gong J, Zhang W. Treatment of Intracerebral Hemorrhage with Traditional Chinese Medicine Monomer Wogonin by Modifying NLRP3 with METTL14 to Inhibit Neuronal Cell Pyroptosis. Appl Biochem Biotechnol 2024; 196:6174-6188. [PMID: 38224394 DOI: 10.1007/s12010-023-04849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
The aim of this study was to investigate the alleviating effect of wogonin on intracerebral hemorrhage (ICH) and its mechanism. The hemin-treated PC-12 cells were constructed to mimic ICH in vitro. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis was used for cell viability measurement and flow cytometry was for pyroptosis detection. Enzyme-linked immunosorbent assay (ELISA) assay and western blot were used to detect the protein levels of pyroptosis-related proteins. The modification level of N6-methyladenosine (m6A) methylation was detected by quantitative real-time polymerase chain reaction (qRT-PCR) combined with m6A dot blot assays. Molecular docking experiments analyzed the binding of wogonin and METTL14 protein. The correlation between METTL14 and NLRP3 was confirmed by bioinformatics analysis and dual luciferase reporter gene detection. ICH was induced in mice injected with collagenase into the basal ganglia, and the neurobehavioral damage was evaluated. Triphenyltetrazolium chloride monohydrate (TTC) staining and neurological scores were used to assess brain damage in mice. The results demonstrated that wogonin alleviated neuronal cell pyroptosis, and was molecularly docked with METTL14. Overexpression of METTL14 partly reversed the protecting effects of wogonin on brain in vitro and in vivo. Furthermore, NLRP3 was methylated by METTL14. Taken together, wogonin inhibits neuronal pyroptosis and thus treats IHC by inhibiting METTL14 and its methylated NLRP3.
Collapse
Affiliation(s)
- Libo Li
- Neurosurgery Department, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, China
| | - Jinbing Gong
- Neurosurgery Department, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, China
| | - Wenjia Zhang
- Neurosurgery Department, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, China.
| |
Collapse
|
14
|
Ma C, Gou C, Sun S, Wang J, Wei X, Xing F, Xing N, Yuan J, Wang Z. Unraveling the molecular complexity: Wtap/Ythdf1 and Lcn2 in novel traumatic brain injury secondary injury mechanisms. Cell Biol Toxicol 2024; 40:65. [PMID: 39110292 PMCID: PMC11306654 DOI: 10.1007/s10565-024-09909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/15/2024] [Indexed: 08/10/2024]
Abstract
The primary aim of this research was to explore the functions of Wtap and Ythdf1 in regulating neuronal Lipocalin-2 (Lcn2) through m6A modification in traumatic brain injury (TBI). By employing transcriptome sequencing and enrichment analysis, we identified the Wtap/Ythdf1-mediated Lcn2 m6A modification pathway as crucial in TBI. In our in vitro experiments using primary cortical neurons, knockout of Wtap and Ythdf1 led to the inhibition of Lcn2 m6A modification, resulting in reduced neuronal death and inflammation. Furthermore, overexpression of Lcn2 in cortical neurons induced the activation of reactive astrocytes and M1-like microglial cells, causing neuronal apoptosis. In vivo experiments confirmed the activation of reactive astrocytes and microglial cells in TBI and importantly demonstrated that Wtap knockdown improved neuroinflammation and functional impairment. These findings underscore the significance of Wtap/Ythdf1-mediated Lcn2 regulation in TBI secondary injury and suggest potential therapeutic implications for combating TBI-induced neuroinflammation and neuronal damage.
Collapse
Affiliation(s)
- Chaobang Ma
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, Henan, China
| | - Caili Gou
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Shiyu Sun
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, Henan, China
| | - Junmin Wang
- Department of Human Anatomy Basic Medical College of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xin Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Jingjing Yuan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Zhongyu Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, Henan, China.
- Department of Human Anatomy Basic Medical College of Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
15
|
Targeting Non-Coding RNA for CNS Injuries: Regulation of Blood-Brain Barrier Functions. Neurochem Res 2023; 48:1997-2016. [PMID: 36786944 DOI: 10.1007/s11064-023-03892-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Central nervous system (CNS) injuries are the most common cause of death and disability around the world. The blood-brain barrier (BBB) is located at the interface between the CNS and the surrounding environment, which protects the CNS from exogenous molecules, harmful agents or microorganisms in the blood. The disruption of BBB is a common feature of CNS injuries and participates in the pathological processes of secondary brain damage. Recently, a growing number of studies have indicated that non-coding RNAs (ncRNAs) play an important role in brain development and are involved in CNS injuries. In this review, we summarize the mechanisms of BBB breakdown after CNS injuries. We also discuss the effects of ncRNAs including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) on BBB damage in CNS injuries such as ischemic stroke, traumatic brain injury (TBI), intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH). In addition, we clarify the pharmacotherapies that could regulate BBB function via ncRNAs in CNS injuries, as well as the challenges and perspectives of ncRNAs on modulation of BBB function. Hence, on the basis of these effects, ncRNAs may be developed as therapeutic agents to protect the BBB for CNS injury patients.
Collapse
|