1
|
Gaudel F, Giraud J, Morquette P, Couillard-Larocque M, Verdier D, Kolta A. Astrocyte-induced firing in primary afferent axons. iScience 2025; 28:112006. [PMID: 40104051 PMCID: PMC11914515 DOI: 10.1016/j.isci.2025.112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/31/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
The large-caliber primary afferents innervating the spindles of the jaw-closing muscles have their cell bodies located centrally in the mesencephalic trigeminal nucleus (NVmes). We have shown, in an acid-induced jaw muscle chronic myalgia model, that these afferents exhibit increased excitability and ectopic discharges that emerge from subthreshold membrane oscillations (SMOs) supported by a persistent sodium current (I NaP) exquisitely sensitive to extracellular Ca2+-decreases. Here, we explore if the Ca2+-binding astrocytic protein, S100β, contributes to this hyperexcitability emergence and aim to localize the site where ectopic discharge arises using whole-cell patch-clamp recordings on mice brain slices. We found that astrocytes, by lowering [Ca2+]e at focal points along the axons of NVmes neurons through S100β, enhance the amplitude of the NaV1.6-dependent SMOs, leading to ectopic firing. These findings suggest a crucial role for astrocytes in excitability regulation and raise questions about this neuron-astrocyte interaction as a key contributor to hyperexcitability in several pathologies.
Collapse
Affiliation(s)
- Fanny Gaudel
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, QC, Canada
| | - Julia Giraud
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Philippe Morquette
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Dorly Verdier
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, QC, Canada
| | - Arlette Kolta
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, QC, Canada
- Faculté de Médecine Dentaire, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Zhao YJ, Chen J, Liu Y, Pan LL, Guo YX, Zhang ZM, Li Q, Chen YJ. Regulation of CeA-Vme projection in masseter hyperactivity caused by restraint stress. Front Cell Neurosci 2024; 18:1509020. [PMID: 39640235 PMCID: PMC11617152 DOI: 10.3389/fncel.2024.1509020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
The overactivity of the masticatory muscles (bruxism or teeth clenching) is associated with stress exposure, and often leading to consistent muscle pain. However, the neural mechanism underlining it is not fully understood. The central amygdala (CeA), which is linked to stress-induced behaviors and physical reactions, projects directly to the mesencephalic trigeminal nucleus (Vme), which is crucial for oral-motor coordination. Thus, we hypothesized that the projections from the CeA to the Vme could be linked to stress-induced anxiety and overactivity of the jaw muscles. After establishing an animal model of restraint stress, we found that chronic stress could lead to noticeable anxiety-related behavior, increased masseter muscle activity, activation of GABAergic neurons in the CeA, and opposite changes in the excitability of multipolar GABAergic interneurons and pseudounipolar excitatory neurons in the Vme. Subsequently, through the utilization of anterograde and transsynaptic tracing in conjunction with immunofluorescence staining, we discovered that the neural projections from the CeA to the Vme were mainly GABAergic and that the projections from the CeA terminated on GABAergic interneurons within the Vme. Moreover, chemogenetically suppressing the function of GABAergic neurons in the CeA could effectively reduce anxiety levels and reverse the increase in the activity of the masseter muscles induced by stress. And, specifically inhibiting GABAergic projections from the CeA to the Vme via optogenetics could reduce the hyperactivity of the masseter muscles but not stress-induced anxiety. In conclusion, our findings indicate that GABAergic projections from the CeA to the Vme may play an important role in the masseter overactivity in response to chronic stress.
Collapse
Affiliation(s)
- Ya-Juan Zhao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regneration, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Ji Chen
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Department of Oral Implantology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yang Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regneration, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Lv-La Pan
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Yan-Xia Guo
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regneration, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Zhou-Ming Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regneration, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Qiang Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regneration, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yong-Jin Chen
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regneration, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
3
|
Courault P, Bouvard S, Bouillot C, Zimmer L, Lancelot S. Preclinical investigation of the effect of stress on the binding of [ 18F]F13640, a 5-HT 1A radiopharmaceutical. Nucl Med Biol 2024; 138-139:108942. [PMID: 39151306 DOI: 10.1016/j.nucmedbio.2024.108942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND [18F]F13640 is a new PET radiopharmaceutical for brain molecular imaging of serotonin 5-HT1A receptors. Since we intend to use this radiopharmaceutical in psychiatric studies, it is crucial to establish possible sensitivity modification of 5-HT1A receptors availability during an acute stress exposure. In this study, we first assessed the cerebrometabolic effects of a new animal model of stress with [18F]FDG and then proceeded to test for effects of this model on the cerebral binding of [18F]F13640, a 5-HT1A receptors PET radiopharmaceutical. METHODS Four groups of male Sprague-Dawley were used to identify the optimal model: "stressed group" (n = 10), "post-traumatic stress disorder (PTSD) group" (n = 9) and "restraint group" (n = 8), compared with a control group (n = 8). All rats performed neuroimaging [18F]FDG μPET-CT to decipher which model was the most appropriate to test effects of stress on radiotracer binding. Subsequently, a group of rats (n = 10) underwent two PET imaging acquisitions (baseline and PTSD condition) using the PET radiopharmaceutical [18F]F13640 to assess influence of stress on its binding. Voxel-based analysis was performed to assess [18F]FDG or [18F]F13640 changes. RESULTS In [18F]FDG experiments, the PTSD group showed a pattern of cerebrometabolic activation in various brain regions previously implicated in stress (amygdala, perirhinal cortex, olfactory bulb and caudate). [18F]F13640 PET scans showed increased radiotracer binding in the PTSD condition in caudate nucleus and brainstem. CONCLUSIONS The present study demonstrated stress-induced cerebrometabolic activation or inhibition of various brain regions involved in stress model. Applying this model to our radiotracer, [18F]F13640 showed few influence of stress on its binding. This will enable to rule out any confounding effect of stress during imaging studies.
Collapse
Affiliation(s)
- Pierre Courault
- Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, Univ. Lyon 1, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging platform, Groupement Hospitalier Est, Bron, France.
| | - Sandrine Bouvard
- Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, Univ. Lyon 1, Lyon, France
| | | | - Luc Zimmer
- Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, Univ. Lyon 1, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging platform, Groupement Hospitalier Est, Bron, France
| | - Sophie Lancelot
- Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, Univ. Lyon 1, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging platform, Groupement Hospitalier Est, Bron, France
| |
Collapse
|
4
|
Uchima Koecklin KH, Aliaga-Del Castillo A, Li P. The neural substrates of bruxism: current knowledge and clinical implications. Front Neurol 2024; 15:1451183. [PMID: 39410996 PMCID: PMC11473305 DOI: 10.3389/fneur.2024.1451183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Bruxism is a complex orofacial behavior that can occur during sleep or wakefulness, characterized by the involuntary grinding or clenching of teeth, involving repetitive activity of the jaw muscles. Its etiology is multifactorial, influenced by genetic, psychological, physiological, and lifestyle factors. While the mild bruxism may not necessitate treatment, severe bruxism can lead to significant consequences, including tooth damage, jaw pain, fatigue, and headaches. The bruxism has been associated with medical conditions, such as stress, anxiety, sleep disorders, and various neurological disorders; however, the exact pathophysiology remains elusive. Although the central nervous system is strongly implicated in the development of bruxism, specific neural substrates have not yet been conclusively established. Furthermore, there is evidence to suggest that individuals with bruxism may exhibit neural plasticity, resulting in the establishment of distinct neural circuitry that control the jaw movements. The application of various neurophysiological techniques in both clinical and pre-clinical studies provides valuable insights into the neural mechanisms underlying bruxism. This review aims to comprehensively examine the current literature on the neural pathways involved in bruxism, with the goal of improving the clinical approach and therapeutics for this condition. A deeper understanding of the neural circuitry controlling bruxism holds the potential to advance future treatment approaches and improve the management of patients with bruxism.
Collapse
Affiliation(s)
- Karin Harumi Uchima Koecklin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Aron Aliaga-Del Castillo
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Peng Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Liu Y, Chen J, Li Q, Guo YX, Chen YJ, Zhao YJ. Locus coeruleus activation contributes to masseter muscle overactivity induced by chronic restraint stress in mice. Neuroreport 2024; 35:763-770. [PMID: 38935079 PMCID: PMC11236267 DOI: 10.1097/wnr.0000000000002058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024]
Abstract
It is commonly accepted that exposure to stress may cause overactivity in the orofacial muscles, leading to consistent muscle pain, which is the main symptom of temporomandibular disorders. The central neural mechanism underlying this process, however, remains unclear. The locus coeruleus is considered to play an important role in stress-related behavioral changes. Therefore, the present study was designed to examine the role of locus coeruleus neurons in masseter overactivity induced by stress. C57BL/6 mice were subjected to chronic restraint stress for 14 days to establish an animal model. The behavioral changes and the electromyography of the masseter muscle in mice were measured. The expression of Fos in locus coeruleus was observed by immunofluorescence staining to assess neuronal activation. A chemogenetic test was used to inhibit locus coeruleus neuronal activity, and the behavioral changes and electromyography of the masseter muscle were observed again. The results exhibited that chronic restraint stress could induce anxiety-like behavior, overactivity of the masseter muscle, and significant activation of locus coeruleus neurons in mice. Furthermore, inhibition of noradrenergic neuron activity within the locus coeruleus could alleviate stress-induced anxiety behavior and masseter muscle overactivity. Activation of noradrenergic neurons in locus coeruleus induced by stress may be one of the central regulatory mechanisms for stress-induced anxiety-like behaviors and overactivity of masseter muscles.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, The Fourth Military Medical University
| | - Ji Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Qiang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, The Fourth Military Medical University
| | - Yan-Xia Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, The Fourth Military Medical University
| | - Yong-Jin Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, The Fourth Military Medical University
| | - Ya-Juan Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, The Fourth Military Medical University
| |
Collapse
|
6
|
Kang Y, Toyoda H, Saito M. Search for unknown neural link between the masticatory and cognitive brain systems to clarify the involvement of its impairment in the pathogenesis of Alzheimer's disease. Front Cell Neurosci 2024; 18:1425645. [PMID: 38994328 PMCID: PMC11236757 DOI: 10.3389/fncel.2024.1425645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Brain degenerations in sporadic Alzheimer's disease (AD) are observed earliest in the locus coeruleus (LC), a population of noradrenergic neurons, in which hyperphosphorylated tau protein expression and β-amyloid (Aβ) accumulation begin. Along with this, similar changes occur in the basal forebrain cholinergic neurons, such as the nucleus basalis of Meynert. Neuronal degeneration of the two neuronal nuclei leads to a decrease in neurotrophic factors such as brain-derived neurotrophic factor (BDNF) in the hippocampus and cerebral cortex, which results in the accumulation of Aβ and hyperphosphorylated tau protein and ultimately causes neuronal cell death in those cortices. On the other hand, a large number of epidemiological studies have shown that tooth loss or masticatory dysfunction is a risk factor for dementia including AD, and numerous studies using experimental animals have also shown that masticatory dysfunction causes brain degeneration in the basal forebrain, hippocampus, and cerebral cortex similar to those observed in human AD, and that learning and memory functions are impaired accordingly. However, it remains unclear how masticatory dysfunction can induce such brain degeneration similar to AD, and the neural mechanism linking the trigeminal nervous system responsible for mastication and the cognitive and memory brain system remains unknown. In this review paper, we provide clues to the search for such "missing link" by discussing the embryological, anatomical, and physiological relationship between LC and its laterally adjoining mesencephalic trigeminal nucleus which plays a central role in the masticatory functions.
Collapse
Affiliation(s)
- Youngnam Kang
- Department of Behavioral Physiology, Osaka University Graduate School of Human Sciences, Osaka, Japan
| | - Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mitsuru Saito
- Department of Oral Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
7
|
Pavlou IA, Spandidos DA, Zoumpourlis V, Papakosta VK. Neurobiology of bruxism: The impact of stress (Review). Biomed Rep 2024; 20:59. [PMID: 38414628 PMCID: PMC10895390 DOI: 10.3892/br.2024.1747] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Bruxism is a non-functional involuntary muscle activity that affects more than one-third of the population at some point in their lives. A number of factors have been found to be related to the etiopathogenesis of bruxism; therefore, the condition is considered multifactorial. The most commonly accepted factor is stress. Stress has long been considered to increase muscle tone and to reduce the pain threshold. Current evidence indicates that exposure to chronic stress, distress and allostatic load ignite neurological degeneration and the attenuation of critical neuronal pathways that are highly implicated in the orofacial involuntary muscle activity. The present review discusses the negative effects that chronic stress exerts on certain parts of the central nervous system and the mechanisms through which these changes are involved in the etiopathogenesis of bruxism. The extent of these morphological and functional changes on nerves and neuronal tracts provides valuable insight into the obstacles that need to be overcome in order to achieve successful treatment. Additionally, particular emphasis is given on the effects of bruxism on the central nervous system, particularly the activation of the hypothalamic-pituitary-adrenal axis, as this subsequently induces an increase in circulating corticosterone levels, also evidenced by increased levels of salivary cortisol, thereby transforming bruxism into a self-reinforcing loop.
Collapse
Affiliation(s)
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Veronica K Papakosta
- Department of Oral and Maxillofacial Surgery, University Hospital Attikon, 12462 Athens, Greece
| |
Collapse
|
8
|
Wang N, May PJ. The ultrastructure of macaque mesencephalic trigeminal nucleus neurons. Exp Brain Res 2024; 242:295-307. [PMID: 38040856 DOI: 10.1007/s00221-023-06746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Primary afferents originating from the mesencephalic trigeminal nucleus provide the main source of proprioceptive information guiding mastication, and thus represent an important component of this critical function. Unlike those of other primary afferents, their cell bodies lie within the central nervous system. It is believed that this unusual central location allows them to be regulated by synaptic input. In this study, we explored the ultrastructure of macaque mesencephalic trigeminal nucleus neurons to determine the presence and nature of this synaptic input in a primate. We first confirmed the location of macaque mesencephalic trigeminal neurons by retrograde labeling from the masticatory muscles. Since the labeled neurons were by far the largest cells located at the edge of the periaqueductal gray, we could undertake sampling for electron microscopy based on soma size. Ultrastructurally, mesencephalic trigeminal neurons had very large somata with euchromatic nuclei that sometimes displayed deeply indented nuclear membranes. Terminal profiles with varied vesicle characteristics and synaptic density thicknesses were found in contact with either their somatic plasma membranes or somatic spines. However, in contradistinction to other, much smaller, somata in the region, the plasma membranes of the mesencephalic trigeminal somata had only a few synaptic contacts. They did extend numerous somatic spines of various lengths into the neuropil, but most of these also lacked synaptic contact. The observed ultrastructural organization indicates that macaque trigeminal mesencephalic neurons do receive synaptic contacts, but despite their central location, they only avail themselves of very limited input.
Collapse
Affiliation(s)
- Niping Wang
- Department of Periodontics and Preventive Sciences, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| |
Collapse
|
9
|
Pavlou IA, Spandidos DA, Zoumpourlis V, Adamaki M. Nutrient insufficiencies and deficiencies involved in the pathogenesis of bruxism (Review). Exp Ther Med 2023; 26:563. [PMID: 37954114 PMCID: PMC10632959 DOI: 10.3892/etm.2023.12262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
Stress has been well-documented to have a significant role in the etiopathogenesis of bruxism. Activation of the hypothalamic-pituitary-adrenal axis (HPA) and subsequent release of corticosteroids lead to increased muscle activity. Neurological studies have demonstrated that chronic stress exposure induces neurodegeneration of important neuronal structures and destabilization of the mesocortical dopaminergic pathway. These disruptions impair the abilities to counteract the overactivity of the HPA axis and disinhibit involuntary muscle activity, while at the same time, there is activation of the amygdala. Recent evidence shows that overactivation of the amygdala under stressful stimuli causes rhythmic jaw muscle activity by over activating the mesencephalic and motor trigeminal nuclei. The present review aimed to discuss the negative effects of certain vitamin and mineral deficiencies, such as vitamin D, magnesium, and omega-3 fatty acids, on the central nervous system. It provides evidence on how such insufficiencies may increase stress sensitivity and neuromuscular excitability and thereby reduce the ability to effectively respond to the overactivation of the sympathetic nervous system, and also how stress can in turn lead to these insufficiencies. Finally, the positive effects of individualized supplementation are discussed in the context of diminishing anxiety and oxidative stress, neuroprotection and in the reversal of neurodegeneration, and also in alleviating/reducing neuromuscular symptoms.
Collapse
Affiliation(s)
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
10
|
Xiao F, Hu A, Meng B, Zhang Y, Han W, Su J. PVH-Peri5 Pathway for Stress-Coping Oromotor and Anxious Behaviors in Mice. J Dent Res 2023; 102:227-237. [PMID: 36303441 DOI: 10.1177/00220345221130305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Stressful stimuli can activate the hypothalamic-pituitary-adrenal (HPA) axis. Clinically, it has been widely reported that stressful events are often accompanied by teeth clenching and bruxism, while mastication (chewing) can promote coping with stress. Trigeminal motoneurons in the trigeminal motor nucleus supplying the chewing muscles receive direct inputs from interneurons within the peritrigeminal premotor area (Peri5). Previous studies found that the paraventricular hypothalamic nucleus (PVH) participates in trigeminal activities during stressful events. However, the neural pathway by which the stress-induced oral movements alleviate stress is largely unknown. We hypothesized that paraventricular-trigeminal circuits might be associated with the stress-induced chewing movements and anxiety levels. First, we observed the stress-coping effect of wood gnawing on stress-induced anxiety, with less anxiety-like behaviors seen in the open field test and elevated plus maze, as well as decreased corticosterone and blood glucose levels, in response to stress in mice. We then found that excitotoxic lesions of PVH reduced the effect of gnawing on stress, reflected in more anxiety-like behaviors; this emphasizes the importance of the PVH in stress responses. Anterograde, retrograde, transsynaptic, and nontranssynaptic tracing through central and peripheral injections confirmed monosynaptic projections from PVH to Peri5. We discovered that PVH receives proprioceptive sensory inputs from the jaw muscle and periodontal ligaments, as well as provides motor outputs via the mesencephalic trigeminal nucleus (Me5) and Peri5. Next, pathway-specific functional manipulation by chemogenetic inhibition was conducted to further explore the role of PVH-Peri5 monosynaptic projections. Remarkably, PVH-Peri5 inhibition decreased gnawing but did not necessarily reduce stress-induced anxiety. Moreover, neuropeptide B (NPB) was expressed in Peri5-projecting PVH neurons, indicating that NPB signaling may mediate the effects of PVH-Peri5. In conclusion, our data revealed a PVH-Peri5 circuit that plays a role in the stress response via its associations with oromotor movements and relative anxiety-like behaviors.
Collapse
Affiliation(s)
- F Xiao
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - A Hu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - B Meng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Y Zhang
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - W Han
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - J Su
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|