1
|
Liu Y, Zhou ZX, Lv Q, Huang G, Zhang H, Wang YQ, Chen JG, Wang F. A superior colliculus-originating circuit prevents cocaine reinstatement via VR-based eye movement desensitization treatment. Natl Sci Rev 2025; 12:nwae467. [PMID: 40160681 PMCID: PMC11951104 DOI: 10.1093/nsr/nwae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 11/26/2024] [Indexed: 04/02/2025] Open
Abstract
While Virtual Reality (VR) technology shows promise in the management of substance use disorders, the development of an effective VR-based extinction procedure remains lacking. In this study, we developed a VR-based eye movement desensitization and reprocessing extinction training program tailored for mice. We found that this VR treatment during cocaine extinction prevents reinstatement by suppressing the hyperactivation of glutamatergic excitatory neurons in the intermediate layers of the superior colliculus (SCiCaMKIIα) during exposure to environmental cues. Additionally, SCiCaMKIIα neurons innervate tyrosine hydroxylase-positive neurons in the locus coeruleus (LCTH). Environmental cues trigger stronger phasic activation of LCTH neurons through this SCiCaMKIIα→LCTH projection, leading to increased dopamine release onto the dorsal CA3 (dCA3) region, thereby facilitating reinstatement. Furthermore, we demonstrate that VR treatment effectively inhibits the neural circuitry involving SCiCaMKIIα→LCTH→dCA3 in response to environmental cues, thus preventing cocaine reinstatement. Our findings suggest that VR treatment may represent a promising strategy for achieving drug abstinence.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zi-Xiang Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu Lv
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guan Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Han Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ye-Qin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Guo Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Shizhen Laboratory, Wuhan 430030, China
| | - Fang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Shizhen Laboratory, Wuhan 430030, China
| |
Collapse
|
2
|
Babushkina N, Manahan‐Vaughan D. The Modulation by the Locus Coeruleus of Recent and Remote Memory Retrieval is Activity-Dependent. Hippocampus 2025; 35:e70004. [PMID: 39980081 PMCID: PMC11842585 DOI: 10.1002/hipo.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 12/05/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
The hippocampus plays a crucial role in acquiring, storing, and retrieving associative experience. Whereas neuromodulatory control of the hippocampus by the locus coeruleus (LC) enhances memory acquisition and consolidation, less is known about its influence on memory retrieval. The LC fires at tonic (0.5-8 Hz) and phasic frequencies (10-25 Hz), relative to arousal and affective states. Here, we explored to what extent LC stimulation at different frequencies (2-100 Hz) and respective stimulation patterns, before retrieval of recently acquired or remote spatial memory, alter working memory (WM) or reference memory (RM) in male rats. Here, animals learned a spatial memory task in an eight-arm radial maze over a period of 15 days. LC stimulation before recent memory testing did not affect WM. However, LC stimulation at 20 or 100 Hz, but not 5-10 Hz, impaired retrieval of recently consolidated RM. These frequency-dependent impairments were abolished by intracerebral β-adrenergic receptor (β-AR), but not D1/D5 receptor, antagonism. When memory retrieval was assessed 4 weeks after initial consolidation (Day 34), RM was significantly impaired compared to the final day of recent memory testing (on Day 6). RM was not altered by LC stimulation before remote memory retrieval. However, LC stimulation at 2-100 Hz improved WM. Taken together, these data suggest that frequency-dependent NA release from the LC disrupts retrieval of recently acquired RM via activation of β-AR. Strikingly, increasing LC activity in general improves WM of a remotely acquired spatial learning task, assessed 4 weeks after the recent memory testing, suggesting that the increased effort of sustaining WM of a task learned in the past requires higher LC engagement.
Collapse
Affiliation(s)
- Natalia Babushkina
- Medical Faculty, Department of NeurophysiologyRuhr University BochumBochumGermany
- International Graduate School of NeuroscienceRuhr University BochumBochumGermany
| | - Denise Manahan‐Vaughan
- Medical Faculty, Department of NeurophysiologyRuhr University BochumBochumGermany
- International Graduate School of NeuroscienceRuhr University BochumBochumGermany
| |
Collapse
|
3
|
Mabry S, Bradshaw JL, Gardner JJ, Wilson EN, Sunuwar J, Yeung H, Shrestha S, Cunningham JT, Cunningham RL. The impact of chronic intermittent hypoxia on enzymatic activity in memory-associated brain regions of male and female rats. Biol Sex Differ 2025; 16:5. [PMID: 39891225 PMCID: PMC11786371 DOI: 10.1186/s13293-025-00688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is an intermittent hypoxia disorder associated with cognitive dysfunction, including learning and memory impairments. There is evidence that alterations in protease activity and neuronal activation are associated with cognitive dysfunction, are dependent on sex, and may be brain region-specific. However, the mechanisms mediating OSA-induced cognitive impairments are unclear. Therefore, we used a rat model of OSA, chronic intermittent hypoxia (CIH) to investigate protease activity (e.g., calpain and caspase-3) on spectrin, a cytoskeletal protein associated with neurotransmitter release, and neuronal activation (early growth response protein 1, EGR-1) in brain regions associated with learning and memory. METHODS Male and female Sprague Dawley rats were exposed to CIH or room air (normoxic) for 14 days. We quantified protease activity and cleaved spectrin products, along with EGR-1 protein expression in hippocampal subregions (CA1, CA3), cortical regions [entorhinal cortex (ETC), retrosplenial cortex (RSC), cerebellar cortex (CC)], and subcortical regions [raphe nucleus (RN), locus coeruleus (LC)] associated with learning and memory. Within each group, Pearson correlations of calpain activity, caspase-3 activity, and EGR-1 expression were performed between brain regions. Sex differences within normoxic and CIH correlations were examined. RESULTS CIH dysregulated calpain activity in male ETC, and female CA1 and RSC. CIH dysregulated caspase-3 activity in male RN, and female CA1 and RSC. CIH decreased calpain and caspase-3 cleavage products in male ETC. CIH decreased calpain-cleaved spectrin in male RSC but increased these products in female RSC. EGR-1 expression was decreased in male and female RN. Correlational analysis revealed CIH increased excitatory connections in males and increased inhibitory connections in females. EGR-1 expression in males shifted from negative to positive correlations. CONCLUSIONS Overall, these data indicate CIH dysregulates protease activity and impairs neuronal function in a brain region- and sex-dependent manner. This indicates that males and females exhibit sex-specific vulnerabilities to mild OSA. These findings concur with our previous behavioral studies that demonstrated memory impairment in CIH-exposed rats.
Collapse
Affiliation(s)
- Steve Mabry
- Department of Pharmaceutical Sciences, System College of Pharmacy, Fort Worth, TX, USA
- North Texas Eye Research Institute, Fort Worth, TX, USA
| | - Jessica L Bradshaw
- Department of Pharmaceutical Sciences, System College of Pharmacy, Fort Worth, TX, USA
| | - Jennifer J Gardner
- Department of Pharmaceutical Sciences, System College of Pharmacy, Fort Worth, TX, USA
| | - E Nicole Wilson
- Department of Pharmaceutical Sciences, System College of Pharmacy, Fort Worth, TX, USA
| | - Janak Sunuwar
- Research Core, Division of Research and Innovation, Fort Worth, TX, USA
| | - Hannah Yeung
- Department of Pharmaceutical Sciences, System College of Pharmacy, Fort Worth, TX, USA
- Texas College of Osteopathic Medicine, Fort Worth, TX, USA
| | - Sharad Shrestha
- Research Core, Division of Research and Innovation, Fort Worth, TX, USA
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, System College of Pharmacy, Fort Worth, TX, USA.
| |
Collapse
|
4
|
Mabry S, Bradshaw JL, Gardner JJ, Wilson EN, Sunuwar J, Yeung H, Shrestha S, Cunningham JT, Cunningham RL. The impact of chronic intermittent hypoxia on enzymatic activity in memory-associated brain regions of male and female rats. RESEARCH SQUARE 2024:rs.3.rs-5449794. [PMID: 39711575 PMCID: PMC11661378 DOI: 10.21203/rs.3.rs-5449794/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Background Obstructive sleep apnea (OSA) is an intermittent hypoxia disorder associated with cognitive dysfunction, including learning and memory impairments. There is evidence that alterations in protease activity and neuronal activation as associated with cognitive dysfunction, are dependent on sex, and may be brain region-specific. However, the mechanisms mediating OSA-induced cognitive impairments are unclear. Therefore, we used a rat model of OSA, chronic intermittent hypoxia (CIH), to investigate protease activity (e.g., calpain and caspase-3) and neuronal activation (early growth response protein 1, EGR-1) in brain regions associated with learning and memory. We used a rat model of OSA known as chronic intermittent hypoxia (CIH) to investigate protease activity (calpain and caspase-3) and neuronal activation (early growth response protein 1, EGR-1) in brain regions associated with learning and memory. Methods Male and female Sprague Dawley rats were exposed to CIH or room air (normoxic) for 14 days. We quantified protease activity and cleaved spectrin products, along with EGR-1 protein expression in hippocampal subregions (CA1, CA3), cortical regions [entorhinal cortex (ETC), retrosplenial cortex (RSC), cerebellar cortex (CC)], and subcortical regions [raphe nucleus (RN), locus coeruleus (LC)] associated with learning and memory. Within each group, Pearson correlations of calpain activity, caspase-3 activity, and EGR-1 expression were performed between brain regions. Sex differences within normoxic and CIH correlations were examined. Results CIH dysregulated calpain activity in male ETC and female CA1 and RSC. CIH dysregulated caspase-3 activity in male RN and female CA1 and RSC. CIH decreased calpain and caspase-3 cleavage products in male ETC. CIH decreased calpain-cleaved spectrin in male RSC but increased these products in female RSC. EGR-1 expression was decreased in male and female RN. Correlational analysis revealed CIH increased excitatory connections in males and increased inhibitory connections in females. EGR-1 expression in males shifted from negative to positive correlations. Conclusions Overall, these data show that CIH dysregulates protease activity and impairs neuronal function in a brain region- and sex-dependent manner. This indicates that males and females exhibit sex-specific vulnerabilities to mild OSA. These findings concur with our previous behavioral studies that demonstrated memory impairment in CIH-exposed rats.
Collapse
Affiliation(s)
- Steve Mabry
- University of North Texas Health Science Center
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Stinson HE, Ninan I. Median raphe glutamatergic neuron-mediated enhancement of GABAergic transmission and suppression of long-term potentiation in the hippocampus. Heliyon 2024; 10:e38192. [PMID: 39386853 PMCID: PMC11462361 DOI: 10.1016/j.heliyon.2024.e38192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
The ascending neuromodulatory pathway from the median raphe nucleus (MRN) extends widely throughout midline/para-midline regions and robustly innervates the hippocampus. This neuromodulatory pathway is believed to be critical for regulating emotional and affective behaviors. Although the MRN primarily contains serotoninergic (5-HTergic), GABAergic, and glutamatergic neurons, glutamatergic neurons expressing vesicular glutamate transporter 3 (VGLUT3) form the primary MRN input to the hippocampus. Despite the earlier demonstration of the robust MRN VGLUT3 innervation of the hippocampus, little is known about how this MRN glutamatergic input modulates synaptic transmission and plasticity in the hippocampus. Our studies show that MRN VGLUT3 neurons activate serotonin 3a receptor (5-HT3aR)-expressing GABAergic neurons, including VGLUT3-expressing neurons, at the stratum radiatum (SR)/stratum lacunosum moleculare (SLM) border. This MRN VGLUT3 neuron-mediated glutamatergic transmission onto SR/SLM 5-HT3aR neurons is negatively regulated by 5-HT through 5-HT1B receptors. In agreement with the MRN VGLUT3 neuron-mediated activation of the 5-HT3aR GABAergic neurons, activation of MRN VGLUT3 projections induces a long-lasting increase in GABAergic transmission but not glutamatergic transmission in CA1 pyramidal neurons from male but not female mice. Consistent with the MRN VGLUT3 neuron-mediated enhancement of GABAergic transmission in male mice, activation of MRN VGLUT3 projections suppresses Schaffer collateral (SC)-CA1 long-term potentiation (LTP) in male but not female mice. Thus, our results show that MRN VGLUT3 neurons modulate the dorsal hippocampus by augmenting synaptic inhibition of CA1 pyramidal neurons and by suppressing SC-CA1 LTP in a sex-specific manner.
Collapse
Affiliation(s)
- Hannah E. Stinson
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ipe Ninan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
6
|
Han S, Wang J, Zhang W, Tian X. Chronic Pain-Related Cognitive Deficits: Preclinical Insights into Molecular, Cellular, and Circuit Mechanisms. Mol Neurobiol 2024; 61:8123-8143. [PMID: 38470516 DOI: 10.1007/s12035-024-04073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Cognitive impairment is a common comorbidity of chronic pain, significantly disrupting patients' quality of life. Despite this comorbidity being clinically recognized, the underlying neuropathological mechanisms remain unclear. Recent preclinical studies have focused on the fundamental mechanisms underlying the coexistence of chronic pain and cognitive decline. Pain chronification is accompanied by structural and functional changes in the neural substrate of cognition. Based on the developments in electrophysiology and optogenetics/chemogenetics, we summarized the relevant neural circuits involved in pain-induced cognitive impairment, as well as changes in connectivity and function in brain regions. We then present the cellular and molecular alternations related to pain-induced cognitive impairment in preclinical studies, mainly including modifications in neuronal excitability and structure, synaptic plasticity, glial cells and cytokines, neurotransmitters and other neurochemicals, and the gut-brain axis. Finally, we also discussed the potential treatment strategies and future research directions.
Collapse
Affiliation(s)
- Siyi Han
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Jie Wang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China.
| | - Xuebi Tian
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Boyle N, Betts S, Lu H. Monoaminergic Modulation of Learning and Cognitive Function in the Prefrontal Cortex. Brain Sci 2024; 14:902. [PMID: 39335398 PMCID: PMC11429557 DOI: 10.3390/brainsci14090902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Extensive research has shed light on the cellular and functional underpinnings of higher cognition as influenced by the prefrontal cortex. Neurotransmitters act as key regulatory molecules within the PFC to assist with synchronizing cognitive state and arousal levels. The monoamine family of neurotransmitters, including dopamine, serotonin, and norepinephrine, play multifaceted roles in the cognitive processes behind learning and memory. The present review explores the organization and signaling patterns of monoamines within the PFC, as well as elucidates the numerous roles played by monoamines in learning and higher cognitive function.
Collapse
Affiliation(s)
| | | | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (N.B.); (S.B.)
| |
Collapse
|
8
|
McKenzie S, Sommer AL, Donaldson TN, Pimentel I, Kakani M, Choi IJ, Newman EL, English DF. Event boundaries drive norepinephrine release and distinctive neural representations of space in the rodent hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605900. [PMID: 39131365 PMCID: PMC11312532 DOI: 10.1101/2024.07.30.605900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Episodic memories are temporally segmented around event boundaries that tend to coincide with moments of environmental change. During these times, the state of the brain should change rapidly, or reset, to ensure that the information encountered before and after an event boundary is encoded in different neuronal populations. Norepinephrine (NE) is thought to facilitate this network reorganization. However, it is unknown whether event boundaries drive NE release in the hippocampus and, if so, how NE release relates to changes in hippocampal firing patterns. The advent of the new GRABNE sensor now allows for the measurement of NE binding with sub-second resolution. Using this tool in mice, we tested whether NE is released into the dorsal hippocampus during event boundaries defined by unexpected transitions between spatial contexts and presentations of novel objections. We found that NE binding dynamics were well explained by the time elapsed after each of these environmental changes, and were not related to conditioned behaviors, exploratory bouts of movement, or reward. Familiarity with a spatial context accelerated the rate in which phasic NE binding decayed to baseline. Knowing when NE is elevated, we tested how hippocampal coding of space differs during these moments. Immediately after context transitions we observed relatively unique patterns of neural spiking which settled into a modal state at a similar rate in which NE returned to baseline. These results are consistent with a model wherein NE release drives hippocampal representations away from a steady-state attractor. We hypothesize that the distinctive neural codes observed after each event boundary may facilitate long-term memory and contribute to the neural basis for the primacy effect.
Collapse
Affiliation(s)
- Sam McKenzie
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
| | - Alexandra L. Sommer
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
| | - Tia N. Donaldson
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
| | - Infania Pimentel
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
- Department of Mechanical Engineering, Tufts School of Engineering, Medford MA 02155
| | - Meenakshi Kakani
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Irene Jungyeon Choi
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405
| | - Ehren L. Newman
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405
| | | |
Collapse
|
9
|
Basu A, Yang JH, Yu A, Glaeser-Khan S, Rondeau JA, Feng J, Krystal JH, Li Y, Kaye AP. Frontal Norepinephrine Represents a Threat Prediction Error Under Uncertainty. Biol Psychiatry 2024; 96:256-267. [PMID: 38316333 PMCID: PMC11269024 DOI: 10.1016/j.biopsych.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND To adapt to threats in the environment, animals must predict them and engage in defensive behavior. While the representation of a prediction error signal for reward has been linked to dopamine, a neuromodulatory prediction error for aversive learning has not been identified. METHODS We measured and manipulated norepinephrine release during threat learning using optogenetics and a novel fluorescent norepinephrine sensor. RESULTS We found that norepinephrine response to conditioned stimuli reflects aversive memory strength. When delays between auditory stimuli and footshock are introduced, norepinephrine acts as a prediction error signal. However, temporal difference prediction errors do not fully explain norepinephrine dynamics. To explain noradrenergic signaling, we used an updated reinforcement learning model with uncertainty about time and found that it explained norepinephrine dynamics across learning and variations in temporal and auditory task structure. CONCLUSIONS Norepinephrine thus combines cognitive and affective information into a predictive signal and links time with the anticipation of danger.
Collapse
Affiliation(s)
- Aakash Basu
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut
| | - Jen-Hau Yang
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Abigail Yu
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | | | - Jocelyne A Rondeau
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Clinical Neuroscience Division, Veterans Administration National Center for PTSD, West Haven, Connecticut
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; Peking University-IDG/McGovern Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Alfred P Kaye
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Clinical Neuroscience Division, Veterans Administration National Center for PTSD, West Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
10
|
Bensing PC, Moye C, Leong KC. Oxytocin attenuates cocaine-associated place preference via the dorsal hippocampus in male and female rats. Physiol Behav 2024; 282:114599. [PMID: 38823754 DOI: 10.1016/j.physbeh.2024.114599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Cocaine addiction is the third largest cause of overdose-related deaths in the United States. Research investigating therapeutic targets for cocaine reward processes is key to combating this issue. The neuropeptide oxytocin (OXT) has been shown to reduce cocaine reward processes, though specific mechanisms are not understood. This study examines the effect of intra-dorsal hippocampal (DH) OXT on the expression of cocaine context associations using a conditioned place preference (CPP) paradigm. In this paradigm, one of two visually distinct chambers is paired with a drug. With repeated pairings, control animals display preference for the drug-associated context by spending more time in that context at test. In the present study, four conditioning days took place where male and female rats were injected with either cocaine or saline and placed into the corresponding chamber. On test day, rats received infusions of OXT or saline (VEH) into the DH and were allowed access to both chambers. The results show that while VEH-infused rats displayed cocaine CPP, OXT-infused rats did not prefer the cocaine-paired chamber. These findings implicate the DH as necessary in the mechanism by which OXT acts to block the expression of cocaine-context associations, providing insight into how OXT may exert its therapeutic effect in cocaine reward processes.
Collapse
Affiliation(s)
- Paige C Bensing
- Department of Psychology, Trinity University, San Antonio, Texas
| | - Chase Moye
- Department of Psychology, Trinity University, San Antonio, Texas
| | - Kah-Chung Leong
- Department of Psychology, Trinity University, San Antonio, Texas.
| |
Collapse
|
11
|
Hagena H, Manahan-Vaughan D. Interplay of hippocampal long-term potentiation and long-term depression in enabling memory representations. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230229. [PMID: 38853558 PMCID: PMC11343234 DOI: 10.1098/rstb.2023.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Hippocampal long-term potentiation (LTP) and long-term depression (LTD) are Hebbian forms of synaptic plasticity that are widely believed to comprise the physiological correlates of associative learning. They comprise a persistent, input-specific increase or decrease, respectively, in synaptic efficacy that, in rodents, can be followed for days and weeks in vivo. Persistent (>24 h) LTP and LTD exhibit distinct frequency-dependencies and molecular profiles in the hippocampal subfields. Moreover, causal and genetic studies in behaving rodents indicate that both LTP and LTD fulfil specific and complementary roles in the acquisition and retention of spatial memory. LTP is likely to be responsible for the generation of a record of spatial experience, which may serve as an associative schema that can be re-used to expedite or facilitate subsequent learning. In contrast, LTD may enable modification and dynamic updating of this representation, such that detailed spatial content information is included and the schema is rendered unique and distinguishable from other similar representations. Together, LTP and LTD engage in a dynamic interplay that supports the generation of complex associative memories that are resistant to generalization. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Hardy Hagena
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum44780, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum44780, Germany
| |
Collapse
|
12
|
Markovic T, Higginbotham J, Ruyle B, Massaly N, Yoon HJ, Kuo CC, Kim JR, Yi J, Garcia JJ, Sze E, Abt J, Teich RH, Dearman JJ, McCall JG, Morón JA. A locus coeruleus to dorsal hippocampus pathway mediates cue-induced reinstatement of opioid self-administration in male and female rats. Neuropsychopharmacology 2024; 49:915-923. [PMID: 38374364 PMCID: PMC11039689 DOI: 10.1038/s41386-024-01828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
Opioid use disorder is a chronic relapsing disorder encompassing misuse, dependence, and addiction to opioid drugs. Long term maintenance of associations between the reinforcing effects of the drug and the cues associated with its intake are a leading cause of relapse. Indeed, exposure to the salient drug-associated cues can lead to drug cravings and drug seeking behavior. The dorsal hippocampus (dHPC) and locus coeruleus (LC) have emerged as important structures for linking the subjective rewarding effects of opioids with environmental cues. However, their role in cue-induced reinstatement of opioid use remains to be further elucidated. In this study, we showed that chemogenetic inhibition of excitatory dHPC neurons during re-exposure to drug-associated cues significantly attenuates cue-induced reinstatement of morphine-seeking behavior. In addition, the same manipulation reduced reinstatement of sucrose-seeking behavior but failed to alter memory recall in the object location task. Finally, intact activity of tyrosine hydroxylase (TH) LC-dHPCTh afferents is necessary to drive cue induced reinstatement of morphine-seeking as inhibition of this pathway blunts cue-induced drug-seeking behavior. Altogether, these studies show an important role of the dHPC and LC-dHPCTh pathway in mediating cue-induced reinstatement of opioid seeking.
Collapse
Affiliation(s)
- Tamara Markovic
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Jessica Higginbotham
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Brian Ruyle
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Hye Jean Yoon
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, MO, USA
| | - Jenny R Kim
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, MO, USA
| | - Jiwon Yi
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeniffer J Garcia
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric Sze
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Julian Abt
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Rachel H Teich
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Joanna J Dearman
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, MO, USA
| | - Jose A Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA.
- Pain Center, Washington University in St Louis, St. Louis, MO, USA.
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA.
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
13
|
Hamati R, Ahrens J, Shvetz C, Holahan MR, Tuominen L. 65 years of research on dopamine's role in classical fear conditioning and extinction: A systematic review. Eur J Neurosci 2024; 59:1099-1140. [PMID: 37848184 DOI: 10.1111/ejn.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.
Collapse
Affiliation(s)
- Rami Hamati
- Neuroscience Graduate Program, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica Ahrens
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Cecelia Shvetz
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Wilson LR, Plummer NW, Evsyukova IY, Patino D, Stewart CL, Smith KG, Konrad KS, Fry SA, Deal AL, Kilonzo VW, Panda S, Sciolino NR, Cushman JD, Jensen P. Partial or Complete Loss of Norepinephrine Differentially Alters Contextual Fear and Catecholamine Release Dynamics in Hippocampal CA1. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:51-60. [PMID: 38058990 PMCID: PMC10695841 DOI: 10.1016/j.bpsgos.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 12/08/2023] Open
Abstract
Background Contextual fear learning is heavily dependent on the hippocampus. Despite evidence that catecholamines contribute to contextual encoding and memory retrieval, the precise temporal dynamics of their release in the hippocampus during behavior is unknown. In addition, new animal models are required to probe the effects of altered catecholamine synthesis on release dynamics and contextual learning. Methods We generated 2 new mouse models of altered locus coeruleus-norepinephrine (NE) synthesis and utilized them together with GRABNE and GRABDA sensors and in vivo fiber photometry to investigate NE and dopamine (DA) release dynamics in the dorsal hippocampal CA1 during contextual fear conditioning. Results Aversive foot shock increased both NE and DA release in the dorsal CA1, while freezing behavior associated with recall of fear memory was accompanied by decreased release. Moreover, we found that freezing at the recent time point was sensitive to both partial and complete loss of locus coeruleus-NE synthesis throughout prenatal and postnatal development, similar to previous observations of mice with global loss of NE synthesis beginning postnatally. In contrast, freezing at the remote time point was compromised only by complete loss of locus coeruleus-NE synthesis beginning prenatally. Conclusions Overall, these findings provide novel insights into the role of NE in contextual fear and the precise temporal dynamics of both NE and DA during freezing behavior and highlight complex relationships between genotype, sex, and NE signaling.
Collapse
Affiliation(s)
- Leslie R. Wilson
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
- Neurobehavioral Core Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Nicholas W. Plummer
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Irina Y. Evsyukova
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Daniela Patino
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Casey L. Stewart
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Kathleen G. Smith
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Kathryn S. Konrad
- Social and Scientific Systems, Inc., a DLH Holdings Corp Company, Durham, North Carolina
| | - Sydney A. Fry
- Neurobehavioral Core Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Alex L. Deal
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Victor W. Kilonzo
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Sambit Panda
- Neurobehavioral Core Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Natale R. Sciolino
- Department of Physiology and Neurobiology, Department of Biomedical Engineering, Institute for System Genomics, Connecticut Institute for the Brain & Cognitive Sciences, University of Connecticut, Storrs, Connecticut
| | - Jesse D. Cushman
- Neurobehavioral Core Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Patricia Jensen
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| |
Collapse
|
15
|
Stanley AT, Post MR, Lacefield C, Sulzer D, Miniaci MC. Norepinephrine release in the cerebellum contributes to aversive learning. Nat Commun 2023; 14:4852. [PMID: 37563141 PMCID: PMC10415399 DOI: 10.1038/s41467-023-40548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
The modulation of dopamine release from midbrain projections to the striatum has long been demonstrated in reward-based learning, but the synaptic basis of aversive learning is far less characterized. The cerebellum receives axonal projections from the locus coeruleus, and norepinephrine release is implicated in states of arousal and stress, but whether aversive learning relies on plastic changes in norepinephrine release in the cerebellum is unknown. Here we report that in mice, norepinephrine is released in the cerebellum following an unpredicted noxious event (a foot-shock) and that this norepinephrine release is potentiated powerfully with fear acquisition as animals learn that a previously neutral stimulus (tone) predicts the aversive event. Importantly, both chemogenetic and optogenetic inhibition of the locus coeruleus-cerebellum pathway block fear memory without impairing motor function. Thus, norepinephrine release in the cerebellum is modulated by experience and underlies aversive learning.
Collapse
Affiliation(s)
- Adrien T Stanley
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Michael R Post
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Clay Lacefield
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - David Sulzer
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, USA.
| | | |
Collapse
|
16
|
Li S. The β-adrenergic hypothesis of synaptic and microglial impairment in Alzheimer's disease. J Neurochem 2023; 165:289-302. [PMID: 36799441 DOI: 10.1111/jnc.15782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease originating partly from amyloid β protein-induced synaptic failure. As damaging of noradrenergic neurons in the locus coeruleus (LC) occurs at the prodromal stage of AD, activation of adrenergic receptors could serve as the first line of defense against the onset of the disease. Activation of β2 -ARs strengthens long-term potentiation (LTP) and synaptic activity, thus improving learning and memory. Physical stimulation of animals exposed to an enriched environment (EE) leads to the activation of β2 -ARs and prevents synaptic dysfunction. EE also suppresses neuroinflammation, suggesting that β2 -AR agonists may play a neuroprotective role. The β2 -AR agonists used for respiratory diseases have been shown to have an anti-inflammatory effect. Epidemiological studies further support the beneficial effects of β2 -AR agonists on several neurodegenerative diseases. Thus, I propose that β2 -AR agonists may provide therapeutic value in combination with novel treatments for AD.
Collapse
Affiliation(s)
- Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Tsetsenis T, Broussard JI, Dani JA. Dopaminergic regulation of hippocampal plasticity, learning, and memory. Front Behav Neurosci 2023; 16:1092420. [PMID: 36778837 PMCID: PMC9911454 DOI: 10.3389/fnbeh.2022.1092420] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
The hippocampus is responsible for encoding behavioral episodes into short-term and long-term memory. The circuits that mediate these processes are subject to neuromodulation, which involves regulation of synaptic plasticity and local neuronal excitability. In this review, we present evidence to demonstrate the influence of dopaminergic neuromodulation on hippocampus-dependent memory, and we address the controversy surrounding the source of dopamine innervation. First, we summarize historical and recent retrograde and anterograde anatomical tracing studies of direct dopaminergic projections from the ventral tegmental area and discuss dopamine release from the adrenergic locus coeruleus. Then, we present evidence of dopaminergic modulation of synaptic plasticity in the hippocampus. Plasticity mechanisms are examined in brain slices and in recordings from in vivo neuronal populations in freely moving rodents. Finally, we review pharmacological, genetic, and circuitry research that demonstrates the importance of dopamine release for learning and memory tasks while dissociating anatomically distinct populations of direct dopaminergic inputs.
Collapse
Affiliation(s)
- Theodoros Tsetsenis
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Theodoros Tsetsenis John I. Broussard John A. Dani
| | - John I. Broussard
- Department of Neurobiology and Anatomy, UT Health Houston McGovern Medical School, Houston, TX, United States,*Correspondence: Theodoros Tsetsenis John I. Broussard John A. Dani
| | - John A. Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Theodoros Tsetsenis John I. Broussard John A. Dani
| |
Collapse
|
18
|
Feasibility of Canine Adenovirus Type 2 (CAV2) Based Vector for the Locus Coeruleus Optogenetic Activation in Non-Transgenic Rats: Implications for Functional Studies. Brain Sci 2022; 12:brainsci12070904. [PMID: 35884711 PMCID: PMC9319986 DOI: 10.3390/brainsci12070904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
The locus coeruleus norepinephrine (LC-NE) system modulates many visceral and cognitive functions, while LC-NE dysfunction leads to neurological and neurodegenerative conditions such as sleep disorders, depression, ADHD, or Alzheimer's disease. Innovative viral-vector and gene-engineering technology combined with the availability of cell-specific promoters enabled regional targeting and selective control over phenotypically specific populations of neurons. We transduced the LC-NE neurons in adult male rats by delivering the canine adenovirus type 2-based vector carrying the NE-specific promoter PRSx8 and a light-sensitive channelrhodopsin-2 receptor (ChR2) directly in the LC or retrogradely from the LC targets. The highest ChR2 expression level was achieved when the virus was delivered medially to the trigeminal pathway and ~100 μm lateral to the LC. The injections close or directly in the LC compromised the tissue integrity and NE cell phenotype. Retrograde labeling was more optimal given the transduction of projection-selective subpopulations. Our results highlight a limited inference of ChR2 expression from representative cases to the entire population of targeted cells. The actual fraction of manipulated neurons appears most essential for an adequate interpretation of the study outcome. The actual fraction of manipulated neurons appears most essential for an adequate interpretation of the study outcome. Thus, besides the cell-type specificity and the transduction efficiency, the between-subject variability in the proportion of the remaining viral-transduced targeted cell population must be considered in any functional connectivity study.
Collapse
|