3
|
Yang J, Qi Y, Zhu B, Lin S. A Novel Tetrapeptide Ala-Phe-Phe-Pro (AFFP) Derived from Antarctic Krill Prevents Scopolamine-Induced Memory Disorder by Balancing Lipid Metabolism of Mice Hippocampus. Nutrients 2024; 16:1019. [PMID: 38613052 PMCID: PMC11013912 DOI: 10.3390/nu16071019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Memory impairment is a serious problem with organismal aging and increased social pressure. The tetrapeptide Ala-Phe-Phe-Pro (AFFP) is a synthetic analogue of Antarctic krill derived from the memory-improving Antarctic krill peptide Ser-Ser-Asp-Ala-Phe-Phe-Pro-Phe-Arg (SSDAFFPFR) after digestion and absorption. The objective of this research was to assess the neuroprotective effects of AFFP by reducing oxidative stress and controlling lipid metabolism in the brains of mice with memory impairment caused by scopolamine. The 1H Nuclear magnetic resonance spectroscopy results showed that AFFP had three active hydrogen sites that could contribute to its antioxidant properties. The findings from in vivo tests demonstrated that AFFP greatly enhanced the mice's behavioral performance in the passive avoidance, novel object recognition, and eight-arm maze experiments. AFFP reduced oxidative stress by enhancing superoxide dismutase activity and malondialdehyde levels in mice serum, thereby decreasing reactive oxygen species level in the mice hippocampus. In addition, AFFP increased the unsaturated lipid content to balance the unsaturated lipid level against the neurotoxicity of the mice hippocampus. Our findings suggest that AFFP emerges as a potential dietary intervention for the prevention of memory impairment disorders.
Collapse
Affiliation(s)
- Jingqi Yang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.Y.); (Y.Q.)
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, China
| | - Yan Qi
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.Y.); (Y.Q.)
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.Y.); (Y.Q.)
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, China
| |
Collapse
|
4
|
Xu J, Shi C, Yuan F, Ding Y, Xie Y, Liu Y, Zhu F, Lu H, Duan C, Hu J, Jiang L. Targeted transplantation of engineered mitochondrial compound promotes functional recovery after spinal cord injury by enhancing macrophage phagocytosis. Bioact Mater 2024; 32:427-444. [PMID: 37954465 PMCID: PMC10632560 DOI: 10.1016/j.bioactmat.2023.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Mitochondria are crucial in sustaining and orchestrating cellular functions. Capitalizing on this, we explored mitochondrial transplantation as an innovative therapeutic strategy for acute spinal cord injury (SCI). In our study, we developed an engineered mitochondrial compound tailored to target macrophages within the SCI region. Sourced from IL-10-induced Mertkhi bone marrow-derived macrophages, we conjugated a peptide sequence, cations-cysteine-alanine-glutamine-lysine (CAQK), with the mitochondria, optimizing its targeting affinity for the injury site. Our data demonstrated that these compounds significantly enhanced macrophage phagocytosis of myelin debris, curtailed lipid buildup, ameliorated mitochondrial dysfunction, and attenuated pro-inflammatory profiles in macrophages, both in vitro and in vivo. The intravenously delivered mitochondrial compounds targeted the SCI epicenter, with macrophages being the primary recipients. Critically, they promoted tissue regeneration and bolstered functional recovery in SCI mice. This study heralds a transformative approach to mitochondrial transplantation in SCI, spotlighting the modulation of macrophage activity, phagocytosis, and phenotype.
Collapse
Affiliation(s)
- Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Chaoran Shi
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yinghe Ding
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Fengzhang Zhu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Liyuan Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
5
|
Zare L, Rezaei S, Esmaeili E, Khajeh K, Javan M. Targeted drug delivery into glial scar using CAQK peptide in a mouse model of multiple sclerosis. Brain Commun 2023; 5:fcad325. [PMID: 38107502 PMCID: PMC10724044 DOI: 10.1093/braincomms/fcad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/01/2023] [Accepted: 11/25/2023] [Indexed: 12/19/2023] Open
Abstract
In multiple sclerosis, lesions are formed in various areas of the CNS, which are characterized by reactive gliosis, immune cell infiltration, extracellular matrix changes and demyelination. CAQK peptide (peptide sequence: cysteine-alanine-glutamine-lysine) was previously introduced as a targeting peptide for the injured site of the brain. In the present study, we aimed to develop a multifunctional system using nanoparticles coated by CAQK peptide, to target the demyelinated lesions in animal model of multiple sclerosis. We investigated the binding of fluorescein amidite-labelled CAQK and fluorescein amidite-labelled CGGK (as control) on mouse brain sections. Then, the porous silicon nanoparticles were synthesized and coupled with fluorescein amidite-labelled CAQK. Five days after lysolecithin-induced demyelination, male mice were intravenously injected with methylprednisolone-loaded porous silicon nanoparticles conjugated to CAQK or the same amount of free methylprednisolone. Our results showed that fluorescein amidite-labelled CAQK recognizes demyelinated lesions in brain sections of animal brains injected with lysolecithin. In addition, intravenous application of methylprednisolone-loaded nanoparticle porous silicon conjugated to CAQK at a single dose of 0.24 mg reduced the levels of microglial activation and astrocyte reactivation in the lesions of mouse corpus callosum after 24 and 48 h. No significant effect was observed following the injection of the same dose of free methylprednisolone. CAQK seems a potential targeting peptide for delivering drugs or other biologically active chemicals/reagents to the CNS of patients with multiple sclerosis. Low-dose methylprednisolone in this targeted drug delivery system showed significant beneficial effect.
Collapse
Affiliation(s)
- Leila Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
- Institute for Brain and Cognition, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
| | - Safoura Rezaei
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Elaheh Esmaeili
- Institute for Brain and Cognition, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
| | - Khosro Khajeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
- Institute for Brain and Cognition, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver V6T1Z4, British Columbia, Canada
| |
Collapse
|
6
|
Bhargava S, Kulkarni R, Dewangan B, Kulkarni N, Jiaswar C, Kumar K, Kumar A, Bodhe PR, Kumar H, Sahu B. Microtubule stabilising peptides: new paradigm towards management of neuronal disorders. RSC Med Chem 2023; 14:2192-2205. [PMID: 37974959 PMCID: PMC10650357 DOI: 10.1039/d3md00012e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/09/2023] [Indexed: 11/19/2023] Open
Abstract
Neuronal cells made of soma, axon, and dendrites are highly compartmentalized and possess a specialized transport system that can convey long-distance electrical signals for the cross-talk. The transport system is made up of microtubule (MT) polymers and MT-binding proteins. MTs play vital and diverse roles in various cellular processes. Therefore, defects and dysregulation of MTs and their binding proteins lead to many neurological disorders as exemplified by Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and many others. MT-stabilising agents (MSAs) altering the MT-associated protein connections have shown great potential for several neurodegenerative disorders. Peptides are an important class of molecules with high specificity, biocompatibility and are devoid of side effects. In the past, peptides have been explored in various neuronal disorders as therapeutics. Davunetide, a MT-stabilising octapeptide, has entered into phase II clinical trials for schizophrenia. Numerous examples of peptides emerging as MSAs reflect the emergence of a new paradigm for peptides which can be explored further as drug candidates for neuronal disorders. Although small molecule-based MSAs have been reviewed in the past, there is no systematic review in recent years focusing on peptides as MSAs apart from davunetide in 2013. Therefore, a systematic updated review on MT stabilising peptides may shed light on many hidden aspects and enable researchers to develop new therapies for diseases related to the CNS. In this review we have summarised the recent examples of peptides as MSAs.
Collapse
Affiliation(s)
- Shubhangi Bhargava
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Riya Kulkarni
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Bhaskar Dewangan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Neeraj Kulkarni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Chirag Jiaswar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Kunal Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Amit Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Praveen Reddy Bodhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| |
Collapse
|