1
|
Kim E, Tanzi RE, Choi SH. Therapeutic potential of exercise-hormone irisin in Alzheimer's disease. Neural Regen Res 2025; 20:1555-1564. [PMID: 38993140 PMCID: PMC11688551 DOI: 10.4103/nrr.nrr-d-24-00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type III domain-containing protein 5 (FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective functions against Alzheimer's disease, the most common form of dementia in the elderly, by improving cognitive function and reducing amyloid-β and tau pathologies as well as neuroinflammation in cell culture or animal models of Alzheimer's disease. Although current and ongoing studies on irisin/FNDC5 show promising results, further mechanistic studies are required to clarify its potential as a meaningful therapeutic target for alleviating Alzheimer's disease. We recently found that irisin treatment reduces amyloid-β pathology by increasing the activity/levels of amyloid-β-degrading enzyme neprilysin secreted from astrocytes. Herein, we present an overview of irisin/FNDC5's protective roles and mechanisms against Alzheimer's disease.
Collapse
Affiliation(s)
- Eunhee Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Zhang QX, Zhang LJ, Zhao N, Yang L. Irisin in ischemic stroke, Alzheimer's disease and depression: a Narrative Review. Brain Res 2024; 1845:149192. [PMID: 39214327 DOI: 10.1016/j.brainres.2024.149192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Irisin is a glycosylated protein formed from the hydrolysis of fibronectin type III domain-containing protein 5 (FNDC5). Irisin is widely involved in the regulation of glucose and lipid metabolism. In addition, recent studies have demonstrated that Irisin can inhibit inflammation, restrain oxidative stress and have neuroprotective effects, which suggests that Irisin may have a good therapeutic effect on central nervous system diseases. Therefore, this review summarizes the role of Irisin in central nervous system diseases, including its signal pathways and possible mechanisms, etc. Irisin may be a potential candidate drug for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Qiu-Xia Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Lin-Jie Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Ning Zhao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, PR China.
| |
Collapse
|
3
|
Ipekten E, Belviranli M, Okudan N. The relationship of cognitive functions with brain damage markers, myokines and neurotrophic factors in amateur soccer players. AN ACAD BRAS CIENC 2024; 96:e20231132. [PMID: 39046022 DOI: 10.1590/0001-3765202420231132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/01/2023] [Indexed: 07/25/2024] Open
Abstract
Concussive and subconcussive head impatcs in sports have drawn more attention in recent years. Thus, the cognitive ability of soccer players and its relationship with circulating levels of irisin, brain-derived neurotrophic factor (BDNF), and neuron-specific enolase (NSE) were studied in this study. Fifteen amateur soccer players and 15 sedentary men volunteered to participate in this study. After evaluating the aerobic and anaerobic capacities of the participants, their cognitive performances were measured. Blood samples were obtained at rest, and the ELISA method was used to measure the concentrations of serum NSE, plasma BDNF, and irisin. There were no differences between groups in terms of cognitive abilities or serum NSE levels (P > 0.05). Plasma irisin (P = 0.019) and BDNF (P < 0.001) levels were higher in the soccer players than the sedentary subjects. There was a positive correlation between irisin and NSE (r = 0.461, P = 0.010) and BDNF (r = 0.405, P = 0.007) concentrations. General cognitive performance is maintained in amateur soccer players. This is accompanied by the unchanged NSE. However, elevated irisin and BDNF levels appear to be independent of cognitive performance.
Collapse
Affiliation(s)
- Erkam Ipekten
- Selçuk University, School of Medicine, Department of Physiology, Konya, 42131, Turkey
| | - Muaz Belviranli
- Selçuk University, School of Medicine, Department of Physiology, Konya, 42131, Turkey
| | - Nilsel Okudan
- Selçuk University, School of Medicine, Department of Physiology, Konya, 42131, Turkey
| |
Collapse
|
4
|
Sinder SB, Sharma SV, Shirvaikar IS, Pradhyumnan H, Patel SH, Cabeda Diaz I, Perez GG, Bramlett HM, Raval AP. Impact of menopause-associated frailty on traumatic brain injury. Neurochem Int 2024; 176:105741. [PMID: 38621511 DOI: 10.1016/j.neuint.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Navigating menopause involves traversing a complex terrain of hormonal changes that extend far beyond reproductive consequences. Menopausal transition is characterized by a decrease in estradiol-17β (E2), and the impact of menopause resonates not only in the reproductive system but also through the central nervous system, musculoskeletal, and gastrointestinal domains. As women undergo menopausal transition, they become more susceptible to frailty, amplifying the risk and severity of injuries, including traumatic brain injury (TBI). Menopause triggers a cascade of changes leading to a decline in muscle mass, accompanied by diminished tone and excitability, thereby restricting the availability of irisin, a crucial hormone derived from muscles. Concurrently, bone mass undergoes reduction, culminating in the onset of osteoporosis and altering the dynamics of osteocalcin, a hormone originating from bones. The diminishing levels of E2 during menopause extend their influence on the gut microbiota, resulting in a reduction in the availability of tyrosine, tryptophan, and serotonin metabolites, affecting neurotransmitter synthesis and function. Understanding the interplay between menopause, frailty, E2 decline, and the intricate metabolisms of bone, gut, and muscle is imperative when unraveling the nuances of TBI after menopause. The current review underscores the significance of accounting for menopause-associated frailty in the incidence and consequences of TBI. The review also explores potential mechanisms to enhance gut, bone, and muscle health in menopausal women, aiming to mitigate frailty and improve TBI outcomes.
Collapse
Affiliation(s)
- Sophie B Sinder
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sabrina V Sharma
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Isha S Shirvaikar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Indy Cabeda Diaz
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Gina G Perez
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
5
|
Wang C, Wang X, Sun S, Chang Y, Lian P, Guo H, Zheng S, Ma R, Li G. Irisin inhibits microglial senescence via TFAM-mediated mitochondrial metabolism in a mouse model of tauopathy. Immun Ageing 2024; 21:30. [PMID: 38745313 PMCID: PMC11092051 DOI: 10.1186/s12979-024-00437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The accumulation of senescent microglia has been highlighted as a critical contributor to the progression of tauopathies. Irisin, a muscle-derived hormone produced by the proteolytic cleavage of Fibronectin-domain III containing 5 (FNDC5), mediates the pleiotropic effects of exercise on the physical body. Herein, we investigate the potential role of irisin in microglial senescence in tauopathies. METHODS To model tauopathies both in vivo and in vitro, we utilized P301S tau transgenic mice and tau K18 fibril-treated microglia BV2 cells, respectively. We first examined the expression of the irisin expression and senescence phenotypes of microglia in tauopathies. Subsequently, we investigated the impact of irisin on microglial senescence and its underlying molecular mechanisms. RESULT We observed a reduction in irisin levels and an onset of premature microglial senescence both in vivo and in vitro. Irisin administration was found to counteract microglial senescence and ameliorate cognitive decline in P301S mice. Mechanistically, irisin effectively inhibited microglial senescence by stimulating the expression of mitochondrial transcription factor A (TFAM), a master regulator of mitochondrial respiratory chain biogenesis, thereby enhancing mitochondrial oxidative phosphorylation (OXPHOS). Silencing TFAM eliminated the inhibitory effect of irisin on microglial senescence as well as the restorative effect of irisin on mitochondrial OXPHOS. Furthermore, the SIRT1/PGC1α signaling pathway appeared to be implicated in irisin-mediated upregulation of TFAM. CONCLUSION Taken together, our study revealed that irisin mitigated microglial senescence via TFAM-driven mitochondrial biogenesis, suggesting a promising new avenue for therapeutic strategies targeting tauopathies.
Collapse
Affiliation(s)
- Cailin Wang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiufeng Wang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shangqi Sun
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanmin Chang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Piaopiao Lian
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongxiu Guo
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Siyi Zheng
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gang Li
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Tosta A, Fonseca AS, Messeder D, Ferreira ST, Lourenco MV, Pandolfo P. Effects of Gestational Exercise on Nociception, BDNF, and Irisin Levels in an Animal Model of ADHD. Neuroscience 2024; 543:37-48. [PMID: 38401710 DOI: 10.1016/j.neuroscience.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
Abnormal cognitive and sensorial properties have been reported in patients with psychiatric and neurodevelopmental conditions, such as attention deficit hyperactivity disorder (ADHD). ADHD patients exhibit impaired dopaminergic signaling and plasticity in brain areas related to cognitive and sensory processing. The spontaneous hypertensive rat (SHR), in comparison to the Wistar Kyoto rat (WKY), is the most used genetic animal model to study ADHD. Brain neurotrophic factor (BDNF), critical for midbrain and hippocampal dopaminergic neuron survival and differentiation, is reduced in both ADHD subjects and SHR. Physical exercise (e.g. swimming) promotes neuroplasticity and improves cognition by increasing BDNF and irisin. Here we investigate the effects of gestational swimming on sensorial and behavioral phenotypes, striatal dopaminergic parameters, and hippocampal FNDC5/irisin and BDNF levels observed in WKY and SHR. Gestational swimming improved nociception in SHR rats (p = 0.006) and increased hippocampal BDNF levels (p = 0.02) in a sex-dependent manner in adolescent offspring. Sex differences were observed in hippocampal FNDC5/irisin levels (p = 0.002), with females presenting lower levels than males. Our results contribute to the notion that swimming during pregnancy is a promising alternative to improve ADHD phenotypes in the offspring.
Collapse
Affiliation(s)
- Andréa Tosta
- Program of Neurosciences, Federal Fluminense University, Niterói, Brazil
| | - Ariene S Fonseca
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Messeder
- Program of Neurosciences, Federal Fluminense University, Niterói, Brazil
| | - Sérgio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pablo Pandolfo
- Program of Neurosciences, Federal Fluminense University, Niterói, Brazil; Program of Biomedical Sciences: Physiology and Pharmacology, Federal Fluminense University, Niterói, Brazil.
| |
Collapse
|
7
|
Bonanni R, Cariati I, Rinaldi AM, Marini M, D’Arcangelo G, Tarantino U, Tancredi V. Trolox and recombinant Irisin as a potential strategy to prevent neuronal damage induced by random positioning machine exposure in differentiated HT22 cells. PLoS One 2024; 19:e0300888. [PMID: 38512830 PMCID: PMC10956770 DOI: 10.1371/journal.pone.0300888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Neuronal death could be responsible for the cognitive impairments found in astronauts exposed to spaceflight, highlighting the need to identify potential countermeasures to ensure neuronal health in microgravity conditions. Therefore, differentiated HT22 cells were exposed to simulated microgravity by random positioning machine (RPM) for 48 h, treating them with a single administration of Trolox, recombinant irisin (r-Irisin) or both. Particularly, we investigated cell viability by MTS assay, Trypan Blue staining and western blotting analysis for Akt and B-cell lymphoma 2 (Bcl-2), the intracellular increase of reactive oxygen species (ROS) by fluorescent probe and NADPH oxidase 4 (NOX4) expression, as well as the expression of brain-derived neurotrophic factor (BDNF), a major neurotrophin responsible for neurogenesis and synaptic plasticity. Although both Trolox and r-Irisin manifested a protective effect on neuronal health, the combined treatment produced the best results, with significant improvement in all parameters examined. In conclusion, further studies are needed to evaluate the potential of such combination treatment in counteracting weightlessness-induced neuronal death, as well as to identify other potential strategies to safeguard the health of astronauts exposed to spaceflight.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Biomedicine and Prevention, “Tor Vergata” University of Rome, Rome, Italy
| | - Ida Cariati
- Department of Systems Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Anna Maria Rinaldi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Mario Marini
- Department of Systems Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Umberto Tarantino
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Rome, Italy
| |
Collapse
|
8
|
Kraemer RR, Kraemer BR. The effects of peripheral hormone responses to exercise on adult hippocampal neurogenesis. Front Endocrinol (Lausanne) 2023; 14:1202349. [PMID: 38084331 PMCID: PMC10710532 DOI: 10.3389/fendo.2023.1202349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Over the last decade, a considerable amount of new data have revealed the beneficial effects of exercise on hippocampal neurogenesis and the maintenance or improvement of cognitive function. Investigations with animal models, as well as human studies, have yielded novel understanding of the mechanisms through which endocrine signaling can stimulate neurogenesis, as well as the effects of exercise on acute and/or chronic levels of these circulating hormones. Considering the effects of aging on the decline of specific endocrine factors that affect brain health, insights in this area of research are particularly important. In this review, we discuss how different forms of exercise influence the peripheral production of specific endocrine factors, with particular emphasis on brain-derived neurotrophic factor, growth hormone, insulin-like growth factor-1, ghrelin, estrogen, testosterone, irisin, vascular endothelial growth factor, erythropoietin, and cortisol. We also describe mechanisms through which these endocrine responses to exercise induce cellular changes that increase hippocampal neurogenesis and improve cognitive function.
Collapse
Affiliation(s)
- Robert R. Kraemer
- Department of Kinesiology and Health Studies, Southeastern Louisiana University, Hammond, LA, United States
| | - Bradley R. Kraemer
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, United States
| |
Collapse
|
9
|
Ribeiro FC, Cozachenco D, Heimfarth L, Fortuna JTS, de Freitas GB, de Sousa JM, Alves-Leon SV, Leite REP, Suemoto CK, Grinberg LT, De Felice FG, Lourenco MV, Ferreira ST. Synaptic proteasome is inhibited in Alzheimer's disease models and associates with memory impairment in mice. Commun Biol 2023; 6:1127. [PMID: 37935829 PMCID: PMC10630330 DOI: 10.1038/s42003-023-05511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The proteasome plays key roles in synaptic plasticity and memory by regulating protein turnover, quality control, and elimination of oxidized/misfolded proteins. Here, we investigate proteasome function and localization at synapses in Alzheimer's disease (AD) post-mortem brain tissue and in experimental models. We found a marked increase in ubiquitinylated proteins in post-mortem AD hippocampi compared to controls. Using several experimental models, we show that amyloid-β oligomers (AβOs) inhibit synaptic proteasome activity and trigger a reduction in synaptic proteasome content. We further show proteasome inhibition specifically in hippocampal synaptic fractions derived from APPswePS1ΔE9 mice. Reduced synaptic proteasome activity instigated by AβOs is corrected by treatment with rolipram, a phosphodiesterase-4 inhibitor, in mice. Results further show that dynein inhibition blocks AβO-induced reduction in dendritic proteasome content in hippocampal neurons. Finally, proteasome inhibition induces AD-like pathological features, including reactive oxygen species and dendritic spine loss in hippocampal neurons, inhibition of hippocampal mRNA translation, and memory impairment in mice. Results suggest that proteasome inhibition may contribute to synaptic and memory deficits in AD.
Collapse
Affiliation(s)
- Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luana Heimfarth
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana T S Fortuna
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Guilherme B de Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences and Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Jorge M de Sousa
- Division of Neurosurgery, Clementino Chagas Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Soniza V Alves-Leon
- Division of Neurology, Clementino Chagas Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Translational Neuroscience Laboratory, Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Renata E P Leite
- Department of Pathology, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Claudia K Suemoto
- Department of Pathology, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Lea T Grinberg
- Department of Pathology, University of São Paulo Medical School, São Paulo, SP, Brazil
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences and Department of Psychiatry, Queen's University, Kingston, ON, Canada
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
Su W, Liu Y, Lam A, Hao X, Baudry M, Bi X. Contextual fear memory impairment in Angelman syndrome model mice is associated with altered transcriptional responses. Sci Rep 2023; 13:18647. [PMID: 37903805 PMCID: PMC10616231 DOI: 10.1038/s41598-023-45769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
Angelman syndrome (AS) is a rare neurogenetic disorder caused by UBE3A deficiency and characterized by severe developmental delay, cognitive impairment, and motor dysfunction. In the present study, we performed RNA-seq on hippocampal samples from both wildtype (WT) and AS male mice, with or without contextual fear memory recall. There were 281 recall-associated differentially expressed genes (DEGs) in WT mice and 268 DEGs in AS mice, with 129 shared by the two genotypes. Gene ontology analysis showed that extracellular matrix and stimulation-induced response genes were prominently enriched in recall-associated DEGs in WT mice, while nuclear acid metabolism and tissue development genes were highly enriched in those from AS mice. Further analyses showed that the 129 shared DEGs belonged to nuclear acid metabolism and tissue development genes. Unique recall DEGs in WT mice were enriched in biological processes critical for synaptic plasticity and learning and memory, including the extracellular matrix network clustered around fibronectin 1 and collagens. In contrast, AS-specific DEGs were not enriched in any known pathways. These results suggest that memory recall in AS mice, while altering the transcriptome, fails to recruit memory-associated transcriptional programs, which could be responsible for the memory impairment in AS mice.
Collapse
Affiliation(s)
- Wenyue Su
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Yan Liu
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Aileen Lam
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 701 E. 2nd St., Pomona, CA, 91766-1854, USA
| | - Xiaoning Hao
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 701 E. 2nd St., Pomona, CA, 91766-1854, USA
| | - Michel Baudry
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 701 E. 2nd St., Pomona, CA, 91766-1854, USA.
| |
Collapse
|
11
|
Cozachenco D, Zimmer ER, Lourenco MV. Emerging concepts towards a translational framework in Alzheimer's disease. Neurosci Biobehav Rev 2023; 152:105246. [PMID: 37236385 DOI: 10.1016/j.neubiorev.2023.105246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Over the past decades, significant efforts have been made to understand the precise mechanisms underlying the pathogenesis of Alzheimer's disease (AD), the most common cause of dementia. However, clinical trials targeting AD pathological hallmarks have consistently failed. Refinement of AD conceptualization, modeling, and assessment is key to developing successful therapies. Here, we review critical findings and discuss emerging ideas to integrate molecular mechanisms and clinical approaches in AD. We further propose a refined workflow for animal studies incorporating multimodal biomarkers used in clinical studies - delineating critical paths for drug discovery and translation. Addressing unresolved questions with the proposed conceptual and experimental framework may accelerate the development of effective disease-modifying strategies for AD.
Collapse
Affiliation(s)
- Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo R Zimmer
- Department of Pharmacology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Biochemistry (PPGBioq), UFRGS, Porto Alegre, RS, Brazil; Pharmacology and Therapeutics (PPGFT), UFRGS, Porto Alegre, RS, Brazil; McGill Centre for Studies in Aging, McGill University, Montreal, Canada; Brain Institute of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
12
|
Lima-Filho RAS, Benedet AL, De Bastiani MA, Povala G, Cozachenco D, Ferreira ST, De Felice FG, Rosa-Neto P, Zimmer ER, Lourenco MV. Association of the fibronectin type III domain-containing protein 5 rs1746661 single nucleotide polymorphism with reduced brain glucose metabolism in elderly humans. Brain Commun 2023; 5:fcad216. [PMID: 37601408 PMCID: PMC10438215 DOI: 10.1093/braincomms/fcad216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023] Open
Abstract
Fibronectin type III domain-containing protein 5 (FNDC5) and its derived hormone, irisin, have been associated with metabolic control in humans, with described FNDC5 single nucleotide polymorphisms being linked to obesity and metabolic syndrome. Decreased brain FNDC5/irisin has been reported in subjects with dementia due to Alzheimer's disease. Since impaired brain glucose metabolism develops in ageing and is prominent in Alzheimer's disease, here, we examined associations of a single nucleotide polymorphism in the FNDC5 gene (rs1746661) with brain glucose metabolism and amyloid-β deposition in a cohort of 240 cognitively unimpaired and 485 cognitively impaired elderly individuals from the Alzheimer's Disease Neuroimaging Initiative. In cognitively unimpaired elderly individuals harbouring the FNDC5 rs1746661(T) allele, we observed a regional reduction in low glucose metabolism in memory-linked brain regions and increased brain amyloid-β PET load. No differences in cognition or levels of cerebrospinal fluid amyloid-β42, phosphorylated tau and total tau were observed between FNDC5 rs1746661(T) allele carriers and non-carriers. Our results indicate that a genetic variant of FNDC5 is associated with low brain glucose metabolism in elderly individuals and suggest that FNDC5 may participate in the regulation of brain metabolism in brain regions vulnerable to Alzheimer's disease pathophysiology. Understanding the associations between genetic variants in metabolism-linked genes and metabolic brain signatures may contribute to elucidating genetic modulators of brain metabolism in humans.
Collapse
Affiliation(s)
- Ricardo A S Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 413 45, Sweden
| | - Marco Antônio De Bastiani
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Guilherme Povala
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ 22281-100, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ 22281-100, Brazil
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences & Department of Psychiatry, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health University Institute, Departments of Neurology and Neurosurgery, Psychiatry, and Pharmacology, McGill University, Montreal, QC H4H 1R3, Canada
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | | |
Collapse
|
13
|
Lima-Filho R, Fortuna JS, Cozachenco D, Isaac AR, Lyra e Silva N, Saldanha A, Santos LE, Ferreira ST, Lourenco MV, De Felice FG. Brain FNDC5/Irisin Expression in Patients and Mouse Models of Major Depression. eNeuro 2023; 10:ENEURO.0256-22.2023. [PMID: 36697257 PMCID: PMC9927507 DOI: 10.1523/eneuro.0256-22.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Major depressive disorder (MDD) is a major cause of disability in adults. MDD is both a comorbidity and a risk factor for Alzheimer's disease (AD), and regular physical exercise has been associated with reduced incidence and severity of MDD and AD. Irisin is an exercise-induced myokine derived from proteolytic processing of fibronectin type III domain-containing protein 5 (FNDC5). FNDC5/irisin is reduced in the brains of AD patients and mouse models. However, whether brain FNDC5/irisin expression is altered in depression remains elusive. Here, we investigate changes in fndc5 expression in postmortem brain tissue from MDD individuals and mouse models of depression. We found decreased fndc5 expression in the MDD prefrontal cortex, both with and without psychotic traits. We further demonstrate that the induction of depressive-like behavior in male mice by lipopolysaccharide decreased fndc5 expression in the frontal cortex, but not in the hippocampus. Conversely, chronic corticosterone administration increased fndc5 expression in the frontal cortex, but not in the hippocampus. Social isolation in mice did not result in altered fndc5 expression in either frontal cortex or hippocampus. Finally, fluoxetine, but not other antidepressants, increased fndc5 gene expression in the mouse frontal cortex. Results indicate a region-specific modulation of fndc5 in depressive-like behavior and by antidepressant in mice. Our finding of decreased prefrontal cortex fndc5 expression in MDD individuals differs from results in mice, highlighting the importance of carefully interpreting observations in mice. The reduction in fndc5 mRNA suggests that decreased central FNDC5/irisin could comprise a shared pathologic mechanism between MDD and AD.
Collapse
Affiliation(s)
- Ricardo Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Juliana S. Fortuna
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Alinny R. Isaac
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Natalia Lyra e Silva
- Centre for Neurosciences Studies, Departments of Biomedical and Molecular Sciences, and Psychiatry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Alice Saldanha
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Luis E. Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Sergio T. Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
- D’Or Institute for Research and Education, Rio de Janeiro RJ, 22281-100, Brazil
| | - Mychael V. Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
- Centre for Neurosciences Studies, Departments of Biomedical and Molecular Sciences, and Psychiatry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- D’Or Institute for Research and Education, Rio de Janeiro RJ, 22281-100, Brazil
| |
Collapse
|
14
|
Hei W, You Z, An J, Zhao T, Li J, Zhang W, Li M, Yang Y, Gao P, Cao G, Guo X, Cai C, Li B. FNDC5 Promotes Adipogenic Differentiation of Primary Preadipocytes in Mashen Pigs. Genes (Basel) 2022; 14:genes14010090. [PMID: 36672836 PMCID: PMC9858987 DOI: 10.3390/genes14010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Fibronectin type III domain-containing protein 5 (FNDC5) plays an important role in fat deposition, which can be cut to form Irisin to promote fat thermogenesis, resulting in a decrease in fat content. However, the mechanism of FNDC5 related to fat deposition in pigs is still unclear. In this research, we studied the expression of FNDC5 on different adiposes and its function in the adipogenic differentiation of primary preadipocytes in Mashen pigs. The expression pattern of FNDC5 was detected by qRT-PCR and Western blotting in Mashen pigs. FNDC5 overexpression and interference vectors were constructed and transfected into porcine primary preadipocytes by lentivirus. Then, the expression of key adipogenic genes was detected by qRT-PCR and the content of lipid droplets was detected by Oil Red O staining. The results showed that the expression of FNDC5 in abdominal fat was higher than that in back subcutaneous fat in Mashen pigs, whereas the expression in back subcutaneous fat of Mashen pigs was significantly higher than that of Large White pigs. In vitro, FNDC5 promoted the adipogenic differentiation of primary preadipocytes of Mashen pigs and upregulated the expression of genes related to adipogenesis, but did not activate the extracellular signal-regulated kinase (ERK) signaling pathway. This study can provide a theoretical basis for FNDC5 in adipogenic differentiation in pigs.
Collapse
Affiliation(s)
- Wei Hei
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Ziwei You
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jiaqi An
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Tianzhi Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jiao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wanfeng Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Meng Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yang Yang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (C.C.); (B.L.)
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence: (C.C.); (B.L.)
| |
Collapse
|