1
|
Drotos AC, Zarb RL, Booth V, Roberts MT. GluN2C/D-containing NMDA receptors enhance temporal summation and increase sound-evoked and spontaneous firing in the inferior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.27.538607. [PMID: 37162927 PMCID: PMC10168349 DOI: 10.1101/2023.04.27.538607] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Along the ascending auditory pathway, there is a broad shift from temporal coding, which is common in the lower auditory brainstem, to rate coding, which predominates in auditory cortex. This temporal-to-rate transition is particularly prominent in the inferior colliculus (IC), the midbrain hub of the auditory system, but the mechanisms that govern how individual IC neurons integrate information across time remain largely unknown. Here, we report the widespread expression of Glun2c and Glun2d mRNA in IC neurons. GluN2C/D-containing NMDA receptors are relatively insensitive to voltage-dependent Mg2+ block, and thus can conduct current at resting membrane potential. Using in situ hybridization and pharmacology, we show that VIP neurons in the IC express GluN2D-containing NMDA receptors that are activatable by commissural inputs from the contralateral IC. In addition, GluN2C/D-containing receptors have much slower kinetics than other NMDA receptors, and we found that GluN2D-containing receptors facilitate temporal summation of synaptic inputs in VIP neurons. In a model neuron, we show that a GluN2C/D-like conductance interacts with the passive membrane properties of the neuron to alter temporal and rate coding of stimulus trains. Consistent with this, we show in vivo that blocking GluN2C/D-containing receptors decreases both the spontaneous firing rate and the overall firing rate elicited by amplitude-modulated (AM) sounds in many IC neurons. These results suggest that GluN2C/D-containing NMDA receptors influence rate coding for auditory stimuli in the IC by facilitating the temporal integration of synaptic inputs.
Collapse
Affiliation(s)
- Audrey C. Drotos
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Rachel L. Zarb
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Victoria Booth
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Michael T. Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
2
|
Investigation of Neuron Latency Modulated by Bilateral Inferior Collicular Interactions Using Whole-Cell Patch Clamp Recording in Brain Slices. Neural Plast 2021; 2021:8030870. [PMID: 34925502 PMCID: PMC8683196 DOI: 10.1155/2021/8030870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
As the final level of the binaural integration center in the subcortical nucleus, the inferior colliculus (IC) plays an essential role in receiving binaural information input. Previous studies have focused on how interactions between the bilateral IC affect the firing rate of IC neurons. However, little is known concerning how the interactions within the bilateral IC affect neuron latency. In this study, we explored the synaptic mechanism of the effect of bilateral IC interactions on the latency of IC neurons. We used whole-cell patch clamp recordings to assess synaptic responses in isolated brain slices of Kunming mice. The results demonstrated that the excitation-inhibition projection was the main projection between the bilateral IC. Also, the bilateral IC interactions could change the reaction latency of most neurons to different degrees. The variation in latency was related to the type of synaptic input and the relative intensity of the excitation and inhibition. Furthermore, the latency variation also was caused by the duration change of the first subthreshold depolarization firing response of the neurons. The distribution characteristics of the different types of synaptic input also differed. Excitatory-inhibitory neurons were widely distributed in the IC dorsal and central nuclei, while excitatory neurons were relatively concentrated in these two nuclei. Inhibitory neurons did not exhibit any apparent distribution trend due to the small number of assessed neurons. These results provided an experimental reference to reveal the modulatory functions of bilateral IC projections.
Collapse
|
3
|
Peng F, Innes-Brown H, McKay CM, Fallon JB, Zhou Y, Wang X, Hu N, Hou W. Temporal Coding of Voice Pitch Contours in Mandarin Tones. Front Neural Circuits 2018; 12:55. [PMID: 30087597 PMCID: PMC6066958 DOI: 10.3389/fncir.2018.00055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Accurate perception of time-variant pitch is important for speech recognition, particularly for tonal languages with different lexical tones such as Mandarin, in which different tones convey different semantic information. Previous studies reported that the auditory nerve and cochlear nucleus can encode different pitches through phase-locked neural activities. However, little is known about how the inferior colliculus (IC) encodes the time-variant periodicity pitch of natural speech. In this study, the Mandarin syllable /ba/ pronounced with four lexical tones (flat, rising, falling then rising and falling) were used as stimuli. Local field potentials (LFPs) and single neuron activity were simultaneously recorded from 90 sites within contralateral IC of six urethane-anesthetized and decerebrate guinea pigs in response to the four stimuli. Analysis of the temporal information of LFPs showed that 93% of the LFPs exhibited robust encoding of periodicity pitch. Pitch strength of LFPs derived from the autocorrelogram was significantly (p < 0.001) stronger for rising tones than flat and falling tones. Pitch strength are also significantly increased (p < 0.05) with the characteristic frequency (CF). On the other hand, only 47% (42 or 90) of single neuron activities were significantly synchronized to the fundamental frequency of the stimulus suggesting that the temporal spiking pattern of single IC neuron could encode the time variant periodicity pitch of speech robustly. The difference between the number of LFPs and single neurons that encode the time-variant F0 voice pitch supports the notion of a transition at the level of IC from direct temporal coding in the spike trains of individual neurons to other form of neural representation.
Collapse
Affiliation(s)
- Fei Peng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Hamish Innes-Brown
- Bionics Institute, East Melbourne, VIC, Australia
- Department of Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
| | - Colette M. McKay
- Bionics Institute, East Melbourne, VIC, Australia
- Department of Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
| | - James B. Fallon
- Bionics Institute, East Melbourne, VIC, Australia
- Department of Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
- Department of Otolaryngology, University of Melbourne, Melbourne, VIC, Australia
| | - Yi Zhou
- Chongqing Key Laboratory of Neurobiology, Department of Neurobiology, Third Military Medical University, Chongqing, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| |
Collapse
|
4
|
Acute Inactivation of Primary Auditory Cortex Causes a Sound Localisation Deficit in Ferrets. PLoS One 2017; 12:e0170264. [PMID: 28099489 PMCID: PMC5242495 DOI: 10.1371/journal.pone.0170264] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/30/2016] [Indexed: 11/25/2022] Open
Abstract
The objective of this study was to demonstrate the efficacy of acute inactivation of brain areas by cooling in the behaving ferret and to demonstrate that cooling auditory cortex produced a localisation deficit that was specific to auditory stimuli. The effect of cooling on neural activity was measured in anesthetized ferret cortex. The behavioural effect of cooling was determined in a benchmark sound localisation task in which inactivation of primary auditory cortex (A1) is known to impair performance. Cooling strongly suppressed the spontaneous and stimulus-evoked firing rates of cortical neurons when the cooling loop was held at temperatures below 10°C, and this suppression was reversed when the cortical temperature recovered. Cooling of ferret auditory cortex during behavioural testing impaired sound localisation performance, with unilateral cooling producing selective deficits in the hemifield contralateral to cooling, and bilateral cooling producing deficits on both sides of space. The deficit in sound localisation induced by inactivation of A1 was not caused by motivational or locomotor changes since inactivation of A1 did not affect localisation of visual stimuli in the same context.
Collapse
|
5
|
Grimsley CA, Green DB, Sivaramakrishnan S. L-type calcium channels refine the neural population code of sound level. J Neurophysiol 2016; 116:2550-2563. [PMID: 27605536 DOI: 10.1152/jn.00657.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/07/2016] [Indexed: 11/22/2022] Open
Abstract
The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (CaL: CaV1.1-1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of CaL to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. CaL is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, CaL activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, CaL boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, CaL either suppresses or enhances firing at sound levels that evoke maximum firing. CaL multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level.
Collapse
Affiliation(s)
- Calum Alex Grimsley
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| | - David Brian Green
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| | | |
Collapse
|
6
|
Commissural Gain Control Enhances the Midbrain Representation of Sound Location. J Neurosci 2016; 36:4470-81. [PMID: 27098691 DOI: 10.1523/jneurosci.3012-15.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/28/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Accurate localization of sound sources is essential for survival behavior in many species. The inferior colliculi (ICs) are the first point in the auditory pathway where cues used to locate sounds, ie, interaural time differences (ITDs), interaural level differences (ILDs), and pinna spectral cues, are all represented in the same location. These cues are first extracted separately on each side of the midline in brainstem nuclei that project to the ICs. Because of this segregation, each IC predominantly represents stimuli in the contralateral hemifield. We tested the hypothesis that commissural connections between the ICs mediate gain control that enhances sound localization acuity. We recorded IC neurons sensitive to either ITDs or ILDs in anesthetized guinea pig, before, during, and following recovery from deactivation of the contralateral IC by cryoloop cooling or microdialysis of procaine. During deactivation, responses were rescaled by divisive gain change and additive shifts, which reduced the dynamic range of ITD and ILD response functions and the ability of neurons to signal changes in sound location. These data suggest that each IC exerts multiplicative gain control and subtractive shifts over the other IC that enhances the neural representation of sound location. Furthermore, this gain control operates in a similar manner on both ITD- and ILD-sensitive neurons, suggesting a shared mechanism operates across localization cues. Our findings reveal a novel dependence of sound localization on commissural processing. SIGNIFICANCE STATEMENT Sound localization, a fundamental process in hearing, is dependent on bilateral computations in the brainstem. How this information is transmitted from the brainstem to the auditory cortex, through several stages of processing, without loss of signal fidelity, is not clear. We show that the ability of neurons in the auditory midbrain to encode azimuthal sound location is dependent on gain control mediated by the commissure of the inferior colliculi. This finding demonstrates that commissural processing between homologous auditory nuclei, on either side of the midline, enhances the precision of sound localization.
Collapse
|
7
|
White-Schwoch T, Woodruff Carr K, Thompson EC, Anderson S, Nicol T, Bradlow AR, Zecker SG, Kraus N. Auditory Processing in Noise: A Preschool Biomarker for Literacy. PLoS Biol 2015; 13:e1002196. [PMID: 26172057 PMCID: PMC4501760 DOI: 10.1371/journal.pbio.1002196] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/05/2015] [Indexed: 11/18/2022] Open
Abstract
Learning to read is a fundamental developmental milestone, and achieving reading competency has lifelong consequences. Although literacy development proceeds smoothly for many children, a subset struggle with this learning process, creating a need to identify reliable biomarkers of a child’s future literacy that could facilitate early diagnosis and access to crucial early interventions. Neural markers of reading skills have been identified in school-aged children and adults; many pertain to the precision of information processing in noise, but it is unknown whether these markers are present in pre-reading children. Here, in a series of experiments in 112 children (ages 3–14 y), we show brain–behavior relationships between the integrity of the neural coding of speech in noise and phonology. We harness these findings into a predictive model of preliteracy, revealing that a 30-min neurophysiological assessment predicts performance on multiple pre-reading tests and, one year later, predicts preschoolers’ performance across multiple domains of emergent literacy. This same neural coding model predicts literacy and diagnosis of a learning disability in school-aged children. These findings offer new insight into the biological constraints on preliteracy during early childhood, suggesting that neural processing of consonants in noise is fundamental for language and reading development. Pragmatically, these findings open doors to early identification of children at risk for language learning problems; this early identification may in turn facilitate access to early interventions that could prevent a life spent struggling to read. The neural coding of consonants in noise predicts early literacy skills in pre-reading children, providing a biological marker that may help to target early intervention. Learning to read is a chief developmental milestone with lifelong consequences; although there are effective interventions for struggling readers, an ongoing challenge has been to identify candidates for intervention at a young-enough age. We measured the precision of the neural coding of consonants in noise, and found that pre-reading children (4 y old) with stronger neural processing had superior early literacy skills; one year later they were also stronger emerging readers. We applied the same neural coding measure to a cohort of older children: in addition to predicting these children’s literacy achievement, we could reliably predict which of the children had received a diagnosis of a reading impairment. Taken together, these results suggest that the neural coding of speech in noise plays a fundamental role in language development. Children who struggle to listen in noisy environments may struggle to make meaning of the language they hear on a daily basis, which can in turn set them at risk for literacy challenges. Evaluating the neural coding of speech in noise may provide an objective neurophysiological marker for these at-risk children, opening a door to early and specific interventions that may stave off a life spent struggling to read.
Collapse
Affiliation(s)
- Travis White-Schwoch
- Auditory Neuroscience Laboratory and Department of Communication Sciences, Northwestern University, Evanston, Illinois, United States of America
| | - Kali Woodruff Carr
- Auditory Neuroscience Laboratory and Department of Communication Sciences, Northwestern University, Evanston, Illinois, United States of America
| | - Elaine C. Thompson
- Auditory Neuroscience Laboratory and Department of Communication Sciences, Northwestern University, Evanston, Illinois, United States of America
| | - Samira Anderson
- Auditory Neuroscience Laboratory and Department of Communication Sciences, Northwestern University, Evanston, Illinois, United States of America
- Department of Speech and Hearing Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Trent Nicol
- Auditory Neuroscience Laboratory and Department of Communication Sciences, Northwestern University, Evanston, Illinois, United States of America
| | - Ann R. Bradlow
- Department of Linguistics, Northwestern University, Chicago, Illinois, United States of America
| | - Steven G. Zecker
- Auditory Neuroscience Laboratory and Department of Communication Sciences, Northwestern University, Evanston, Illinois, United States of America
| | - Nina Kraus
- Auditory Neuroscience Laboratory and Department of Communication Sciences, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology & Physiology, Northwestern University, Evanston, Illinois, United States of America
- Department of Otolaryngology, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
8
|
Orton LD, Rees A. Intercollicular commissural connections refine the representation of sound frequency and level in the auditory midbrain. eLife 2014; 3. [PMID: 25406067 PMCID: PMC4235006 DOI: 10.7554/elife.03764] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/15/2014] [Indexed: 11/13/2022] Open
Abstract
Connections unifying hemispheric sensory representations of vision and touch occur in cortex, but for hearing, commissural connections earlier in the pathway may be important. The brainstem auditory pathways course bilaterally to the inferior colliculi (ICs). Each IC represents one side of auditory space but they are interconnected by a commissure. By deactivating one IC in guinea pig with cooling or microdialysis of procaine, and recording neural activity to sound in the other, we found that commissural input influences fundamental aspects of auditory processing. The areas of nonV frequency response areas (FRAs) were modulated, but the areas of almost all V-shaped FRAs were not. The supra-threshold sensitivity of rate level functions decreased during deactivation and the ability to signal changes in sound level was decremented. This commissural enhancement suggests the ICs should be viewed as a single entity in which the representation of sound in each is governed by the other. DOI:http://dx.doi.org/10.7554/eLife.03764.001 The bilateral arrangement of our eyes and ears enables us to receive information from both sides of our body. This information is conveyed via various sensory pathways that take different routes through the brain to culminate in the cerebral hemispheres. The information is then processed in the brain's outer layer, which is called the cortex. In the visual system, information from both eyes is kept separate until it reaches the cortex. A similar arrangement exists for touch. However, hearing is unusual among our senses in that sounds undergo much more processing in the brainstem, which is located at the base of the brain, than other types of stimuli. Orton and Rees now show that, in contrast to vision and touch, information about sounds occurring to our left or right is refined by interactions between the two sides of the midbrain. To test for sideward interactions between the two limbs of the auditory pathway, electrodes were lowered into the brains of anesthetized guinea pigs so that neuronal responses to tones could be recorded. The electrodes were placed in the region of the midbrain that contains two structures called the inferior colliculi (meaning ‘lower hills’ in Latin). Each inferior colliculus predominantly receives inputs from the opposite ear. However, recordings made in one colliculus when the other was deactivated revealed that one colliculus normally alters the response of the other. This shows that there is an important sideward interaction between the two halves of the auditory pathway in the midbrain that refines how fundamental aspects of sound, such as its frequency and intensity, are processed. This represents a marked departure from our previous understanding of auditory processing in the mammalian brain, and opens up new lines of investigation into the functioning of the auditory system in health and disease. DOI:http://dx.doi.org/10.7554/eLife.03764.002
Collapse
Affiliation(s)
- Llwyd David Orton
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adrian Rees
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Grimsley CA, Sanchez JT, Sivaramakrishnan S. Midbrain local circuits shape sound intensity codes. Front Neural Circuits 2013; 7:174. [PMID: 24198763 PMCID: PMC3812908 DOI: 10.3389/fncir.2013.00174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/09/2013] [Indexed: 12/28/2022] Open
Abstract
Hierarchical processing of sensory information requires interaction at multiple levels along the peripheral to central pathway. Recent evidence suggests that interaction between driving and modulating components can shape both top down and bottom up processing of sensory information. Here we show that a component inherited from extrinsic sources combines with local components to code sound intensity. By applying high concentrations of divalent cations to neurons in the nucleus of the inferior colliculus in the auditory midbrain, we show that as sound intensity increases, the source of synaptic efficacy changes from inherited inputs to local circuits. In neurons with a wide dynamic range response to intensity, inherited inputs increase firing rates at low sound intensities but saturate at mid-to-high intensities. Local circuits activate at high sound intensities and widen dynamic range by continuously increasing their output gain with intensity. Inherited inputs are necessary and sufficient to evoke tuned responses, however local circuits change peak output. Push–pull driving inhibition and excitation create net excitatory drive to intensity-variant neurons and tune neurons to intensity. Our results reveal that dynamic range and tuning re-emerge in the auditory midbrain through local circuits that are themselves variable or tuned.
Collapse
Affiliation(s)
- Calum Alex Grimsley
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | | | | |
Collapse
|
10
|
Sivaramakrishnan S, Sanchez JT, Grimsley CA. High concentrations of divalent cations isolate monosynaptic inputs from local circuits in the auditory midbrain. Front Neural Circuits 2013; 7:175. [PMID: 24194701 PMCID: PMC3810775 DOI: 10.3389/fncir.2013.00175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/09/2013] [Indexed: 11/23/2022] Open
Abstract
Hierarchical processing of sensory information occurs at multiple levels between the peripheral and central pathway. Different extents of convergence and divergence in top down and bottom up projections makes it difficult to separate the various components activated by a sensory input. In particular, hierarchical processing at sub-cortical levels is little understood. Here we have developed a method to isolate extrinsic inputs to the inferior colliculus (IC), a nucleus in the midbrain region of the auditory system, with extensive ascending and descending convergence. By applying a high concentration of divalent cations (HiDi) locally within the IC, we isolate a HiDi-sensitive from a HiDi-insensitive component of responses evoked by afferent input in brain slices and in vivo during a sound stimulus. Our results suggest that the HiDi-sensitive component is a monosynaptic input to the IC, while the HiDi-insensitive component is a local polysynaptic circuit. Monosynaptic inputs have short latencies, rapid rise times, and underlie first spike latencies. Local inputs have variable delays and evoke long-lasting excitation. In vivo, local circuits have variable onset times and temporal profiles. Our results suggest that high concentrations of divalent cations should prove to be a widely useful method of isolating extrinsic monosynaptic inputs from local circuits in vivo.
Collapse
|