1
|
Hapakova L, Necpal J, Kosutzka Z. The antisaccadic paradigm: A complementary neuropsychological tool in basal ganglia disorders. Cortex 2024; 178:116-140. [PMID: 38991475 DOI: 10.1016/j.cortex.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/20/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
This review explores the role of the antisaccadic task in understanding inhibitory mechanisms in basal ganglia disorders. It conducts a comparative analysis of saccadic profiles in conditions such as Parkinson's disease, Tourette syndrome, obsessive-compulsive disorder, Huntington's disease, and dystonia, revealing distinct patterns and proposing mechanisms for impaired performance. The primary focus is on two inhibitory mechanisms: global, pre-emptive inhibition responsible for suppressing prepotent responses, and slower, selective response inhibition. The antisaccadic task demonstrates practicality in clinical applications, aiding in differential diagnoses, treatment monitoring and reflecting gait control. To further enhance its differential diagnostic value, future directions should address issues such as the standardization of eye-tracking protocol and the integration of eye-tracking data with other disease indicators in a comprehensive dataset.
Collapse
Affiliation(s)
- Lenka Hapakova
- 2nd Department of Neurology, Comenius University Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia.
| | - Jan Necpal
- Neurology Department, Hospital Zvolen, a. s., Zvolen, Slovakia.
| | - Zuzana Kosutzka
- 2nd Department of Neurology, Comenius University Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia.
| |
Collapse
|
2
|
Qin G, Xie H, Shi L, Zhao B, Gan Y, Yin Z, Xu Y, Zhang X, Chen Y, Jiang Y, Zhang Q, Zhang J. Unlocking potential: low frequency subthalamic nucleus stimulation enhances executive function in Parkinson's disease patients with postural instability/gait disturbance. Front Neurosci 2023; 17:1228711. [PMID: 37712094 PMCID: PMC10498764 DOI: 10.3389/fnins.2023.1228711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
Postural instability/gait disturbance (PIGD) is very common in advanced Parkinson's disease, and associated with cognitive dysfunction. Research suggests that low frequency (5-12 Hz) subthalamic nucleus-deep brain stimulation (STN-DBS) could improve cognition in patients with Parkinson's disease (PD). However, the clinical effectiveness of low frequency stimulation in PIGD patients has not been explored. This study was designed in a double-blinded randomized cross-over manner, aimed to verify the effect of low frequency STN-DBS on cognition of PIGD patients. Twenty-nine PIGD patients with STN-DBS were tested for cognitive at off (no stimulation), low frequency (5 Hz), and high frequency (130 Hz) stimulation. Neuropsychological tests included the Stroop Color-Word Test (SCWT), Verbal fluency test, Symbol Digital Switch Test, Digital Span Test, and Benton Judgment of Line Orientation test. For conflict resolution of executive function, low frequency stimulation significantly decreased the completion time of SCWT-C (p = 0.001) and Stroop interference effect (p < 0.001) compared to high frequency stimulation. However, no significant differences among stimulation states were found for other cognitive tests. Here we show, low frequency STN-DBS improved conflict resolution of executive function compared to high frequency. Our results demonstrated the possibility of expanding the treatment coverage of DBS to cognitive function in PIGD, which will facilitate integration of low frequency stimulation into future DBS programming.
Collapse
Affiliation(s)
- Guofan Qin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifei Gan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yin Jiang
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Quan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Müller EJ, Munn BR, Redinbaugh MJ, Lizier J, Breakspear M, Saalmann YB, Shine JM. The non-specific matrix thalamus facilitates the cortical information processing modes relevant for conscious awareness. Cell Rep 2023; 42:112844. [PMID: 37498741 DOI: 10.1016/j.celrep.2023.112844] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/25/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
The neurobiological mechanisms of arousal and anesthesia remain poorly understood. Recent evidence highlights the key role of interactions between the cerebral cortex and the diffusely projecting matrix thalamic nuclei. Here, we interrogate these processes in a whole-brain corticothalamic neural mass model endowed with targeted and diffusely projecting thalamocortical nuclei inferred from empirical data. This model captures key features seen in propofol anesthesia, including diminished network integration, lowered state diversity, impaired susceptibility to perturbation, and decreased corticocortical coherence. Collectively, these signatures reflect a suppression of information transfer across the cerebral cortex. We recover these signatures of conscious arousal by selectively stimulating the matrix thalamus, recapitulating empirical results in macaque, as well as wake-like information processing states that reflect the thalamic modulation of large-scale cortical attractor dynamics. Our results highlight the role of matrix thalamocortical projections in shaping many features of complex cortical dynamics to facilitate the unique communication states supporting conscious awareness.
Collapse
Affiliation(s)
- Eli J Müller
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; School of Computer Science, The University of Sydney, Sydney, NSW, Australia.
| | - Brandon R Munn
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | | | - Joseph Lizier
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | | | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin National Primate Research Centre, Madison, WI, USA
| | - James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Trevarrow MP, Munoz MJ, Rivera YM, Arora R, Drane QH, Rosenow JM, Sani SB, Pal GD, Verhagen Metman L, Goelz LC, Corcos DM, David FJ. The Effects of Subthalamic Nucleus Deep Brain Stimulation and Retention Delay on Memory-Guided Reaching Performance in People with Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:917-935. [PMID: 37522216 PMCID: PMC10578280 DOI: 10.3233/jpd-225041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN-DBS) improves intensive aspects of movement (velocity) in people with Parkinson's disease (PD) but impairs the more cognitively demanding coordinative aspects of movement (error). We extended these findings by evaluating STN-DBS induced changes in intensive and coordinative aspects of movement during a memory-guided reaching task with varying retention delays. OBJECTIVE We evaluated the effect of STN-DBS on motor control during a memory-guided reaching task with short and long retention delays in participants with PD and compared performance to healthy controls (HC). METHODS Eleven participants with PD completed the motor section of the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS III) and performed a memory-guided reaching task under four different STN-DBS conditions (DBS-OFF, DBS-RIGHT, DBS-LEFT, and DBS-BOTH) and two retention delays (0.5 s and 5 s). An additional 13 HC completed the memory-guided reaching task. RESULTS Unilateral and bilateral STN-DBS improved the MDS-UPDRS III scores. In the memory-guided reaching task, both unilateral and bilateral STN-DBS increased the intensive aspects of movement (amplitude and velocity) in the direction toward HC but impaired coordinative aspects of movement (error) away from the HC. Furthermore, movement time was decreased but reaction time was unaffected by STN-DBS. Shorter retention delays increased amplitude and velocity, decreased movement times, and decreased error, but increased reaction times in the participants with PD. There were no interactions between STN-DBS condition and retention delay. CONCLUSION STN-DBS may affect cognitive-motor functioning by altering activity throughout cortico-basal ganglia networks and the oscillatory activity subserving them.
Collapse
Affiliation(s)
- Michael P. Trevarrow
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Miranda J. Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Yessenia M. Rivera
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Rishabh Arora
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Quentin H. Drane
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Joshua M. Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sepehr B. Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, USA
| | - Gian D. Pal
- Department of Neurology, Division of Movement Disorders, Rutgers - Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Leonard Verhagen Metman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lisa C. Goelz
- Department of Kinesiology and Nutrition, UIC College of Applied Health Sciences, Chicago, IL, USA
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
- McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Fabian J. David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
5
|
Lai Y, He N, Wei H, Deng L, Zhou H, Li J, Kaiser M, Zhang C, Li D, Sun B. Value of functional connectivity in outcome prediction for pallidal stimulation in Parkinson disease. J Neurosurg 2023; 138:27-37. [PMID: 35523258 DOI: 10.3171/2022.3.jns212732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/21/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Functional connectivity shows the ability to predict the outcome of subthalamic nucleus deep brain stimulation (DBS) in Parkinson disease (PD). However, evidence supporting its value in predicting the outcome of globus pallidus internus (GPi) DBS remains scarce. In this study the authors investigated patient-specific functional connectivity related to GPi DBS outcome in PD and established connectivity models for outcome prediction. METHODS The authors reviewed the outcomes of 21 patients with PD who received bilateral GPi DBS and presurgical functional MRI at the Ruijin Hospital. The connectivity profiles within cortical areas identified as relevant to DBS outcome in the literature were calculated using the intersection of the volume of tissue activated (VTA) and the local structures as the seeds. Combined with the leave-one-out cross-validation strategy, models of the optimal connectivity profile were constructed to predict outcome. RESULTS Connectivity between the pallidal areas and primary motor area, supplementary motor area (SMA), and premotor cortex was identified through the literature as related to GPi DBS outcome. The similarity between the connectivity profile within the primary motor area, SMA, pre-SMA, and premotor cortex seeding from the VTA-GPi intersection from an out-of-sample patient and the constructed in-sample optimal connectivity profile predicts GPi DBS outcome (R = 0.58, p = 0.006). The predictions on average deviated by 13.1% ± 11.3% from actual improvements. On the contrary, connectivity profiles seeding from the GPi (R = -0.12, p = 0.603), the VTA (R = 0.23, p = 0.308), the VTA outside the GPi (R = 0.12, p = 0.617), or other local structures were found not to be predictive. CONCLUSIONS The results showed that patient-specific functional connectivity seeding from the VTA-GPi intersection could help in GPi DBS outcome prediction. Reproducibility remains to be determined across centers in larger cohorts stratified by PD motor subtype.
Collapse
Affiliation(s)
- Yijie Lai
- 1Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naying He
- 2Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- 3Department of Biomedical Engineering, Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Lifu Deng
- 4Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| | - Haiyan Zhou
- 5Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Li
- 6School of Information Science and Technology, Shanghai Technical University, Shanghai, China
| | - Marcus Kaiser
- 7School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Chencheng Zhang
- 1Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- 8Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Dianyou Li
- 1Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- 1Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
David FJ, Rivera YM, Entezar TK, Arora R, Drane QH, Munoz MJ, Rosenow JM, Sani SB, Pal GD, Verhagen-Metman L, Corcos DM. Encoding type, medication, and deep brain stimulation differentially affect memory-guided sequential reaching movements in Parkinson's disease. Front Neurol 2022; 13:980935. [PMID: 36324383 PMCID: PMC9618698 DOI: 10.3389/fneur.2022.980935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Memory-guided movements, vital to daily activities, are especially impaired in Parkinson's disease (PD). However, studies examining the effects of how information is encoded in memory and the effects of common treatments of PD, such as medication and subthalamic nucleus deep brain stimulation (STN-DBS), on memory-guided movements are uncommon and their findings are equivocal. We designed two memory-guided sequential reaching tasks, peripheral-vision or proprioception encoded, to investigate the effects of encoding type (peripheral-vision vs. proprioception), medication (on- vs. off-), STN-DBS (on- vs. off-, while off-medication), and compared STN-DBS vs. medication on reaching amplitude, error, and velocity. We collected data from 16 (analyzed n = 7) participants with PD, pre- and post-STN-DBS surgery, and 17 (analyzed n = 14) healthy controls. We had four important findings. First, encoding type differentially affected reaching performance: peripheral-vision reaches were faster and more accurate. Also, encoding type differentially affected reaching deficits in PD compared to healthy controls: peripheral-vision reaches manifested larger deficits in amplitude. Second, the effect of medication depended on encoding type: medication had no effect on amplitude, but reduced error for both encoding types, and increased velocity only during peripheral-vision encoding. Third, the effect of STN-DBS depended on encoding type: STN-DBS increased amplitude for both encoding types, increased error during proprioception encoding, and increased velocity for both encoding types. Fourth, STN-DBS was superior to medication with respect to increasing amplitude and velocity, whereas medication was superior to STN-DBS with respect to reducing error. We discuss our findings in the context of the previous literature and consider mechanisms for the differential effects of medication and STN-DBS.
Collapse
Affiliation(s)
- Fabian J. David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yessenia M. Rivera
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tara K. Entezar
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, United States
| | - Rishabh Arora
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Quentin H. Drane
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Miranda J. Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joshua M. Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sepehr B. Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Gian D. Pal
- Department of Neurology, Rutgers University, New Brunswick, NJ, United States
| | - Leonard Verhagen-Metman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
7
|
Shing N, Walker MC, Chang P. The Role of Aberrant Neural Oscillations in the Hippocampal-Medial Prefrontal Cortex Circuit in Neurodevelopmental and Neurological Disorders. Neurobiol Learn Mem 2022; 195:107683. [PMID: 36174886 DOI: 10.1016/j.nlm.2022.107683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
The hippocampus (HPC) and medial prefrontal cortex (mPFC) have well-established roles in cognition, emotion, and sensory processing. In recent years, interests have shifted towards developing a deeper understanding of the mechanisms underlying interactions between the HPC and mPFC in achieving these functions. Considerable research supports the idea that synchronized activity between the HPC and the mPFC is a general mechanism by which brain functions are regulated. In this review, we summarize current knowledge on the hippocampal-medial prefrontal cortex (HPC-mPFC) circuit in normal brain function with a focus on oscillations and highlight several neurodevelopmental and neurological disorders associated with aberrant HPC-mPFC circuitry. We further discuss oscillatory dynamics across the HPC-mPFC circuit as potentially useful biomarkers to assess interventions for neurodevelopmental and neurological disorders. Finally, advancements in brain stimulation, gene therapy and pharmacotherapy are explored as promising therapies for disorders with aberrant HPC-mPFC circuit dynamics.
Collapse
Affiliation(s)
- Nathanael Shing
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK; Department of Medicine, University of Central Lancashire, Preston, PR17BH, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Pishan Chang
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT.
| |
Collapse
|
8
|
Du T, Yuan T, Zhu G, Ma R, Zhang X, Chen Y, Zhang J. The effect of age and disease duration on the efficacy of subthalamic nuclei deep brain stimulation in Parkinson's disease patients. CNS Neurosci Ther 2022; 28:2163-2171. [PMID: 36069345 PMCID: PMC9627397 DOI: 10.1111/cns.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies have reported the effects of age and disease duration on the efficacy of subthalamic nuclei deep brain stimulation (STN-DBS) of Parkinson's disease (PD) patients. However, available data involving these issues are not consistent. In particular, the effect of age and disease duration on the initial efficacy of STN-DBS has not been established. METHODS A total of 51 patients with PD treated with bilateral STN-DBS were involved in the present study. They received clinical symptom evaluation during the preoperative, initial, and chronic stages of surgery. The correlations between age when undergoing surgery/age at disease onset/disease duration and outcomes of STN-DBS were measured. RESULTS The preoperative levodopa response was negatively associated with age. During the initial stage, the age when undergoing surgery and age at disease onset were negatively correlated with the effect on bradykinesia, with better symptom control of general symptoms in long-term disease patients. Similarly, patients with an early time of surgery and disease onset and long-term disease duration showed better control of bradykinesia and axial symptoms at the chronic stage. Furthermore, a long-term disease duration and early disease onset benefited from an increase of therapeutic efficacy in general, rigid, and axial symptoms with STN-DBS after a long period. Nevertheless, patients with late disease onset achieved a better relief of stigma. CONCLUSION Age and disease durations played a unique role in controlling the symptoms of PD patients treated with STN-DBS. These results may contribute to patient selection and adjustments of expectations of surgery, based on the age, disease duration, and different symptoms.
Collapse
Affiliation(s)
- Tingting Du
- Department of Functional NeurosurgeryBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Tianshuo Yuan
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xin Zhang
- Department of Functional NeurosurgeryBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Yingchuan Chen
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jianguo Zhang
- Department of Functional NeurosurgeryBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina,Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of NeurostimulationBeijingChina
| |
Collapse
|
9
|
Zhang J, Villringer A, Nikulin VV. Dopaminergic Modulation of Local Non-oscillatory Activity and Global-Network Properties in Parkinson's Disease: An EEG Study. Front Aging Neurosci 2022; 14:846017. [PMID: 35572144 PMCID: PMC9106139 DOI: 10.3389/fnagi.2022.846017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic medication for Parkinson's disease (PD) modulates neuronal oscillations and functional connectivity (FC) across the basal ganglia-thalamic-cortical circuit. However, the non-oscillatory component of the neuronal activity, potentially indicating a state of excitation/inhibition balance, has not yet been investigated and previous studies have shown inconsistent changes of cortico-cortical connectivity as a response to dopaminergic medication. To further elucidate changes of regional non-oscillatory component of the neuronal power spectra, FC, and to determine which aspects of network organization obtained with graph theory respond to dopaminergic medication, we analyzed a resting-state electroencephalography (EEG) dataset including 15 PD patients during OFF and ON medication conditions. We found that the spectral slope, typically used to quantify the broadband non-oscillatory component of power spectra, steepened particularly in the left central region in the ON compared to OFF condition. In addition, using lagged coherence as a FC measure, we found that the FC in the beta frequency range between centro-parietal and frontal regions was enhanced in the ON compared to the OFF condition. After applying graph theory analysis, we observed that at the lower level of topology the node degree was increased, particularly in the centro-parietal area. Yet, results showed no significant difference in global topological organization between the two conditions: either in global efficiency or clustering coefficient for measuring global and local integration, respectively. Interestingly, we found a close association between local/global spectral slope and functional network global efficiency in the OFF condition, suggesting a crucial role of local non-oscillatory dynamics in forming the functional global integration which characterizes PD. These results provide further evidence and a more complete picture for the engagement of multiple cortical regions at various levels in response to dopaminergic medication in PD.
Collapse
Affiliation(s)
- Juanli Zhang
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Vadim V. Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Neurophysics Group, Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Silverio AA, Silverio LAA. Developments in Deep Brain Stimulators for Successful Aging Towards Smart Devices—An Overview. FRONTIERS IN AGING 2022; 3:848219. [PMID: 35821845 PMCID: PMC9261350 DOI: 10.3389/fragi.2022.848219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/15/2022] [Indexed: 12/02/2022]
Abstract
This work provides an overview of the present state-of-the-art in the development of deep brain Deep Brain Stimulation (DBS) and how such devices alleviate motor and cognitive disorders for a successful aging. This work reviews chronic diseases that are addressable via DBS, reporting also the treatment efficacies. The underlying mechanism for DBS is also reported. A discussion on hardware developments focusing on DBS control paradigms is included specifically the open- and closed-loop “smart” control implementations. Furthermore, developments towards a “smart” DBS, while considering the design challenges, current state of the art, and constraints, are also presented. This work also showcased different methods, using ambient energy scavenging, that offer alternative solutions to prolong the battery life of the DBS device. These are geared towards a low maintenance, semi-autonomous, and less disruptive device to be used by the elderly patient suffering from motor and cognitive disorders.
Collapse
Affiliation(s)
- Angelito A. Silverio
- Department of Electronics Engineering, University of Santo Tomas, Manila, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- *Correspondence: Angelito A. Silverio,
| | | |
Collapse
|
11
|
Sasi S, Sen Bhattacharya B. In silico Effects of Synaptic Connections in the Visual Thalamocortical Pathway. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:856412. [PMID: 35450154 PMCID: PMC9016146 DOI: 10.3389/fmedt.2022.856412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
We have studied brain connectivity using a biologically inspired in silico model of the visual pathway consisting of the lateral geniculate nucleus (LGN) of the thalamus, and layers 4 and 6 of the primary visual cortex. The connectivity parameters in the model are informed by the existing anatomical parameters from mammals and rodents. In the base state, the LGN and layer 6 populations in the model oscillate with dominant alpha frequency, while the layer 4 oscillates in the theta band. By changing intra-cortical hyperparameters, specifically inhibition from layer 6 to layer 4, we demonstrate a transition to alpha mode for all the populations. Furthermore, by increasing the feedforward connectivities in the thalamo-cortico-thalamic loop, we could transition into the beta band for all the populations. On looking closely, we observed that the origin of this beta band is in the layer 6 (infragranular layers); lesioning the thalamic feedback from layer 6 removed the beta from the LGN and the layer 4. This agrees with existing physiological studies where it is shown that beta rhythm is generated in the infragranular layers. Lastly, we present a case study to demonstrate a neurological condition in the model. By changing connectivities in the network, we could simulate the condition of significant (P < 0.001) decrease in beta band power and a simultaneous increase in the theta band power, similar to that observed in Schizophrenia patients. Overall, we have shown that the connectivity changes in a simple visual thalamocortical in silico model can simulate state changes in the brain corresponding to both health and disease conditions.
Collapse
|
12
|
Wei J, Zou Z, Li J, Zhang Y. Gamma Oscillations and Coherence Are Weaker in the Dorsomedial Subregion of STN in Parkinson's Disease. Front Neurol 2021; 12:710206. [PMID: 34557146 PMCID: PMC8453062 DOI: 10.3389/fneur.2021.710206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Deep-brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for motor symptoms of advanced Parkinson's disease (PD). Due to a lack of detailed somatotopic organization in STN, the clinically most effective part of the STN for stimulation has already become one of the hot research focuses. At present, there are some reports about topographic distribution for different depths within the STN, but few about a mediolateral topography in this area. Objective: The objective was to investigate the local field potential (LFP) distribution patterns in dorsomedial and dorsolateral subparts of STN. Methods: In total, 18 PD patients eventually enrolled in this study. The DBS electrodes were initially located on the lateral portion of dorsolateral STN. Because of internal capsule side effects presented at low threshold (below 1.5 mA), the electrode was reimplanted more medially to the dorsomedial STN. In this process, intraoperative LFPs from dorsomedial and dorsolateral STN were recorded from the inserted electrode. Both beta power and gamma power of the LFPs were calculated using the power spectral density (PSD) for each DBS contact pair. Furthermore, coherence between any two pairs of contacts was computed in the dorsomedial and dorsolateral parts of STN, respectively. Meanwhile, the Unified Parkinson's Disease Rating Scale part III (UPDRS-III) was monitored prior to surgery and at the 6-month follow-up. Results: Compared to the dorsolateral part of STN, gamma oscillations (p < 0.01) and coherence (p < 0.05) were all weaker in the dorsomedial part. However, no obvious differences in beta oscillations and coherence were observed between the two groups (p > 0.05). Moreover, it should be noted that DBS of the dorsomedial STN resulted in significant improvement in the UPDRS-III in PD patients. There was a 61.50 ± 21.30% improvement in UPDRS-III scores in Med-off/Stim-on state relative to the Med-off state at baseline (from 15.44 ± 6.84 to 43.94 ± 15.79, p < 0.01). Conclusions: The specific features of gamma activity may be used to differentiate STN subregions. Moreover, the dorsomedial part of STN might be a potential target for DBS in PD.
Collapse
Affiliation(s)
- Jing Wei
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Zhifan Zou
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Jiping Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuqing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Yan C, Liu Q, Bi Y. Bifurcation analyses and potential landscapes of a cortex-basal ganglia-thalamus model. IET Syst Biol 2021; 15:101-109. [PMID: 33861900 PMCID: PMC8675854 DOI: 10.1049/syb2.12018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/06/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022] Open
Abstract
The dynamics of cortical neuronal activity plays important roles in controlling body movement and is regulated by connection weights between neurons in a cortex–basal ganglia–thalamus (BGCT) loop. Beta‐band oscillation of cortical activity is closely associated with the movement disorder of Parkinson's disease, which is caused by an imbalance in the connection weights of direct and indirect pathways in the BGCT loop. In this study, the authors investigate how the dynamics of cortical activity are modulated by connection weights of direct and indirect pathways in the BGCT loop under low dopamine levels through bifurcation analyses and potential landscapes. The results reveal that cortical activity displays rich dynamics under different connection weights, including one, two, or three stable steady states, one or two stable limit cycles, and the coexistence of one stable limit cycle with one stable steady state or two stable ones. For a low dopamine level, cortical activity exhibits oscillation for larger connection weights of direct and indirect pathways. The stability of these stable dynamics is explored by the potential landscapes.
Collapse
Affiliation(s)
- Chenri Yan
- School of Mathematical Sciences, Inner Mongolia University, Hohhot, China
| | - Quansheng Liu
- School of Mathematical Sciences, Inner Mongolia University, Hohhot, China
| | - Yuanhong Bi
- School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Hohhot, China
| |
Collapse
|
14
|
Marsili L, Bologna M, Miyasaki JM, Colosimo C. Parkinson's disease advanced therapies - A systematic review: More unanswered questions than guidance. Parkinsonism Relat Disord 2020; 83:132-139. [PMID: 33158747 DOI: 10.1016/j.parkreldis.2020.10.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
In advanced Parkinson's disease (PD), therapeutic interventions include device-aided therapies such as continuous subcutaneous apomorphine infusion (CSAI), levodopa-carbidopa intestinal gel (LCIG) infusion, and deep brain stimulation (DBS). We reappraised the evidence guiding the decision of appropriate device-aided therapies in advanced PD, and systematically reviewed the literature (including ongoing clinical trials) comparing CSAI, LCIG, DBS in terms of efficacy and cost-effectiveness, with particular consideration to possible conflicts of interests. Of 14,980 documents screened, sixteen were included (4 and 13 studies examining efficacy and cost-effectiveness, respectively). LCIG and DBS showed higher efficacy compared to best medical therapy (BMT). DBS was more expensive than BMT and LCIG. Lifetime costs of CSAI were lower of those of DBS, and DBS lifetime costs were lower than those of LCIG. The majority of studies (11 out of 16) showed direct or indirect sponsorship from pharmaceutical or device companies. Only one ongoing clinical trial comparing LCIG with DBS was found. Device-aided therapies address unmet needs in advanced PD. LCIG and DBS are superior to BMT in head-to-head studies; however, initial and lifetime costs should be considered when choosing those therapies. Guidelines to assist clinicians and patients to choose device-aided therapies, free from conflict of interests, are required.
Collapse
Affiliation(s)
- Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA.
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Janis M Miyasaki
- Department of Medicine, Division of Neurology, Parkinson and Movement Disorders Program and the Complex Neurologic Symptoms Clinic, Kaye Edmonton Clinic, University of Alberta, Edmonton, AL, Canada
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| |
Collapse
|
15
|
Nguyen TAK, Schüpbach M, Mercanzini A, Dransart A, Pollo C. Directional Local Field Potentials in the Subthalamic Nucleus During Deep Brain Implantation of Parkinson's Disease Patients. Front Hum Neurosci 2020; 14:521282. [PMID: 33192384 PMCID: PMC7556345 DOI: 10.3389/fnhum.2020.521282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/15/2020] [Indexed: 11/29/2022] Open
Abstract
Segmented deep brain stimulation leads feature directional electrodes that allow for a finer spatial control of electrical stimulation compared to traditional ring-shaped electrodes. These segmented leads have demonstrated enlarged therapeutic windows and have thus the potential to improve the treatment of Parkinson's disease patients. Moreover, they provide a unique opportunity to record directional local field potentials. Here, we investigated whether directional local field potentials can help identify the best stimulation direction to assist device programming. Four Parkinson's disease patients underwent routine implantation of the subthalamic nucleus. Firstly, local field potentials were recorded in three directions for two conditions: In one condition, the patient was at rest; in the other condition, the patient's arm was moved. Secondly, current thresholds for therapeutic and side effects were identified intraoperatively for directional stimulation. Therapeutic windows were calculated from these two thresholds. Thirdly, the spectral power of the total beta band (13-35 Hz) and its sub-bands low, high, and peak beta were analyzed post hoc. Fourthly, the spectral power was used by different algorithms to predict the ranking of directions. The spectral power profiles were patient-specific, and spectral peaks were found both in the low beta band (13-20 Hz) and in the high beta band (20.5-35 Hz). The direction with the highest spectral power in the total beta band was most indicative of the 1st best direction when defined by therapeutic window. Based on the total beta band, the resting condition and the moving condition were similarly predictive about the direction ranking and classified 83.3% of directions correctly. However, different algorithms were needed to predict the ranking defined by therapeutic window or therapeutic current threshold. Directional local field potentials may help predict the best stimulation direction. Further studies with larger sample sizes are needed to better distinguish the informative value of different conditions and the beta sub-bands.
Collapse
Affiliation(s)
- T. A. Khoa Nguyen
- Department of Neurosurgery, University Hospital of Bern, Bern, Switzerland
| | - Michael Schüpbach
- Department of Neurology, University Hospital of Bern, Bern, Switzerland
| | - André Mercanzini
- Microsystems Laboratory 4, School of Engineering, EPF Lausanne, Lausanne, Switzerland
- Aleva Neurotherapeutics SA, Lausanne, Switzerland
| | | | - Claudio Pollo
- Department of Neurosurgery, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Naro A, Pignolo L, Sorbera C, Latella D, Billeri L, Manuli A, Portaro S, Bruschetta D, Calabrò RS. A Case-Controlled Pilot Study on Rhythmic Auditory Stimulation-Assisted Gait Training and Conventional Physiotherapy in Patients With Parkinson's Disease Submitted to Deep Brain Stimulation. Front Neurol 2020; 11:794. [PMID: 32849240 PMCID: PMC7417712 DOI: 10.3389/fneur.2020.00794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/25/2020] [Indexed: 01/13/2023] Open
Abstract
Deep brain stimulation (DBS) is indicated when motor disturbances in patients with idiopathic Parkinson's disease (PD) are refractory to current treatment options and significantly impair quality of life. However, post–DBS rehabilitation is essential, with particular regard to gait. Rhythmic auditory stimulation (RAS)-assisted treadmill gait rehabilitation within conventional physiotherapy program plays a major role in gait recovery. We explored the effects of a monthly RAS–assisted treadmill training within a conventional physiotherapy program on gait performance and gait-related EEG dynamics (while walking on the RAS–aided treadmill) in PD patients with (n = 10) and without DBS (n = 10). Patients with DBS achieved superior results than those without DBS concerning gait velocity, overall motor performance, and the timed velocity and self-confidence in balance, sit-to-stand (and vice versa) and walking, whereas both groups improved in dynamic and static balance, overall cognitive performance, and the fear of falling. The difference in motor outcomes between the two groups was paralleled by a stronger remodulation of gait cycle–related beta oscillations in patients with DBS as compared to those without DBS. Our work suggests that RAS-assisted gait training plus conventional physiotherapy is a useful strategy to improve gait performance in PD patients with and without DBS. Interestingly, patients with DBS may benefit more from this approach owing to a more focused and dynamic re–configuration of sensorimotor network beta oscillations related to gait secondary to the association between RAS-treadmill, conventional physiotherapy, and DBS. Actually, the coupling of these approaches may help restoring a residually altered beta–band response profile despite DBS intervention, thus better tailoring the gait rehabilitation of these PD patients.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, Messina, Italy
| | - Loris Pignolo
- S. Anna Institute, Research in Advanced Neurorehabilitation (RAN), Crotone, Italy
| | - Chiara Sorbera
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, Messina, Italy
| | - Desiree Latella
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, Messina, Italy
| | - Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, Messina, Italy
| | - Alfredo Manuli
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, Messina, Italy
| | - Simona Portaro
- IRCCS Centro Neurolesi Bonino Pulejo - Piemonte, Messina, Italy
| | - Daniele Bruschetta
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | |
Collapse
|
17
|
David FJ, Munoz MJ, Corcos DM. The effect of STN DBS on modulating brain oscillations: consequences for motor and cognitive behavior. Exp Brain Res 2020; 238:1659-1676. [PMID: 32494849 PMCID: PMC7415701 DOI: 10.1007/s00221-020-05834-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
In this review, we highlight Professor John Rothwell's contribution towards understanding basal ganglia function and dysfunction, as well as the effects of subthalamic nucleus deep brain stimulation (STN DBS). The first section summarizes the rate and oscillatory models of basal ganglia dysfunction with a focus on the oscillation model. The second section summarizes the motor, gait, and cognitive mechanisms of action of STN DBS. In the final section, we summarize the effects of STN DBS on motor and cognitive tasks. The studies reviewed in this section support the conclusion that high-frequency STN DBS improves the motor symptoms of Parkinson's disease. With respect to cognition, STN DBS can be detrimental to performance especially when the task is cognitively demanding. Consolidating findings from many studies, we find that while motor network oscillatory activity is primarily correlated to the beta-band, cognitive network oscillatory activity is not confined to one band but is subserved by activity in multiple frequency bands. Because of these findings, we propose a modified motor and associative/cognitive oscillatory model that can explain the consistent positive motor benefits and the negative and null cognitive effects of STN DBS. This is clinically relevant because STN DBS should enhance oscillatory activity that is related to both motor and cognitive networks to improve both motor and cognitive performance.
Collapse
Affiliation(s)
- Fabian J David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA.
| | - Miranda J Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
18
|
Yousif N, Bain PG, Nandi D, Borisyuk R. A Population Model of Deep Brain Stimulation in Movement Disorders From Circuits to Cells. Front Hum Neurosci 2020; 14:55. [PMID: 32210779 PMCID: PMC7066497 DOI: 10.3389/fnhum.2020.00055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/05/2020] [Indexed: 01/04/2023] Open
Abstract
For more than 30 years, deep brain stimulation (DBS) has been used to target the symptoms of a number of neurological disorders and in particular movement disorders such as Parkinson’s disease (PD) and essential tremor (ET). It is known that the loss of dopaminergic neurons in the substantia nigra leads to PD, while the exact impact of this on the brain dynamics is not fully understood, the presence of beta-band oscillatory activity is thought to be pathological. The cause of ET, however, remains uncertain, however pathological oscillations in the thalamocortical-cerebellar network have been linked to tremor. Both of these movement disorders are treated with DBS, which entails the surgical implantation of electrodes into a patient’s brain. While DBS leads to an improvement in symptoms for many patients, the mechanisms underlying this improvement is not clearly understood, and computational modeling has been used extensively to improve this. Many of the models used to study DBS and its effect on the human brain have mainly utilized single neuron and single axon biophysical models. We have previously shown in separate models however, that the use of population models can shed much light on the mechanisms of the underlying pathological neural activity in PD and ET in turn, and on the mechanisms underlying DBS. Together, this work suggested that the dynamics of the cerebellar-basal ganglia thalamocortical network support oscillations at frequency range relevant to movement disorders. Here, we propose a new combined model of this network and present new results that demonstrate that both Parkinsonian oscillations in the beta band and oscillations in the tremor frequency range arise from the dynamics of such a network. We find regions in the parameter space demonstrating the different dynamics and go on to examine the transition from one oscillatory regime to another as well as the impact of DBS on these different types of pathological activity. This work will allow us to better understand the changes in brain activity induced by DBS, and allow us to optimize this clinical therapy, particularly in terms of target selection and parameter setting.
Collapse
Affiliation(s)
- Nada Yousif
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Peter G Bain
- Division of Brain Sciences, Imperial College Healthcare NHS Trust, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dipankar Nandi
- Division of Brain Sciences, Imperial College Healthcare NHS Trust, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Roman Borisyuk
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom.,Institute of Mathematical Problems of Biology, The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
19
|
Bologna M, Paparella G, Fasano A, Hallett M, Berardelli A. Evolving concepts on bradykinesia. Brain 2020; 143:727-750. [PMID: 31834375 PMCID: PMC8205506 DOI: 10.1093/brain/awz344] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Bradykinesia is one of the cardinal motor symptoms of Parkinson's disease and other parkinsonisms. The various clinical aspects related to bradykinesia and the pathophysiological mechanisms underlying bradykinesia are, however, still unclear. In this article, we review clinical and experimental studies on bradykinesia performed in patients with Parkinson's disease and atypical parkinsonism. We also review studies on animal experiments dealing with pathophysiological aspects of the parkinsonian state. In Parkinson's disease, bradykinesia is characterized by slowness, the reduced amplitude of movement, and sequence effect. These features are also present in atypical parkinsonisms, but the sequence effect is not common. Levodopa therapy improves bradykinesia, but treatment variably affects the bradykinesia features and does not significantly modify the sequence effect. Findings from animal and patients demonstrate the role of the basal ganglia and other interconnected structures, such as the primary motor cortex and cerebellum, as well as the contribution of abnormal sensorimotor processing. Bradykinesia should be interpreted as arising from network dysfunction. A better understanding of bradykinesia pathophysiology will serve as the new starting point for clinical and experimental purposes.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto, Ontario, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|