1
|
Thestrup Waade P, Lundbak Olesen C, Ehrenreich Laursen J, Nehrer SW, Heins C, Friston K, Mathys C. As One and Many: Relating Individual and Emergent Group-Level Generative Models in Active Inference. ENTROPY (BASEL, SWITZERLAND) 2025; 27:143. [PMID: 40003140 PMCID: PMC11853804 DOI: 10.3390/e27020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025]
Abstract
Active inference under the Free Energy Principle has been proposed as an across-scales compatible framework for understanding and modelling behaviour and self-maintenance. Crucially, a collective of active inference agents can, if they maintain a group-level Markov blanket, constitute a larger group-level active inference agent with a generative model of its own. This potential for computational scale-free structures speaks to the application of active inference to self-organizing systems across spatiotemporal scales, from cells to human collectives. Due to the difficulty of reconstructing the generative model that explains the behaviour of emergent group-level agents, there has been little research on this kind of multi-scale active inference. Here, we propose a data-driven methodology for characterising the relation between the generative model of a group-level agent and the dynamics of its constituent individual agents. We apply methods from computational cognitive modelling and computational psychiatry, applicable for active inference as well as other types of modelling approaches. Using a simple Multi-Armed Bandit task as an example, we employ the new ActiveInference.jl library for Julia to simulate a collective of agents who are equipped with a Markov blanket. We use sampling-based parameter estimation to make inferences about the generative model of the group-level agent, and we show that there is a non-trivial relationship between the generative models of individual agents and the group-level agent they constitute, even in this simple setting. Finally, we point to a number of ways in which this methodology might be applied to better understand the relations between nested active inference agents across scales.
Collapse
Affiliation(s)
- Peter Thestrup Waade
- Interacting Minds Centre, Aarhus University, 8000 Aarhus, Denmark; (P.T.W.); (C.L.O.); (C.M.)
| | | | | | - Samuel William Nehrer
- School of Communication and Culture, Aarhus University, 8000 Aarhus, Denmark; (J.E.L.); (S.W.N.)
| | - Conor Heins
- Department of Collective Behavior, Max Planck Institute for Animal Behavior, 78457 Konstanz, Germany
| | - Karl Friston
- Queen Square, Institute of Neurology, University College London, London WC1N 3AR, UK;
| | - Christoph Mathys
- Interacting Minds Centre, Aarhus University, 8000 Aarhus, Denmark; (P.T.W.); (C.L.O.); (C.M.)
| |
Collapse
|
2
|
Hamburg S, Jimenez Rodriguez A, Htet A, Di Nuovo A. Active Inference for Learning and Development in Embodied Neuromorphic Agents. ENTROPY (BASEL, SWITZERLAND) 2024; 26:582. [PMID: 39056944 PMCID: PMC11276484 DOI: 10.3390/e26070582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Taking inspiration from humans can help catalyse embodied AI solutions for important real-world applications. Current human-inspired tools include neuromorphic systems and the developmental approach to learning. However, this developmental neurorobotics approach is currently lacking important frameworks for human-like computation and learning. We propose that human-like computation is inherently embodied, with its interface to the world being neuromorphic, and its learning processes operating across different timescales. These constraints necessitate a unified framework: active inference, underpinned by the free energy principle (FEP). Herein, we describe theoretical and empirical support for leveraging this framework in embodied neuromorphic agents with autonomous mental development. We additionally outline current implementation approaches (including toolboxes) and challenges, and we provide suggestions for next steps to catalyse this important field.
Collapse
Affiliation(s)
- Sarah Hamburg
- Department of Computing, Sheffield Hallam University, Sheffield S1 1WB, UK; (A.J.R.); (A.H.); (A.D.N.)
| | | | | | | |
Collapse
|
3
|
Pio-Lopez L, Levin M. Aging as a loss of morphostatic information: A developmental bioelectricity perspective. Ageing Res Rev 2024; 97:102310. [PMID: 38636560 DOI: 10.1016/j.arr.2024.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Maintaining order at the tissue level is crucial throughout the lifespan, as failure can lead to cancer and an accumulation of molecular and cellular disorders. Perhaps, the most consistent and pervasive result of these failures is aging, which is characterized by the progressive loss of function and decline in the ability to maintain anatomical homeostasis and reproduce. This leads to organ malfunction, diseases, and ultimately death. The traditional understanding of aging is that it is caused by the accumulation of molecular and cellular damage. In this article, we propose a complementary view of aging from the perspective of endogenous bioelectricity which has not yet been integrated into aging research. We propose a view of aging as a morphostasis defect, a loss of biophysical prepattern information, encoding anatomical setpoints used for dynamic tissue and organ homeostasis. We hypothesize that this is specifically driven by abrogation of the endogenous bioelectric signaling that normally harnesses individual cell behaviors toward the creation and upkeep of complex multicellular structures in vivo. Herein, we first describe bioelectricity as the physiological software of life, and then identify and discuss the links between bioelectricity and life extension strategies and age-related diseases. We develop a bridge between aging and regeneration via bioelectric signaling that suggests a research program for healthful longevity via morphoceuticals. Finally, we discuss the broader implications of the homologies between development, aging, cancer and regeneration and how morphoceuticals can be developed for aging.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
4
|
McMillen P, Levin M. Collective intelligence: A unifying concept for integrating biology across scales and substrates. Commun Biol 2024; 7:378. [PMID: 38548821 PMCID: PMC10978875 DOI: 10.1038/s42003-024-06037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
A defining feature of biology is the use of a multiscale architecture, ranging from molecular networks to cells, tissues, organs, whole bodies, and swarms. Crucially however, biology is not only nested structurally, but also functionally: each level is able to solve problems in distinct problem spaces, such as physiological, morphological, and behavioral state space. Percolating adaptive functionality from one level of competent subunits to a higher functional level of organization requires collective dynamics: multiple components must work together to achieve specific outcomes. Here we overview a number of biological examples at different scales which highlight the ability of cellular material to make decisions that implement cooperation toward specific homeodynamic endpoints, and implement collective intelligence by solving problems at the cell, tissue, and whole-organism levels. We explore the hypothesis that collective intelligence is not only the province of groups of animals, and that an important symmetry exists between the behavioral science of swarms and the competencies of cells and other biological systems at different scales. We then briefly outline the implications of this approach, and the possible impact of tools from the field of diverse intelligence for regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Patrick McMillen
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Van de Maele T, Verbelen T, Mazzaglia P, Ferraro S, Dhoedt B. Object-Centric Scene Representations Using Active Inference. Neural Comput 2024; 36:677-704. [PMID: 38457764 DOI: 10.1162/neco_a_01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 03/10/2024]
Abstract
Representing a scene and its constituent objects from raw sensory data is a core ability for enabling robots to interact with their environment. In this letter, we propose a novel approach for scene understanding, leveraging an object-centric generative model that enables an agent to infer object category and pose in an allocentric reference frame using active inference, a neuro-inspired framework for action and perception. For evaluating the behavior of an active vision agent, we also propose a new benchmark where, given a target viewpoint of a particular object, the agent needs to find the best matching viewpoint given a workspace with randomly positioned objects in 3D. We demonstrate that our active inference agent is able to balance epistemic foraging and goal-driven behavior, and quantitatively outperforms both supervised and reinforcement learning baselines by more than a factor of two in terms of success rate.
Collapse
Affiliation(s)
| | - Tim Verbelen
- VERSES AI Research Lab, Los Angeles, CA 90016, U.S.A.
| | | | | | | |
Collapse
|
6
|
Fields C, Glazebrook JF, Levin M. Principled Limitations on Self-Representation for Generic Physical Systems. ENTROPY (BASEL, SWITZERLAND) 2024; 26:194. [PMID: 38539706 PMCID: PMC10969210 DOI: 10.3390/e26030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 11/11/2024]
Abstract
The ideas of self-observation and self-representation, and the concomitant idea of self-control, pervade both the cognitive and life sciences, arising in domains as diverse as immunology and robotics. Here, we ask in a very general way whether, and to what extent, these ideas make sense. Using a generic model of physical interactions, we prove a theorem and several corollaries that severely restrict applicable notions of self-observation, self-representation, and self-control. We show, in particular, that adding observational, representational, or control capabilities to a meta-level component of a system cannot, even in principle, lead to a complete meta-level representation of the system as a whole. We conclude that self-representation can at best be heuristic, and that self models cannot, in general, be empirically tested by the systems that implement them.
Collapse
Affiliation(s)
- Chris Fields
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA;
| | - James F. Glazebrook
- Department of Mathematics and Computer Science, Eastern Illinois University, Charleston, IL 61920, USA;
- Adjunct Faculty, Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA;
| |
Collapse
|
7
|
Ciaunica A, Levin M, Rosas FE, Friston K. Nested Selves: Self-Organization and Shared Markov Blankets in Prenatal Development in Humans. Top Cogn Sci 2023. [PMID: 38158882 DOI: 10.1111/tops.12717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
The immune system is a central component of organismic function in humans. This paper addresses self-organization of biological systems in relation to-and nested within-other biological systems in pregnancy. Pregnancy constitutes a fundamental state for human embodiment and a key step in the evolution and conservation of our species. While not all humans can be pregnant, our initial state of emerging and growing within another person's body is universal. Hence, the pregnant state does not concern some individuals but all individuals. Indeed, the hierarchical relationship in pregnancy reflects an even earlier autopoietic process in the embryo by which the number of individuals in a single blastoderm is dynamically determined by cell- interactions. The relationship and the interactions between the two self-organizing systems during pregnancy may play a pivotal role in understanding the nature of biological self-organization per se in humans. Specifically, we consider the role of the immune system in biological self-organization in addition to neural/brain systems that furnish us with a sense of self. We examine the complex case of pregnancy, whereby two immune systems need to negotiate the exchange of resources and information in order to maintain viable self-regulation of nested systems. We conclude with a proposal for the mechanisms-that scaffold the complex relationship between two self-organising systems in pregnancy-through the lens of the Active Inference, with a focus on shared Markov blankets.
Collapse
Affiliation(s)
- Anna Ciaunica
- Centre for Philosophy of Science (CFCUL), University of Lisbon
- Institute of Cognitive Neuroscience, University College London
| | - Michael Levin
- Department of Biology and Allen Discovery Center, Tufts University
| | - Fernando E Rosas
- Department of Informatics, University of Sussex
- Centre for Complexity Science, Imperial College London
- Department of Brain Sciences, Imperial College London
- Centre for Eudaimonia and Human Flourishing, University of Oxford
| | - Karl Friston
- Welcome Centre for Human Neuroimaging, University College London
- VERSES AI Research Lab
| |
Collapse
|
8
|
Goekoop R, de Kleijn R. Hierarchical network structure as the source of hierarchical dynamics (power-law frequency spectra) in living and non-living systems: How state-trait continua (body plans, personalities) emerge from first principles in biophysics. Neurosci Biobehav Rev 2023; 154:105402. [PMID: 37741517 DOI: 10.1016/j.neubiorev.2023.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Living systems are hierarchical control systems that display a small world network structure. In such structures, many smaller clusters are nested within fewer larger ones, producing a fractal-like structure with a 'power-law' cluster size distribution (a mereology). Just like their structure, the dynamics of living systems shows fractal-like qualities: the timeseries of inner message passing and overt behavior contain high frequencies or 'states' (treble) that are nested within lower frequencies or 'traits' (bass), producing a power-law frequency spectrum that is known as a 'state-trait continuum' in the behavioral sciences. Here, we argue that the power-law dynamics of living systems results from their power-law network structure: organisms 'vertically encode' the deep spatiotemporal structure of their (anticipated) environments, to the effect that many small clusters near the base of the hierarchy produce high frequency signal changes and fewer larger clusters at its top produce ultra-low frequencies. Such ultra-low frequencies exert a tonic regulatory pressure that produces morphological as well as behavioral traits (i.e., body plans and personalities). Nested-modular structure causes higher frequencies to be embedded within lower frequencies, producing a power-law state-trait continuum. At the heart of such dynamics lies the need for efficient energy dissipation through networks of coupled oscillators, which also governs the dynamics of non-living systems (e.q., earthquakes, stock market fluctuations). Since hierarchical structure produces hierarchical dynamics, the development and collapse of hierarchical structure (e.g., during maturation and disease) should leave specific traces in system dynamics (shifts in lower frequencies, i.e. morphological and behavioral traits) that may serve as early warning signs to system failure. The applications of this idea range from (bio)physics and phylogenesis to ontogenesis and clinical medicine.
Collapse
Affiliation(s)
- R Goekoop
- Free University Amsterdam, Department of Behavioral and Movement Sciences, Parnassia Academy, Parnassia Group, PsyQ, Department of Anxiety Disorders, Early Detection and Intervention Team (EDIT), Lijnbaan 4, 2512VA The Hague, the Netherlands.
| | - R de Kleijn
- Faculty of Social and Behavioral Sciences, Department of Cognitive Psychology, Pieter de la Courtgebouw, Postbus 9555, 2300 RB Leiden, the Netherlands
| |
Collapse
|
9
|
Lagasse E, Levin M. Future medicine: from molecular pathways to the collective intelligence of the body. Trends Mol Med 2023; 29:687-710. [PMID: 37481382 PMCID: PMC10527237 DOI: 10.1016/j.molmed.2023.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
The remarkable anatomical homeostasis exhibited by complex living organisms suggests that they are inherently reprogrammable information-processing systems that offer numerous interfaces to their physiological and anatomical problem-solving capacities. We briefly review data suggesting that the multiscale competency of living forms affords a new path for biomedicine that exploits the innate collective intelligence of tissues and organs. The concept of tissue-level allostatic goal-directedness is already bearing fruit in clinical practice. We sketch a roadmap towards 'somatic psychiatry' by using advances in bioelectricity and behavioral neuroscience to design methods that induce self-repair of structure and function. Relaxing the assumption that cellular control mechanisms are static, exploiting powerful concepts from cybernetics, behavioral science, and developmental biology may spark definitive solutions to current biomedical challenges.
Collapse
Affiliation(s)
- Eric Lagasse
- McGowan Institute for Regenerative Medicine and Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
10
|
Pio-Lopez L, Bischof J, LaPalme JV, Levin M. The scaling of goals from cellular to anatomical homeostasis: an evolutionary simulation, experiment and analysis. Interface Focus 2023; 13:20220072. [PMID: 37065270 PMCID: PMC10102734 DOI: 10.1098/rsfs.2022.0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Complex living agents consist of cells, which are themselves competent sub-agents navigating physiological and metabolic spaces. Behaviour science, evolutionary developmental biology and the field of machine intelligence all seek to understand the scaling of biological cognition: what enables individual cells to integrate their activities to result in the emergence of a novel, higher-level intelligence with large-scale goals and competencies that belong to it and not to its parts? Here, we report the results of simulations based on the TAME framework, which proposes that evolution pivoted the collective intelligence of cells during morphogenesis of the body into traditional behavioural intelligence by scaling up homeostatic competencies of cells in metabolic space. In this article, we created a minimal in silico system (two-dimensional neural cellular automata) and tested the hypothesis that evolutionary dynamics are sufficient for low-level setpoints of metabolic homeostasis in individual cells to scale up to tissue-level emergent behaviour. Our system showed the evolution of the much more complex setpoints of cell collectives (tissues) that solve a problem in morphospace: the organization of a body-wide positional information axis (the classic French flag problem in developmental biology). We found that these emergent morphogenetic agents exhibit a number of predicted features, including the use of stress propagation dynamics to achieve the target morphology as well as the ability to recover from perturbation (robustness) and long-term stability (even though neither of these was directly selected for). Moreover, we observed an unexpected behaviour of sudden remodelling long after the system stabilizes. We tested this prediction in a biological system-regenerating planaria-and observed a very similar phenomenon. We propose that this system is a first step towards a quantitative understanding of how evolution scales minimal goal-directed behaviour (homeostatic loops) into higher-level problem-solving agents in morphogenetic and other spaces.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | | | | | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
11
|
Mathews J, Chang A(J, Devlin L, Levin M. Cellular signaling pathways as plastic, proto-cognitive systems: Implications for biomedicine. PATTERNS (NEW YORK, N.Y.) 2023; 4:100737. [PMID: 37223267 PMCID: PMC10201306 DOI: 10.1016/j.patter.2023.100737] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many aspects of health and disease are modeled using the abstraction of a "pathway"-a set of protein or other subcellular activities with specified functional linkages between them. This metaphor is a paradigmatic case of a deterministic, mechanistic framework that focuses biomedical intervention strategies on altering the members of this network or the up-/down-regulation links between them-rewiring the molecular hardware. However, protein pathways and transcriptional networks exhibit interesting and unexpected capabilities such as trainability (memory) and information processing in a context-sensitive manner. Specifically, they may be amenable to manipulation via their history of stimuli (equivalent to experiences in behavioral science). If true, this would enable a new class of biomedical interventions that target aspects of the dynamic physiological "software" implemented by pathways and gene-regulatory networks. Here, we briefly review clinical and laboratory data that show how high-level cognitive inputs and mechanistic pathway modulation interact to determine outcomes in vivo. Further, we propose an expanded view of pathways from the perspective of basal cognition and argue that a broader understanding of pathways and how they process contextual information across scales will catalyze progress in many areas of physiology and neurobiology. We argue that this fuller understanding of the functionality and tractability of pathways must go beyond a focus on the mechanistic details of protein and drug structure to encompass their physiological history as well as their embedding within higher levels of organization in the organism, with numerous implications for data science addressing health and disease. Exploiting tools and concepts from behavioral and cognitive sciences to explore a proto-cognitive metaphor for the pathways underlying health and disease is more than a philosophical stance on biochemical processes; at stake is a new roadmap for overcoming the limitations of today's pharmacological strategies and for inferring future therapeutic interventions for a wide range of disease states.
Collapse
Affiliation(s)
- Juanita Mathews
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | | | - Liam Devlin
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| |
Collapse
|
12
|
Levin M. Darwin's agential materials: evolutionary implications of multiscale competency in developmental biology. Cell Mol Life Sci 2023; 80:142. [PMID: 37156924 PMCID: PMC10167196 DOI: 10.1007/s00018-023-04790-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
A critical aspect of evolution is the layer of developmental physiology that operates between the genotype and the anatomical phenotype. While much work has addressed the evolution of developmental mechanisms and the evolvability of specific genetic architectures with emergent complexity, one aspect has not been sufficiently explored: the implications of morphogenetic problem-solving competencies for the evolutionary process itself. The cells that evolution works with are not passive components: rather, they have numerous capabilities for behavior because they derive from ancestral unicellular organisms with rich repertoires. In multicellular organisms, these capabilities must be tamed, and can be exploited, by the evolutionary process. Specifically, biological structures have a multiscale competency architecture where cells, tissues, and organs exhibit regulative plasticity-the ability to adjust to perturbations such as external injury or internal modifications and still accomplish specific adaptive tasks across metabolic, transcriptional, physiological, and anatomical problem spaces. Here, I review examples illustrating how physiological circuits guiding cellular collective behavior impart computational properties to the agential material that serves as substrate for the evolutionary process. I then explore the ways in which the collective intelligence of cells during morphogenesis affect evolution, providing a new perspective on the evolutionary search process. This key feature of the physiological software of life helps explain the remarkable speed and robustness of biological evolution, and sheds new light on the relationship between genomes and functional anatomical phenotypes.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave. 334 Research East, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St., Boston, MA, 02115, USA.
| |
Collapse
|