1
|
Brock J, Hörning M. Optimization of H9c2 differentiation leads to calcium-active and striated cardiac cells without addition of retinoic acid. Front Cell Dev Biol 2024; 12:1501540. [PMID: 39650723 PMCID: PMC11621855 DOI: 10.3389/fcell.2024.1501540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/08/2024] [Indexed: 12/11/2024] Open
Abstract
As a reliable alternative to animal testing in cardiovascular research, it is crucial to improve differentiation of immortalized cell lines. In this study, we focused on optimizing the differentiation efficiency of the H9c2 cell line into cardiomyocytes using a high-throughput, automated image processing approach. While previous studies used protocols involving retinoic acid to enhance cardiac differentiation, we applied a simplified medium composition that results in higher differentiation rates. Along that line, we differentiated H9c2 cells into cardiomyocytes, which not only showed sarcomere-characteristic striation but also periodic intracellular calcium signaling for the first time. As a second step, we examined the potential application of polyacrylamide hydrogels ( E = 12 kPa) with defined fibronectin coating densities. The optimum fibronectin density of 2.6 μg/cm2 found for single cells was investigated to further improve the differentiation efficiency. However, the differentiation and proliferation dynamics dominate the adhesion forces between the cells and the hydrogel, and thus, result in premature clustering and detachment. In conclusion, we identified an optimized differentiation protocol and provided a basis for the further investigation necessary to potentially use hydrogels as natural cell environment, aiming to raise the differentiation efficiency even more.
Collapse
Affiliation(s)
| | - Marcel Hörning
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
2
|
Dix M, Lilienkamp T, Luther S, Parlitz U. Influence of conduction heterogeneities on transient spatiotemporal chaos in cardiac excitable media. Phys Rev E 2024; 110:044207. [PMID: 39562914 DOI: 10.1103/physreve.110.044207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/13/2024] [Indexed: 11/21/2024]
Abstract
Life-threatening cardiac arrhythmias such as ventricular fibrillation are often based on chaotic spiral or scroll wave dynamics which can be self-terminating. In this work, we investigate the influence of conduction heterogeneities on the duration of such chaotic transients in generic models of excitable cardiac media. We observe that low and medium densities of heterogeneities extend the average transient lifetime, while at high densities very long transients, potentially persistent chaos, and periodic attractors occur.
Collapse
|
3
|
Erhardt J, Ludwig S, Brock J, Hörning M. Native mechano-regulative matrix properties stabilize alternans dynamics and reduce spiral wave stabilization in cardiac tissue. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1443156. [PMID: 39381499 PMCID: PMC11458432 DOI: 10.3389/fnetp.2024.1443156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
The stability of wave conduction in the heart is strongly related to the proper interplay between the electrophysiological activation and mechanical contraction of myocytes and extracellular matrix (ECM) properties. In this study, we statistically compare bioengineered cardiac tissues cultured on soft hydrogels ( E ≃ 12 kPa) and rigid glass substrates by focusing on the critical threshold of alternans, network-physiological tissue properties, and the formation of stable spiral waves that manifest after wave breakups. For the classification of wave dynamics, we use an improved signal oversampling technique and introduce simple probability maps to identify and visualize spatially concordant and discordant alternans as V- and X-shaped probability distributions. We found that cardiac tissues cultured on ECM-mimicking soft hydrogels show a lower variability of the calcium transient durations among cells in the tissue. This lowers the likelihood of forming stable spiral waves because of the larger dynamical range that tissues can be stably entrained with to form alternans and larger spatial spiral tip movement that increases the chance of self-termination on the tissue boundary. Conclusively, we show that a dysfunction in the excitation-contraction coupling dynamics facilitates life-threatening arrhythmic states such as spiral waves and, thus, highlights the importance of the network-physiological interplay between contractile myocytes and the ECM.
Collapse
Affiliation(s)
| | | | | | - Marcel Hörning
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Crispino A, Loppini A, Uzelac I, Iravanian S, Bhatia NK, Burke M, Filippi S, Fenton FH, Gizzi A. A cross species thermoelectric and spatiotemporal analysis of alternans in live explanted hearts using dual voltage-calcium fluorescence optical mapping. Physiol Meas 2024; 45:065001. [PMID: 38772394 DOI: 10.1088/1361-6579/ad4e8f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Objective.Temperature plays a crucial role in influencing the spatiotemporal dynamics of the heart. Electrical instabilities due to specific thermal conditions typically lead to early period-doubling bifurcations and beat-to-beat alternans. These pro-arrhythmic phenomena manifest in voltage and calcium traces, resulting in compromised contractile behaviors. In such intricate scenario, dual optical mapping technique was used to uncover unexplored multi-scale and nonlinear couplings, essential for early detection and understanding of cardiac arrhythmia.Approach.We propose a methodological analysis of synchronized voltage-calcium signals for detecting alternans, restitution curves, and spatiotemporal alternans patterns under different thermal conditions, based on integral features calculation. To validate our approach, we conducted a cross-species investigation involving rabbit and guinea pig epicardial ventricular surfaces and human endocardial tissue under pacing-down protocols.Main results.We show that the proposed integral feature, as the area under the curve, could be an easily applicable indicator that may enhance the predictability of the onset and progression of cardiac alternans. Insights into spatiotemporal correlation analysis of characteristic spatial lengths across different heart species were further provided.Significance.Exploring cross-species thermoelectric features contributes to understanding temperature-dependent proarrhythmic regimes and their implications on coupled spatiotemporal voltage-calcium dynamics. The findings provide preliminary insights and potential strategies for enhancing arrhythmia detection and treatment.
Collapse
Affiliation(s)
- Anna Crispino
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alessandro Loppini
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Ilija Uzelac
- Virginia Commonwealth University, Richmond, VA, United States of America
| | - Shahriar Iravanian
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Neal K Bhatia
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Michael Burke
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Simonetta Filippi
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Alessio Gizzi
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
5
|
Aron M, Lilienkamp T, Luther S, Parlitz U. Optimising low-energy defibrillation in 2D cardiac tissue with a genetic algorithm. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1172454. [PMID: 37555132 PMCID: PMC10406519 DOI: 10.3389/fnetp.2023.1172454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/28/2023] [Indexed: 08/10/2023]
Abstract
Sequences of low-energy electrical pulses can effectively terminate ventricular fibrillation (VF) and avoid the side effects of conventional high-energy electrical defibrillation shocks, including tissue damage, traumatic pain, and worsening of prognosis. However, the systematic optimisation of sequences of low-energy pulses remains a major challenge. Using 2D simulations of homogeneous cardiac tissue and a genetic algorithm, we demonstrate the optimisation of sequences with non-uniform pulse energies and time intervals between consecutive pulses for efficient VF termination. We further identify model-dependent reductions of total pacing energy ranging from ∼4% to ∼80% compared to reference adaptive-deceleration pacing (ADP) protocols of equal success rate (100%).
Collapse
Affiliation(s)
- Marcel Aron
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Thomas Lilienkamp
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Computational Physics for Life Science, Nuremberg Institute of Technology Georg Simon Ohm, Nuremberg, Germany
| | - Stefan Luther
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Ulrich Parlitz
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Crispino A, Loppini A, Chionuma H, Uzelac I, Filippi S, Fenton FH, Gizzi A. Innovative Characterization of Alternans Onset and Development in Dual Voltage-Calcium Whole-Heart Optical Mapping Signals at Multiple Thermal States. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083080 DOI: 10.1109/embc40787.2023.10340581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Cardiac electrical dynamics show complex space-time instabilities, like period-doubling bifurcation and beat-to-beat alternans, known to occur as pro-arrhythmic phenomena and linked to membrane voltage and intracellular calcium kinetics. Besides, cellular ionic dynamics are critically affected by temperature oscillations, further enhancing the complexity of such arrhythmias precursors that lead to irregular cardiac contraction. In this complex scenario, fluorescence dual optical mapping techniques allow the unveiling of nonlinear and multi-scale couplings. In this contribution, we propose a novel methodological analysis of synchronous dual voltage-calcium traces obtained from whole rabbit hearts for (i) detecting alternans onset and evolution, (ii) characterizing novel restitution curves, and (iii) defining spatio-temporal alternans patterns at four thermal states. We validate our approach against well-accepted analyses considering complete pacing-down restitution protocols. The proposed methodology computes integral features, e.g., area under the curve, suggesting that a novel, easy-to-use indicator, may advance predictability on alternans onset and evolution, further providing insights into spatio-temporal cardiac analyses.Clinical Relevance- This work introduces new methods for the early detection of cardiac alternans onset and development as precursors of arrhythmias and fibrillation at different temperatures.
Collapse
|
7
|
Hörning M, Loppini A, Erhardt J, Fenton FH, Filippi S, Gizzi A. Optical Ultrastructure of Cardiac Tissue Helps to Reproduce Discordant Alternans by In Silico Data Assimilation. ... CONFERENCE OF THE EUROPEAN STUDY GROUP ON CARDIOVASCULAR OSCILLATIONS (ESGCO). EUROPEAN STUDY GROUP ON CARDIOVASCULAR OSCILLATIONS. CONFERENCE 2022; 2022:10.1109/esgco55423.2022.9931369. [PMID: 40070815 PMCID: PMC11894612 DOI: 10.1109/esgco55423.2022.9931369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
A relevant issue in cardiology is represented by identifying valuable biomarkers of cardiac dysfunctions and by designing reliable computational models to predict transitions into pathological cardiac dynamics. In this context, alternans regimes have been proven to anticipate tachycardia and fibrillation. Still, an open problem is defining accurate and convenient methods to predict the onset and evolution of alternans patterns and formulate reliable models reproducing alternans features as observed in experiments. In this contribution, we present an FFT-based method on voltage mapping data, named FFI (Fast-Fourier-Imaging), which is able to early identify alternating cardiac dynamics and recover tissue structural information. Our results show that FFI identifies alternans patterns with great accuracy, avoiding excessive data preprocessing required by other methods. The extracted optical ultrastructural details of the tissue are used to inform computational parameters by accurate data assimilation, which enables the in-silico recovery of the experimental ex-vivo observations of a canine heart. Clinical Relevance— The application of FFI analysis enables the almost real-time detection of concordant and discordant alternans patterns in cardiac tissue and opens the way to new mathematical approaches with significant impacts on personalized modeling and whole organ simulations.
Collapse
Affiliation(s)
- Marcel Hörning
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany
| | - Alessandro Loppini
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Julia Erhardt
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany
| | - Flavio H. Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Simonetta Filippi
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- ICRANet, Piazza delle Repubblica 10, I-65122 Pescara, Italy
- CNR-INO, I-50019 Sesto Fiorentino, Italy
| | - Alessio Gizzi
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| |
Collapse
|
8
|
Barone A, Grieco D, Gizzi A, Molinari L, Zaltieri M, Massaroni C, Loppini A, Schena E, Bressi E, de Ruvo E, Caló L, Filippi S. A Simulation Study of the Effects of His Bundle Pacing in Left Bundle Branch Block. Med Eng Phys 2022; 107:103847. [DOI: 10.1016/j.medengphy.2022.103847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/30/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022]
|
9
|
Brock J, Erhardt J, Eisler SA, Hörning M. Optimization of Mechanosensitive Cross-Talk between Matrix Stiffness and Protein Density: Independent Matrix Properties Regulate Spreading Dynamics of Myocytes. Cells 2022; 11:2122. [PMID: 35805206 PMCID: PMC9265304 DOI: 10.3390/cells11132122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/25/2022] Open
Abstract
Cells actively sense differences in topology, matrix elasticity and protein composition of the extracellular microenvironment and adapt their function and morphology. In this study, we focus on the cross-talk between matrix stiffness and protein coating density that regulates morphology and proliferation dynamics of single myocytes. For this, C2C12 myocytes were monitored on L-DOPA functionalized hydrogels of 22 different elasticity and fibronectin density compositions. Static images were recorded and statistically analyzed to determine morphological differences and to identify the optimized extracellular matrix (ECM). Using that information, selected ECMs were used to study the dynamics before and after cell proliferation by statistical comparison of distinct cell states. We observed a fibronectin-density-independent increase of the projected cell area until 12 kPa. Additionally, changes in fibronectin density led to an area that was optimum at about 2.6 μg/cm2, which was confirmed by independent F-actin analysis, revealing a maximum actin-filament-to-cell-area ratio of 7.5%. Proliferation evaluation showed an opposite correlation between cell spreading duration and speed to matrix elasticity and protein density, which did not affect cell-cycle duration. In summary, we identified an optimized ECM composition and found that independent matrix properties regulate distinct cell characteristics.
Collapse
Affiliation(s)
- Judith Brock
- Biobased Materials Laboratory, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany; (J.B.); (J.E.)
| | - Julia Erhardt
- Biobased Materials Laboratory, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany; (J.B.); (J.E.)
| | - Stephan A. Eisler
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany;
| | - Marcel Hörning
- Biobased Materials Laboratory, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany; (J.B.); (J.E.)
| |
Collapse
|