1
|
Vakitbilir N, Sainbhi AS, Islam A, Gomez A, Stein KY, Froese L, Bergmann T, McClarty D, Raj R, Zeiler FA. Multivariate linear time-series modeling and prediction of cerebral physiologic signals: review of statistical models and implications for human signal analytics. FRONTIERS IN NETWORK PHYSIOLOGY 2025; 5:1551043. [PMID: 40308555 PMCID: PMC12040811 DOI: 10.3389/fnetp.2025.1551043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025]
Abstract
Cerebral physiological signals embody complex neural, vascular, and metabolic processes that provide valuable insight into the brain's dynamic nature. Profound comprehension and analysis of these signals are essential for unraveling cerebral intricacies, enabling precise identification of patterns and anomalies. Therefore, the advancement of computational models in cerebral physiology is pivotal for exploring the links between measurable signals and underlying physiological states. This review provides a detailed explanation of computational models, including their mathematical formulations, and discusses their relevance to the analysis of cerebral physiology dynamics. It emphasizes the importance of linear multivariate statistical models, particularly autoregressive (AR) models and the Kalman filter, in time series modeling and prediction of cerebral processes. The review focuses on the analysis and operational principles of multivariate statistical models such as AR models and the Kalman filter. These models are examined for their ability to capture intricate relationships among cerebral parameters, offering a holistic representation of brain function. The use of multivariate statistical models enables the capturing of complex relationships among cerebral physiological signals. These models provide valuable insights into the dynamic nature of the brain by representing intricate neural, vascular, and metabolic processes. The review highlights the clinical implications of using computational models to understand cerebral physiology, while also acknowledging the inherent limitations, including the need for stationary data, challenges with high dimensionality, computational complexity, and limited forecasting horizons.
Collapse
Affiliation(s)
- Nuray Vakitbilir
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Abrar Islam
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Yuwa Stein
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Bergmann
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Davis McClarty
- Undergraduate Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki, Helsinki, Finland
| | - Frederick Adam Zeiler
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Stylianou O, Meixner JM, Schlick T, Krüger CM. Whole-body networks: a holistic approach for studying aging. GeroScience 2025:10.1007/s11357-025-01540-w. [PMID: 39875752 DOI: 10.1007/s11357-025-01540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Aging is a multi-organ disease, yet the traditional approach has been to study each organ in isolation. Such organ-specific studies have provided invaluable information regarding its pathomechanisms. However, an overall picture of the whole-body network (WBN) during aging is still incomplete. In this study, we analyzed the functional magnetic resonance imaging blood-oxygen level-dependent, respiratory rate and heart rate time series of a young and an elderly group during eyes-open resting-state. We constructed WBNs by exploring the time-lagged coupling between the different organs. First, we showed that our analytical pipeline could identify regional differences in the networks of both cohorts, allowing us to proceed with the remaining analyses. The comparison of the WBNs revealed a complex relationship where some connections were stronger and some weaker in the elderly. Finally, the interconnectivity and segregation of the WBNs were negatively correlated with the short-term memory and verbal learning of the young participants. This study: i) validated our methodology, ii) identified differences in the WBNs of the two groups and iii) showed correlations of WBNs with behavioral measures. In conclusion, the concept of WBN shows great potential for the understanding of aging and age-related diseases.
Collapse
Affiliation(s)
- Orestis Stylianou
- Department of Surgery, Immanuel Clinic Rüdersdorf, University Clinic of Brandenburg Medical School, Berlin, Germany.
| | - Johannes M Meixner
- Department of Psychology, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Tilman Schlick
- Department of Surgery, Immanuel Clinic Rüdersdorf, University Clinic of Brandenburg Medical School, Berlin, Germany
| | - Colin M Krüger
- Department of Surgery, Immanuel Clinic Rüdersdorf, University Clinic of Brandenburg Medical School, Berlin, Germany.
- Department of Surgery, Clinic of General-, Visceral-, Vascular and Thoracic Surgery, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
3
|
El-Yaagoubi AB, Chung MK, Ombao H. Dynamic topological data analysis: a novel fractal dimension-based testing framework with application to brain signals. Front Neuroinform 2024; 18:1387400. [PMID: 39071176 PMCID: PMC11272560 DOI: 10.3389/fninf.2024.1387400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Topological data analysis (TDA) is increasingly recognized as a promising tool in the field of neuroscience, unveiling the underlying topological patterns within brain signals. However, most TDA related methods treat brain signals as if they were static, i.e., they ignore potential non-stationarities and irregularities in the statistical properties of the signals. In this study, we develop a novel fractal dimension-based testing approach that takes into account the dynamic topological properties of brain signals. By representing EEG brain signals as a sequence of Vietoris-Rips filtrations, our approach accommodates the inherent non-stationarities and irregularities of the signals. The application of our novel fractal dimension-based testing approach in analyzing dynamic topological patterns in EEG signals during an epileptic seizure episode exposes noteworthy alterations in total persistence across 0, 1, and 2-dimensional homology. These findings imply a more intricate influence of seizures on brain signals, extending beyond mere amplitude changes.
Collapse
Affiliation(s)
- Anass B. El-Yaagoubi
- Statistics Program, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Moo K. Chung
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Hernando Ombao
- Statistics Program, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
4
|
Oyelade T, Moore KP, Mani AR. Physiological network approach to prognosis in cirrhosis: A shifting paradigm. Physiol Rep 2024; 12:e16133. [PMID: 38961593 PMCID: PMC11222171 DOI: 10.14814/phy2.16133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Decompensated liver disease is complicated by multi-organ failure and poor prognosis. The prognosis of patients with liver failure often dictates clinical management. Current prognostic models have focused on biomarkers considered as individual isolated units. Network physiology assesses the interactions among multiple physiological systems in health and disease irrespective of anatomical connectivity and defines the influence or dependence of one organ system on another. Indeed, recent applications of network mapping methods to patient data have shown improved prediction of response to therapy or prognosis in cirrhosis. Initially, different physical markers have been used to assess physiological coupling in cirrhosis including heart rate variability, heart rate turbulence, and skin temperature variability measures. Further, the parenclitic network analysis was recently applied showing that organ systems connectivity is impaired in patients with decompensated cirrhosis and can predict mortality in cirrhosis independent of current prognostic models while also providing valuable insights into the associated pathological pathways. Moreover, network mapping also predicts response to intravenous albumin in patients hospitalized with decompensated cirrhosis. Thus, this review highlights the importance of evaluating decompensated cirrhosis through the network physiologic prism. It emphasizes the limitations of current prognostic models and the values of network physiologic techniques in cirrhosis.
Collapse
Affiliation(s)
- Tope Oyelade
- Institute for Liver and Digestive Health, Division of MedicineUCLLondonUK
- Network Physiology Laboratory, Division of MedicineUCLLondonUK
| | - Kevin P. Moore
- Institute for Liver and Digestive Health, Division of MedicineUCLLondonUK
| | - Ali R. Mani
- Institute for Liver and Digestive Health, Division of MedicineUCLLondonUK
- Network Physiology Laboratory, Division of MedicineUCLLondonUK
| |
Collapse
|
5
|
Pinto H, Lazic I, Antonacci Y, Pernice R, Gu D, Barà C, Faes L, Rocha AP. Testing dynamic correlations and nonlinearity in bivariate time series through information measures and surrogate data analysis. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1385421. [PMID: 38835949 PMCID: PMC11148466 DOI: 10.3389/fnetp.2024.1385421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
The increasing availability of time series data depicting the evolution of physical system properties has prompted the development of methods focused on extracting insights into the system behavior over time, discerning whether it stems from deterministic or stochastic dynamical systems. Surrogate data testing plays a crucial role in this process by facilitating robust statistical assessments. This ensures that the observed results are not mere occurrences by chance, but genuinely reflect the inherent characteristics of the underlying system. The initial process involves formulating a null hypothesis, which is tested using surrogate data in cases where assumptions about the underlying distributions are absent. A discriminating statistic is then computed for both the original data and each surrogate data set. Significantly deviating values between the original data and the surrogate data ensemble lead to the rejection of the null hypothesis. In this work, we present various surrogate methods designed to assess specific statistical properties in random processes. Specifically, we introduce methods for evaluating the presence of autodependencies and nonlinear dynamics within individual processes, using Information Storage as a discriminating statistic. Additionally, methods are introduced for detecting coupling and nonlinearities in bivariate processes, employing the Mutual Information Rate for this purpose. The surrogate methods introduced are first tested through simulations involving univariate and bivariate processes exhibiting both linear and nonlinear dynamics. Then, they are applied to physiological time series of Heart Period (RR intervals) and respiratory flow (RESP) variability measured during spontaneous and paced breathing. Simulations demonstrated that the proposed methods effectively identify essential dynamical features of stochastic systems. The real data application showed that paced breathing, at low breathing rate, increases the predictability of the individual dynamics of RR and RESP and dampens nonlinearity in their coupled dynamics.
Collapse
Affiliation(s)
- Helder Pinto
- Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro de Matemática da Universidade do Porto (CMUP), Porto, Portugal
| | - Ivan Lazic
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Yuri Antonacci
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Danlei Gu
- Beijing Jiaotong University, Beijing, China
| | - Chiara Barà
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Ana Paula Rocha
- Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro de Matemática da Universidade do Porto (CMUP), Porto, Portugal
| |
Collapse
|
6
|
Catrambone V, Candia‐Rivera D, Valenza G. Intracortical brain-heart interplay: An EEG model source study of sympathovagal changes. Hum Brain Mapp 2024; 45:e26677. [PMID: 38656080 PMCID: PMC11041380 DOI: 10.1002/hbm.26677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/18/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024] Open
Abstract
The interplay between cerebral and cardiovascular activity, known as the functional brain-heart interplay (BHI), and its temporal dynamics, have been linked to a plethora of physiological and pathological processes. Various computational models of the brain-heart axis have been proposed to estimate BHI non-invasively by taking advantage of the time resolution offered by electroencephalograph (EEG) signals. However, investigations into the specific intracortical sources responsible for this interplay have been limited, which significantly hampers existing BHI studies. This study proposes an analytical modeling framework for estimating the BHI at the source-brain level. This analysis relies on the low-resolution electromagnetic tomography sources localization from scalp electrophysiological recordings. BHI is then quantified as the functional correlation between the intracortical sources and cardiovascular dynamics. Using this approach, we aimed to evaluate the reliability of BHI estimates derived from source-localized EEG signals as compared with prior findings from neuroimaging methods. The proposed approach is validated using an experimental dataset gathered from 32 healthy individuals who underwent standard sympathovagal elicitation using a cold pressor test. Additional resting state data from 34 healthy individuals has been analysed to assess robustness and reproducibility of the methodology. Experimental results not only confirmed previous findings on activation of brain structures affecting cardiac dynamics (e.g., insula, amygdala, hippocampus, and anterior and mid-cingulate cortices) but also provided insights into the anatomical bases of brain-heart axis. In particular, we show that the bidirectional activity of electrophysiological pathways of functional brain-heart communication increases during cold pressure with respect to resting state, mainly targeting neural oscillations in theδ $$ \delta $$ ,β $$ \beta $$ , andγ $$ \gamma $$ bands. The proposed approach offers new perspectives for the investigation of functional BHI that could also shed light on various pathophysiological conditions.
Collapse
Affiliation(s)
- Vincenzo Catrambone
- Neurocardiovascular Intelligence Laboratory & Department of Information Engineering & Bioengineering and Robotics Research Center, E. Piaggio, School of EngineeringUniversity of PisaPisaItaly
| | - Diego Candia‐Rivera
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP‐HP, Hôpital Pitié‐SalpêtriŕeParisFrance
| | - Gaetano Valenza
- Neurocardiovascular Intelligence Laboratory & Department of Information Engineering & Bioengineering and Robotics Research Center, E. Piaggio, School of EngineeringUniversity of PisaPisaItaly
| |
Collapse
|