1
|
Pelo R, Cortez M, Fino PC, Dibble LE. Commentary: are postconcussive symptoms and exercise testing appropriate tools to identify autonomic impairment after mild traumatic brain injury? Clin Neuropsychol 2025:1-9. [PMID: 40240030 DOI: 10.1080/13854046.2025.2492689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVE After mild traumatic brain injury (mTBI), autonomic nervous system dysfunction is thought to contribute to exercise intolerance and self-reported postconcussive symptoms (e.g. dizziness, lightheadedness, brain fog) but little has been done to establish this relationship in the literature. METHODS Through recent literature review, it appears that few studies have assessed both autonomic function and exercise intolerance, and for those that have utilized varying methodologies making comparison across studies difficult. Some emerging research has identified potential impairment within the sympathetic nervous system after mTBI but no relationship between exercise tolerance testing and postconcussive symptoms has been established. CONCLUSION For neuropsychologists, a physiologic understanding of the scope of autonomic dysfunction and appropriate assessment is vitally important, as autonomic nervous system impairment has the potential to impact sleep and mood, and subsequently cognitive function and mental health. When working in collaboration with other disciplines, referrals to exercise intolerance testing and laboratory based autonomic assessments may occur. However, given the lack of an established evidence, the use of exercise intolerance and/or related symptoms to clinically insinuate dysfunction of the autonomic nervous system function is likely premature, and a more thorough assessment of autonomic function via established batteries is more appropriate.
Collapse
Affiliation(s)
- Ryan Pelo
- Kutcher Clinic for Sports Neurology, Park City, UT, USA
- Sports Medicine Department, University of Utah, Salt Lake City, UT, USA
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
| | - Melissa Cortez
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Peter C Fino
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Department of Health & Kinesiology, University of Utah, Salt Lake City, UT, USA
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Leland E Dibble
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Bradfield C, Voo L, Bhaduri A, Ramesh KT. Validation of a computational biomechanical mouse brain model for rotational head acceleration. Biomech Model Mechanobiol 2024; 23:1347-1367. [PMID: 38662175 DOI: 10.1007/s10237-024-01843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/17/2024] [Indexed: 04/26/2024]
Abstract
Recent mouse brain injury experiments examine diffuse axonal injury resulting from accelerative head rotations. Evaluating brain deformation during these events would provide valuable information on tissue level thresholds for brain injury, but there are many challenges to imaging the brain's mechanical response during dynamic loading events, such as a blunt head impact. To address this shortcoming, we present an experimentally validated computational biomechanics model of the mouse brain that predicts tissue deformation, given the motion of the mouse head during laboratory experiments. First, we developed a finite element model of the mouse brain that computes tissue strains, given the same head rotations as previously conducted in situ hemicephalic mouse brain experiments. Second, we calibrated the model using a single brain segment, and then validated the model based on the spatial and temporal strain responses of other regions. The result is a computational tool that will provide researchers with the ability to predict brain tissue strains that occur during mouse laboratory experiments, and to link the experiments to the resulting neuropathology, such as diffuse axonal injury.
Collapse
Affiliation(s)
- Connor Bradfield
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street.
| | - Liming Voo
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| | - Anindya Bhaduri
- Department of Civil Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| | - K T Ramesh
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| |
Collapse
|
3
|
Pelo R, Suttman E, Fino PC, McFarland MM, Dibble LE, Cortez MM. Autonomic dysfunction and exercise intolerance in concussion: a scoping review. Clin Auton Res 2023; 33:149-163. [PMID: 37038012 PMCID: PMC10812884 DOI: 10.1007/s10286-023-00937-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 04/12/2023]
Abstract
PURPOSE Concussion commonly results in exercise intolerance, often limiting return to activities. Improved understanding of the underlying mechanisms of post-concussive exercise intolerance could help guide mechanism-directed rehabilitation approaches. Signs of altered cardiovascular autonomic regulation-a potential contributor to exercise intolerance-have been reported following concussion, although it is not clear how these findings inform underlying mechanisms of post-concussive symptoms. Systematic summarization and synthesis of prior work is needed to best understand current evidence, allowing identification of common themes and gaps requiring further study. The purpose of this review was to (1) summarize published data linking exercise intolerance to autonomic dysfunction, and (2) summarize key findings, highlighting opportunities for future investigation. METHODS The protocol was developed a priori, and conducted in five stages; results were collated, summarized, and reported according to PRISMA guidelines. Studies including injuries classified as mild traumatic brain injury (mTBI)/concussion, regardless of mechanism of injury, were included. Studies were required to include both autonomic and exercise intolerance testing. Exclusion criteria included confounding central or peripheral nervous system dysfunction beyond those stemming from the concussion, animal model studies, and case reports. RESULTS A total of 3116 publications were screened; 17 were included in the final review. CONCLUSION There was wide variability in approach to autonomic/exercise tolerance testing, as well as inclusion criteria/testing timelines, which limited comparisons across studies. The reviewed studies support current clinical suspicion of autonomic dysfunction as an important component of exercise intolerance. However, the specific mechanisms of impairment and relationship to symptoms and recovery require additional investigation.
Collapse
Affiliation(s)
- Ryan Pelo
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT, 84108, USA.
| | - Erin Suttman
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT, 84108, USA
| | - Peter C Fino
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT, USA
| | - Mary M McFarland
- Eccles Health Sciences Library, University of Utah, Salt Lake City, UT, USA
| | - Leland E Dibble
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT, 84108, USA
| | - Melissa M Cortez
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Griffiths E, Budday S. Finite element modeling of traumatic brain injury: Areas of future interest. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Chaychi S, Valera E, Tartaglia MC. Sex and gender differences in mild traumatic brain injury/concussion. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:349-375. [PMID: 36038209 DOI: 10.1016/bs.irn.2022.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The high incidence of concussions/mild traumatic brain injury and the significant number of people with persisting concussion symptoms as well as the concern for delayed, neurodegenerative effects of concussions makes them a major public health concern. There is much to learn on concussions with respect to pathophysiology as well as vulnerability and resiliency factors. The heterogeneity in outcome after a concussion warrants a more personalized approach to better understand the biological and psychosocial factors that may affect outcome. In this chapter we address biological sex and gender as they impact different aspects of concussion including incidence, risk factors and outcome. As well, this chapter will provide a more fulsome overview of intimate partner violence, an often-overlooked cause of concussion in women. Applying the sex and gender lens to concussion/mild traumatic brain injury is imperative for discovery of its pathophysiology and moving closer to treatments.
Collapse
Affiliation(s)
- Samaneh Chaychi
- Memory Clinic, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Canadian Concussion Centre, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Eve Valera
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, United States
| | - Maria Carmela Tartaglia
- Memory Clinic, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Canadian Concussion Centre, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Gomez AD, Bayly PV, Butman JA, Pham DL, Prince JL, Knutsen AK. Group characterization of impact-induced, in vivo human brain kinematics. J R Soc Interface 2021; 18:20210251. [PMID: 34157896 DOI: 10.1098/rsif.2021.0251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Brain movement during an impact can elicit a traumatic brain injury, but tissue kinematics vary from person to person and knowledge regarding this variability is limited. This study examines spatio-temporal brain-skull displacement and brain tissue deformation across groups of subjects during a mild impact in vivo. The heads of two groups of participants were imaged while subjected to a mild (less than 350 rad s-2) impact during neck extension (NE, n = 10) and neck rotation (NR, n = 9). A kinematic atlas of displacement and strain fields averaged across all participants was constructed and compared against individual participant data. The atlas-derived mean displacement magnitude was 0.26 ± 0.13 mm for NE and 0.40 ± 0.26 mm for NR, which is comparable to the displacement magnitudes from individual participants. The strain tensor from the atlas displacement field exhibited maximum shear strain (MSS) of 0.011 ± 0.006 for NE and 0.017 ± 0.009 for NR and was lower than the individual MSS averaged across participants. The atlas illustrates common patterns, containing some blurring but visible relationships between anatomy and kinematics. Conversely, the direction of the impact, brain size, and fluid motion appear to underlie kinematic variability. These findings demonstrate the biomechanical roles of key anatomical features and illustrate common features of brain response for model evaluation.
Collapse
Affiliation(s)
- Arnold D Gomez
- School of Medicine, Department of Neurology, Johns Hopkins University, 600 North Wolfe Street, 200 Carnegie Hall, Baltimore, MD, USA
| | - Philip V Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, 1 Brookings Drive, Box 1185, Saint Louis, MI, USA
| | - John A Butman
- Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Dzung L Pham
- Center for Neuroscience and Regenerative Medicine, Henry M Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew K Knutsen
- Center for Neuroscience and Regenerative Medicine, Henry M Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| |
Collapse
|
7
|
Montanino A, Li X, Zhou Z, Zeineh M, Camarillo D, Kleiven S. Subject-specific multiscale analysis of concussion: from macroscopic loads to molecular-level damage. BRAIN MULTIPHYSICS 2021. [DOI: 10.1016/j.brain.2021.100027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
8
|
Begonia M, Rooks T, Pintar FA, Yoganandan N. Development of a Methodology for Simulating Complex Head Impacts With the Advanced Combat Helmet. Mil Med 2019; 184:237-244. [DOI: 10.1093/milmed/usy282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/26/2018] [Indexed: 11/13/2022] Open
Abstract
Abstract
Blunt impact assessment of the Advanced Combat Helmet (ACH) is currently based on the linear head response. The current study presents a methodology for testing the ACH under complex loading that generates linear and rotational head motion. Experiments were performed on a guided, free-fall drop tower using an instrumented National Operating Committee for Standards on Athletic Equipment (NOCSAE) head attached to a Hybrid III (HIII) or EuroSID-2 (ES-2) dummy neck and carriage. Rear and lateral impacts occurred at 3.0 m/s with peak linear accelerations (PLA) and peak rotational accelerations (PRA) measured at the NOCSAE head center-of-gravity. Experimental data served as inputs for the Simulated Injury Monitor (SIMon) computational model to estimate brain strain. Rear ACH impacts had 22% and 7% higher PLA and PRA when using the HIII neck versus the ES-2 neck. Lateral ACH impacts had 33% and 35% lower PLA and PRA when using HIII neck versus the ES-2 neck. Computational results showed that total estimated brain strain increased by 25% and 76% under rear and lateral ACH impacts when using the ES-2 neck. This methodology was developed to simulate complex ACH impacts involving the rotational head motion associated with diffuse brain injuries, including concussion, in military environments.
Collapse
Affiliation(s)
- Mark Begonia
- Medical College of Wisconsin, Department of Neurosurgery, 8701 W Watertown Plank Road, Milwaukee, WI
- Zablocki VA Medical Center, Neuroscience Research Laboratories, 5000 West National Avenue, Milwaukee, WI
| | - Tyler Rooks
- U.S. Army Aeromedical Research Laboratory, Injury Biomechanics Division, 6901 Farrel Road, Fort Rucker, AL
| | - Frank A Pintar
- Medical College of Wisconsin, Department of Neurosurgery, 8701 W Watertown Plank Road, Milwaukee, WI
- Zablocki VA Medical Center, Neuroscience Research Laboratories, 5000 West National Avenue, Milwaukee, WI
| | - Narayan Yoganandan
- Medical College of Wisconsin, Department of Neurosurgery, 8701 W Watertown Plank Road, Milwaukee, WI
- Zablocki VA Medical Center, Neuroscience Research Laboratories, 5000 West National Avenue, Milwaukee, WI
| |
Collapse
|
9
|
Membrane Mechanical Properties Regulate the Effect of Strain on Spontaneous Electrophysiology in Human iPSC-Derived Neurons. Neuroscience 2019; 404:165-174. [PMID: 30817953 DOI: 10.1016/j.neuroscience.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/16/2022]
Abstract
Peripheral nerves contain neuron fibers vital for movement and sensation and are subject to continuous elongation and compression during everyday movement. At supraphysiological strains conduction blocks occur, resulting in permanent or temporary loss of function. The mechanisms underpinning these alterations in electrophysiological activity remain unclear; however, there is evidence that both ion channels and network synapses may be affected through cell membrane transmitted strain. The aim of this work was to quantify the changes in spontaneous activity resulting from application of uniaxial strain in a human iPS-derived motor neuron culture model, and to investigate the role of cell membrane mechanical properties during cell straining. Increasing strain in a custom-built cell-stretching device caused a linear decrease in spontaneous activity, and no immediate recovery of activity was observed after strain release. Imaging neuronal membranes with c-Laurdan showed changes to the lipid order in neural membranes during deformation with a decrease in lipid packing. Neural cell membrane stiffness can be modulated by increasing cholesterol content, resulting in reduced stretch-induced decrease of membrane lipid packing and in a reduced decrease in spontaneous activity caused by mechanical strain. Together these results indicate that the mechanism whereby cell injury causes impaired transmission of neural impulses may be governed by the mechanical state of the cell membrane, and contribute to establishing a direct relationship between neural uniaxial straining and loss of spontaneous neural activity.
Collapse
|
10
|
Solomito MJ, Reuman H, Wang DH. Sex differences in concussion: a review of brain anatomy, function, and biomechanical response to impact. Brain Inj 2018; 33:105-110. [DOI: 10.1080/02699052.2018.1542507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Matthew J. Solomito
- Elite Sports Medicine, Connecticut Children’s Medical Center, Farmington, Connecticut, USA
| | - Hannah Reuman
- Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - David H. Wang
- Elite Sports Medicine, Connecticut Children’s Medical Center, Farmington, Connecticut, USA
| |
Collapse
|
11
|
Phohomsiri P, Gibbons M, Volman V, Cui J, Ng L. A Fast-Running, End-to-End Concussion Risk Model for Assessment of Complex Human Head Kinematics. Mil Med 2018; 183:339-346. [PMID: 29635596 DOI: 10.1093/milmed/usx202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/21/2017] [Indexed: 11/13/2022] Open
Abstract
An end-to-end, mechanism-based concussion risk model, linking head motion to axonal injury, has been demonstrated to predict concussion outcomes with greater sensitivity and specificity than external correlates such as peak head acceleration. The development of this model was driven by the need to more accurately translate head-worn sensor measurements into injury assessment in near-real time. The full end-to-end model is a detailed multi-scale model, composed of complex components (e.g., a human head finite element model), is computationally expensive, and requires specialized software. For practicality, this research-level model must be simplified into a standalone, fast-running algorithm that can be embedded on the microprocessor of a head-worn sensor. This article describes the development of a simplified, fast-running algorithm that delivers comparable results to those of the full end-to-end model. The dynamic axonal response of the human head finite element model to head motion is mathematically modeled using a lumped parameter system fitted to the finite element model response for a range of head motions. The other component models of the full end-to-end model were similarly reduced. For the same head kinematic scenarios, the probabilities of concussion obtained from the end-to-end model and from the simplified algorithm are compared well.
Collapse
Affiliation(s)
- Pi Phohomsiri
- L-3 Applied Technology, 10180 Barnes Canyon Road Suite 100, San Diego, CA 92121
| | - Melissa Gibbons
- L-3 Applied Technology, 10180 Barnes Canyon Road Suite 100, San Diego, CA 92121
| | - Vladislav Volman
- L-3 Applied Technology, 10180 Barnes Canyon Road Suite 100, San Diego, CA 92121
| | - Jianxia Cui
- L-3 Applied Technology, 10180 Barnes Canyon Road Suite 100, San Diego, CA 92121
| | - Laurel Ng
- L-3 Applied Technology, 10180 Barnes Canyon Road Suite 100, San Diego, CA 92121
| |
Collapse
|
12
|
Joos B, Barlow BM, Morris CE. Calculating the Consequences of Left-Shifted Nav Channel Activity in Sick Excitable Cells. Handb Exp Pharmacol 2017; 246:401-422. [PMID: 29030712 DOI: 10.1007/164_2017_63] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two features common to diverse sick excitable cells are "leaky" Nav channels and bleb damage-damaged membranes. The bleb damage, we have argued, causes a channel kinetics based "leakiness." Recombinant (node of Ranvier type) Nav1.6 channels voltage-clamped in mechanically-blebbed cell-attached patches undergo a damage intensity dependent kinetic change. Specifically, they experience a coupled hyperpolarizing (left) shift of the activation and inactivation processes. The biophysical observations on Nav1.6 currents formed the basis of Nav-Coupled Left Shift (Nav-CLS) theory. Node of Ranvier excitability can be modeled with Nav-CLS imposed at varying LS intensities and with varying fractions of total nodal membrane affected. Mild damage from which sick excitable cells might recover is of most interest pathologically. Accordingly, Na+/K+ ATPase (pump) activity was included in the modeling. As we described more fully in our other recent reviews, Nav-CLS in nodes with pumps proves sufficient to predict many of the pathological excitability phenomena reported for sick excitable cells. This review explains how the model came about and outlines how we have used it. Briefly, we direct the reader to studies in which Nav-CLS is being implemented in larger scale models of damaged excitable tissue. For those who might find it useful for teaching or research purposes, we coded the Nav-CLS/node of Ranvier model (with pumps) in NEURON. We include, here, the resulting "Regimes" plot of classes of excitability dysfunction.
Collapse
Affiliation(s)
- Bela Joos
- Department of Physics, University of Ottawa, Ottawa, ON, Canada.
| | | | | |
Collapse
|