1
|
Fu XM, Li CL, Jiang HR, Zhang JY, Sun T, Zhou F. Neuroinflammatory response after subarachnoid hemorrhage: A review of possible treatment targets. Clin Neurol Neurosurg 2025; 252:108843. [PMID: 40107192 DOI: 10.1016/j.clineuro.2025.108843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/16/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
A serious neurosurgical emergency, subarachnoid hemorrhage (SAH) is characterized by vascular and neuropathy, as well as complex pathological mechanisms like vascular lesions, inflammatory responses, and nerve cell damage. The inflammatory response is an essential aspect of SAH's pathophysiology, causing the release of a number of inflammatory mediators and oxidative stress products like TNF-α, MCP-1, MMPs, and so on, which either directly or indirectly contribute to the development of SAH.It has recently been discovered that some antibodies against inflammatory mediators, antioxidant stress, botanicals, and traditional Chinese medicine decrease the inflammatory response of SAH. Additionally, certain biomarkers linked to inflammation may serve as a foundation for clinical diagnosis.Although these mechanisms are still not completely understood, we can explore potential therapeutic targets by studying the role of inflammatory responses and bioactive molecules in the formation of SAH.
Collapse
Affiliation(s)
- Xiao-Man Fu
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chen-Lu Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Ru Jiang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jia-Yun Zhang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Tao Sun
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Feng Zhou
- The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China.
| |
Collapse
|
2
|
Dreier JP, Joerk A, Uchikawa H, Horst V, Lemale CL, Radbruch H, McBride DW, Vajkoczy P, Schneider UC, Xu R. All Three Supersystems-Nervous, Vascular, and Immune-Contribute to the Cortical Infarcts After Subarachnoid Hemorrhage. Transl Stroke Res 2025; 16:96-118. [PMID: 38689162 PMCID: PMC11772491 DOI: 10.1007/s12975-024-01242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
The recently published DISCHARGE-1 trial supports the observations of earlier autopsy and neuroimaging studies that almost 70% of all focal brain damage after aneurysmal subarachnoid hemorrhage are anemic infarcts of the cortex, often also affecting the white matter immediately below. The infarcts are not limited by the usual vascular territories. About two-fifths of the ischemic damage occurs within ~ 48 h; the remaining three-fifths are delayed (within ~ 3 weeks). Using neuromonitoring technology in combination with longitudinal neuroimaging, the entire sequence of both early and delayed cortical infarct development after subarachnoid hemorrhage has recently been recorded in patients. Characteristically, cortical infarcts are caused by acute severe vasospastic events, so-called spreading ischemia, triggered by spontaneously occurring spreading depolarization. In locations where a spreading depolarization passes through, cerebral blood flow can drastically drop within a few seconds and remain suppressed for minutes or even hours, often followed by high-amplitude, sustained hyperemia. In spreading depolarization, neurons lead the event, and the other cells of the neurovascular unit (endothelium, vascular smooth muscle, pericytes, astrocytes, microglia, oligodendrocytes) follow. However, dysregulation in cells of all three supersystems-nervous, vascular, and immune-is very likely involved in the dysfunction of the neurovascular unit underlying spreading ischemia. It is assumed that subarachnoid blood, which lies directly on the cortex and enters the parenchyma via glymphatic channels, triggers these dysregulations. This review discusses the neuroglial, neurovascular, and neuroimmunological dysregulations in the context of spreading depolarization and spreading ischemia as critical elements in the pathogenesis of cortical infarcts after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| | - Alexander Joerk
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Hiroki Uchikawa
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Viktor Horst
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulf C Schneider
- Department of Neurosurgery, Cantonal Hospital of Lucerne and University of Lucerne, Lucerne, Switzerland
| | - Ran Xu
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK, German Centre for Cardiovascular Research, Berlin, Germany
| |
Collapse
|
3
|
He Q, Wang W, Xiong Y, Tao C, Ma L, You C. Causal association between circulating inflammatory cytokines and intracranial aneurysm and subarachnoid hemorrhage. Eur J Neurol 2024; 31:e16326. [PMID: 38709145 PMCID: PMC11235611 DOI: 10.1111/ene.16326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND AND PURPOSE The causal association between inflammatory cytokines and the development of intracranial aneurysm (IA), unruptured IA (uIA) and subarachnoid hemorrhage (SAH) lacks clarity. METHODS The summary-level datasets for inflammatory cytokines were extracted from a genome-wide association study of the Finnish Cardiovascular Risk in Young Adults Study and the FINRISK survey. The summary statistics datasets related to IA, uIA and SAH were obtained from the genome-wide association study meta-analysis of the International Stroke Genetics Consortium and FinnGen Consortium. The primary method employed for analysis was inverse variance weighting (false discovery rate), supplemented by sensitivity analyses to address pleiotropy and enhance robustness. RESULTS In the International Stroke Genetics Consortium, 10, six and eight inflammatory cytokines exhibited a causal association with IA, uIA and SAH, respectively (false discovery rate, p < 0.05). In FinnGen datasets, macrophage Inflammatory Protein-1 Alpha (MIP_1A), MIP_1A and interferon γ-induced protein 10 (IP_10) were verified for IA, uIA and SAH, respectively. In the reverse Mendelian randomization analysis, the common cytokines altered by uIA and SAH were vascular endothelial growth factor (VEGF), MIP_1A, IL_9, IL_10 and IL_17, respectively. The meta-analysis results show that MIP_1A and IP_10 could be associated with the decreased risk of IA, and MIP_1A and IP_10 were associated with the decreased risk of uIA and SAH, respectively. Notably, the levels of VEGF, MIP_1A, IL_9, IL_10 and TNF_A were increased with uIA. Comprehensive heterogeneity and pleiotropy analyses confirmed the robustness of these results. CONCLUSION Our study unveils a bidirectional association between inflammatory cytokines and IA, uIA and SAH. Further investigations are essential to validate their relationship and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Qiang He
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Wenjing Wang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yang Xiong
- Department of Urology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Chuanyuan Tao
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Lu Ma
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Chao You
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Chai CZ, Ho UC, Kuo LT. Systemic Inflammation after Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:10943. [PMID: 37446118 DOI: 10.3390/ijms241310943] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is one of the most severe neurological disorders, with a high mortality rate and severe disabling functional sequelae. Systemic inflammation following hemorrhagic stroke may play an important role in mediating intracranial and extracranial tissue damage. Previous studies showed that various systemic inflammatory biomarkers might be useful in predicting clinical outcomes. Anti-inflammatory treatment might be a promising therapeutic approach for improving the prognosis of patients with aSAH. This review summarizes the complicated interactions between the nervous system and the immune system.
Collapse
Affiliation(s)
- Chang-Zhang Chai
- Department of Medical Education, National Taiwan University, School of Medicine, Taipei 100, Taiwan
| | - Ue-Cheung Ho
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
5
|
Vlachogiannis P, Hillered L, Enblad P, Ronne-Engström E. Elevated levels of several chemokines in the cerebrospinal fluid of patients with subarachnoid hemorrhage are associated with worse clinical outcome. PLoS One 2023; 18:e0282424. [PMID: 36893189 PMCID: PMC9997919 DOI: 10.1371/journal.pone.0282424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Chemokines are small cytokines that exert chemotactic actions on immune cells and are involved in many inflammatory processes. The present study aims to provide insight in the role of this relatively unexplored family of proteins in the inflammatory pathophysiology of subarachnoid hemorrhage (SAH). MATERIALS AND METHODS Cerebrospinal fluid of 29 patients (17 female; mean age 57 years) was collected at days 1, 4 and 10 after SAH, centrifuged and frozen at -70°C. Analysis of 92 inflammation-related proteins was performed using Target 96 Inflammation ® assay (Olink Proteomics, Uppsala, Sweden) based on Proximity Extension Assay technology. The panel included 20 chemokines (CCL2 (or MCP-1), CCL3, CCL4, CCL7 (or MCP-3), CCL8 (or MCP-2), CCL11 (or Eotaxin), CCL13 (or MCP-4), CCL19, CCL20, CCL23, CCL25, CCL28, CXCL1, CXCL5, CXCL6, CXCL8 (or IL-8), CXCL9, CXCL10, CXCL11 and CX3CL1 (or Fractalkine)) that were analyzed for their temporal patterns of expression and compared in dichotomized clinical groups based on World Federation of Neurosurgical Societies (WFNS) admission score and amount of blood on admission CT based on Fisher scale; presence of delayed cerebral ischemia(DCI)/delayed ischemic neurological deficit (DIND); and clinical outcome based on Glasgow Outcome Scale. Protein expression levels were provided in output unit Normalized Protein Expression (NPX). ANOVA models were used for statistical analyses. RESULTS Four temporal patterns of expression were observed (i.e., early, middle, late peak and no peak). Significantly higher day 10 mean NPX values were observed in patients with poor outcome (GOS 1-3) for chemokines CCL2, CCL4, CCL7, CCL11, CCL13, CCL19, CCL20, CXCL1, CXCL5, CXCL6 and CXCL8. In the WFNS 4-5 group, CCL11 showed significantly higher day 4 and day 10 mean NPX values and CCL25 significantly higher day 4 values. In patients with SAH Fisher 4, CCL11 showed significantly higher mean NPX values on days 1, 4 and 10. Finally, patients with DCI/DIND had significantly higher day 4 mean NPX values of CXCL5. CONCLUSION Higher levels of multiple chemokines at the late stage of SAH seemed to correlate with worse clinical outcome. A few chemokines correlated with WFNS score, Fisher score and occurrence of DCI/DIND. Chemokines may be useful as biomarkers for describing the pathophysiology and prognosis of SAH. Further studies are needed to better understand their exact mechanism of action in the inflammatory cascade.
Collapse
Affiliation(s)
- Pavlos Vlachogiannis
- Department of Medical Sciences/Section of Neurosurgery, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Lars Hillered
- Department of Medical Sciences/Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Medical Sciences/Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
6
|
Devlin P, Ishrat T, Stanfill AG. A Systematic Review of Inflammatory Cytokine Changes Following Aneurysmal Subarachnoid Hemorrhage in Animal Models and Humans. Transl Stroke Res 2022; 13:881-897. [PMID: 35260989 DOI: 10.1007/s12975-022-01001-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a severe form of stroke that occurs following rupture of a cerebral aneurysm. Acute inflammation and secondary delayed inflammatory responses, both largely controlled by cytokines, work together to create high mortality and morbidity for this group. The trajectory and time course of cytokine change must be better understood in order to effectively manage unregulated inflammation and improve patient outcomes following aSAH. A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Three different search phrases ("cytokines and subarachnoid hemorrhage," "cytokine levels and subarachnoid hemorrhage," and "cytokine measurement and subarachnoid hemorrhage") were applied across three databases (PubMed, SCOPUS, and the Cochrane Library). Our procedures returned 856 papers. After application of inclusion/exclusion criteria, 95 preclinical animal studies and 41 clinical studies remained. Across studies, 22 different cytokines had been investigated, 5 different tissue types were analyzed, and 3 animal models were utilized. Three main pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) demonstrated reliable increases following aSAH across the included studies. While this is a promising area of research for potential therapeutics, there are gaps in the knowledge base that bar progress for clinical translation of this information. In particular, there is a need for investigations that explore the systemic inflammatory response following injury in a more diverse number of cytokines, the balance of specific pro-/anti- inflammatory cytokines, and how these biomarkers relate to patient outcomes and recovery over time.
Collapse
Affiliation(s)
- Patrick Devlin
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, 920 Madison Ave, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, 875 Monroe Ave, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, 920 Madison Ave, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, 875 Monroe Ave, Memphis, TN, 38163, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Ansley Grimes Stanfill
- Neuroscience Institute, University of Tennessee Health Science Center, 875 Monroe Ave, Memphis, TN, 38163, USA.
- Department of Acute and Tertiary Care, College of Nursing, University of Tennessee Health Science Center, 874 Union Ave, Memphis, TN, 38163, USA.
| |
Collapse
|
7
|
Zeiler FA, Aries M, Czosnyka M, Smieleweski P. Cerebral Autoregulation Monitoring in Traumatic Brain Injury: An Overview of Recent Advances in Personalized Medicine. J Neurotrauma 2022; 39:1477-1494. [PMID: 35793108 DOI: 10.1089/neu.2022.0217] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Impaired cerebral autoregulation (CA) in moderate/severe traumatic brain injury (TBI) has been identified as a strong associate with poor long-term outcomes, with recent data highlighting its dominance over cerebral physiologic dysfunction seen in the acute phase post injury. With advances in bedside continuous cerebral physiologic signal processing, continuously derived metrics of CA capacity have been described over the past two decades, leading to improvements in cerebral physiologic insult detection and development of novel personalized approaches to TBI care in the intensive care unit (ICU). This narrative review focuses on highlighting the concept of continuous CA monitoring and consequences of impairment in moderate/severe TBI. Further, we provide a comprehensive description and overview of the main personalized cerebral physiologic targets, based on CA monitoring, that are emerging as strong associates with patient outcomes. CA-based personalized targets, such as optimal cerebral perfusion pressure (CPPopt), lower/upper limit of regulation (LLR/ULR), and individualized intra-cranial pressure (iICP) are positioned to change the way we care for TBI patients in the ICU, moving away from the "one treatment fits all" paradigm of current guideline-based therapeutic approaches, towards a true personalized medicine approach tailored to the individual patient. Future perspectives regarding research needs in this field are also discussed.
Collapse
Affiliation(s)
- Frederick Adam Zeiler
- Health Sciences Centre, Section of Neurosurgery, GB-1 820 Sherbrook Street, Winnipeg, Manitoba, Canada, R3A1R9;
| | - Marcel Aries
- University of Maastricht Medical Center, Department of Intensive Care, Maastricht, Netherlands;
| | - Marek Czosnyka
- university of cambridge, neurosurgery, Canbridge Biomedical Campus, box 167, cambridge, United Kingdom of Great Britain and Northern Ireland, cb237ar;
| | - Peter Smieleweski
- Cambridge University, Neurosurgery, Cambridge, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
8
|
Vlachogiannis P, Hillered L, Enblad P, Ronne-Engström E. Temporal patterns of inflammation-related proteins measured in the cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage using multiplex Proximity Extension Assay technology. PLoS One 2022; 17:e0263460. [PMID: 35324941 PMCID: PMC8947082 DOI: 10.1371/journal.pone.0263460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The complexity of the inflammatory response post subarachnoid hemorrhage (SAH) may require temporal analysis of multiple protein biomarkers simultaneously to be more accurately described. METHODS Ventricular cerebrospinal fluid was collected at days 1, 4 and 10 after SAH in 29 patients. Levels of 92 inflammation-related proteins were simultaneously measured using Target 96 Inflammation ® assay (Olink Proteomics, Uppsala, Sweden) based on Proximity Extension Assay (PEA) technology. Twenty-eight proteins were excluded from further analysis due to lack of >50% of measurable values. Temporal patterns of the remaining 64 proteins were analyzed. Repeated measures ANOVA and its nonparametric equivalent Friedman's ANOVA were used for comparisons of means between time points. RESULTS Four different patterns (Groups A-D) were visually observed with an early peak and gradually decreasing trend (11 proteins), a middle peak (10 proteins), a late peak after a gradually increasing trend (30 proteins) and no specific pattern (13 proteins). Statistically significant early peaks defined as Day 1 > Day 4 values were noticed in 4 proteins; no significant decreasing trends defined as Day 1 > Day 4 > Day 10 values were observed. Two proteins showed significant middle peaks (i.e. Day 1 < Day 4 > Day 10 values). Statistically significant late peaks (i.e. Day 4 < Day 10 values) and increasing trends (i.e. Day 1 < Day 4 < Day 10 values) were observed in 14 and 10 proteins, respectively. Four of Group D proteins showed biphasic peaks and the rest showed stable levels during the observation period. CONCLUSION The comprehensive data set provided in this explorative study may act as an illustration of an inflammatory profile of the acute phase of SAH showing groups of potential protein biomarkers with similar temporal patterns of activation, thus facilitating further research on their role in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Pavlos Vlachogiannis
- Department of Neurosciences, Neurosurgery, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Lars Hillered
- Department of Neurosciences, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neurosciences, Neurosurgery, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
9
|
Martini RP, Siler D, Cetas J, Alkayed NJ, Allen E, Treggiari MM. A Double-Blind, Randomized, Placebo-Controlled Trial of Soluble Epoxide Hydrolase Inhibition in Patients with Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2021; 36:905-915. [PMID: 34873674 DOI: 10.1007/s12028-021-01398-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Epoxyeicosatrienoates (EETs) are endogenous regulators of neuroinflammation and cerebral blood flow. Their metabolism to dihydroxyeicosatrienoates (DHETs) is catalyzed by soluble epoxide hydrolase (sEH). After subarachnoid hemorrhage (SAH), EETs' pathway amplification may be a therapeutic target for the prevention of delayed cerebral ischemia (DCI). We conducted a double-blind, placebo-controlled, phase Ib randomized trial of GSK2256294, a pharmacologic inhibitor of sEH, to evaluate the safety profile and to assess biomarkers of neurovascular inflammation in patients with aneurysmal SAH. METHODS Patients were randomly assigned to receive 10 mg of GSK2256294 or a placebo treatment once daily for 10 days, beginning within 72 hours after aneurysm rupture. The primary study end point was safety. Secondary end points included serum and cerebrospinal fluid (CSF) EETs-to-DHETs ratio, cytokine levels, and serum endothelial injury biomarkers, measured at day 7 and day 10 after SAH. Tertiary end points included neurologic status, disposition, length of stay, incidence of DCI, and mortality; these were assessed at hospital discharge and at 90 days. RESULTS Ten patients received GSK2256294 and nine patients received a placebo. There were no adverse events related to the study drug. GSK2256294 administration resulted in a significant increase in the EET/DHET ratio at day 7 and day 10 in serum, but not in the CSF. There was a trend for decreased CSF inflammatory cytokines following GSK2256294 administration, but this did not reach statistical significance. CONCLUSIONS GSK2256294 administration was safe and well tolerated in critically ill patients with SAH, producing an increase in serum EETs and the EET-to-DHET ratio. Our findings support future studies in a larger population to evaluate the role of sEH inhibition in the prevention of DCI after SAH and other forms of brain injury and inflammatory conditions. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov: NCT03318783.
Collapse
Affiliation(s)
- Ross P Martini
- Oregon Anesthesiology Group, Portland, OR, USA.,Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Dominic Siler
- Department of Neurosurgery, Oregon Health and Science University, Portland, OR, USA
| | - Justin Cetas
- Department of Neurosurgery, Oregon Health and Science University, Portland, OR, USA
| | - Nabil J Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA.,Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Elyse Allen
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA.,Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Miriam M Treggiari
- Department of Anesthesiology, Yale University School of Medicine, 333 Cedar Street, TMP3, New Haven, CT, 06510, USA.
| |
Collapse
|
10
|
Wu F, Liu Z, Li G, Zhou L, Huang K, Wu Z, Zhan R, Shen J. Inflammation and Oxidative Stress: Potential Targets for Improving Prognosis After Subarachnoid Hemorrhage. Front Cell Neurosci 2021; 15:739506. [PMID: 34630043 PMCID: PMC8497759 DOI: 10.3389/fncel.2021.739506] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) has a high mortality rate and causes long-term disability in many patients, often associated with cognitive impairment. However, the pathogenesis of delayed brain dysfunction after SAH is not fully understood. A growing body of evidence suggests that neuroinflammation and oxidative stress play a negative role in neurofunctional deficits. Red blood cells and hemoglobin, immune cells, proinflammatory cytokines, and peroxidases are directly or indirectly involved in the regulation of neuroinflammation and oxidative stress in the central nervous system after SAH. This review explores the role of various cellular and acellular components in secondary inflammation and oxidative stress after SAH, and aims to provide new ideas for clinical treatment to improve the prognosis of SAH.
Collapse
Affiliation(s)
- Fan Wu
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongchi Liu
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ganglei Li
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lihui Zhou
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaiyuan Huang
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhanxiong Wu
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Renya Zhan
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Shen
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Ikram A, Javaid MA, Ortega-Gutierrez S, Selim M, Kelangi S, Anwar SMH, Torbey MT, Divani AA. Delayed Cerebral Ischemia after Subarachnoid Hemorrhage. J Stroke Cerebrovasc Dis 2021; 30:106064. [PMID: 34464924 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106064] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
Delayed cerebral ischemia (DCI) is the most feared complication of aneurysmal subarachnoid hemorrhage (aSAH). It increases the mortality and morbidity associated with aSAH. Previously, large cerebral artery vasospasm was thought to be the sole major contributing factor associated with increased risk of DCI. Recent literature has challenged this concept. We conducted a literature search using PUBMED as the prime source of articles discussing various other factors which may contribute to the development of DCI both in the presence or absence of large cerebral artery vasospasm. These factors include microvascular spasm, micro-thrombosis, cerebrovascular dysregulation, and cortical spreading depolarization. These factors collectively result in inflammation of brain parenchyma, which is thought to precipitate early brain injury and DCI. We conclude that diagnostic modalities need to be refined in order to diagnose DCI more efficiently in its early phase, and newer interventions need to be developed to prevent and treat this condition. These newer interventions are currently being studied in experimental models. However, their effectiveness on patients with aSAH is yet to be determined.
Collapse
Affiliation(s)
- Asad Ikram
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | - Muhammad Ali Javaid
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | | | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Kelangi
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | | | - Michel T Torbey
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA.
| |
Collapse
|
12
|
RAR-Related Orphan Receptor Gamma T (RoRγt)-Related Cytokines Play a Role in Neutrophil Infiltration of the Central Nervous System After Subarachnoid Hemorrhage. Neurocrit Care 2021; 33:140-151. [PMID: 31768758 DOI: 10.1007/s12028-019-00871-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND How inflammatory cells are recruited into the central nervous system is a topic of interest in a number of neurological injuries. In aneurysmal subarachnoid hemorrhage (SAH), neutrophil accumulation in the central nervous system 3 days after the hemorrhage is a critical step in the development of delayed cerebral injury (DCI). The mechanism by which neutrophils enter the central nervous system is still unclear. METHODS AND RESULTS To identify human effectors of neutrophil recruitment, cerebrospinal fluid (CSF) samples were taken from a small, selected sample of SAH patients with external ventricular drainage devices (10 patients). Among a battery of CSF cytokines tested 3 days after SAH, five cytokines were associated with poor 90-day outcome (modified Rankin Score 3-6). A parallel study in a mouse model of mild SAH showed elevation in three cytokines in the CNS compared to sham. IL-17 and IL-2 were increased in both patients and the mouse model. IL-17 was investigated further because of its known role in neutrophil recruitment. Inhibition of RAR-Related Orphan Receptor Gamma T, the master transcription factor of IL-17, with the inverse agonist GSK805 suppressed neutrophils entry into the CNS after SAH compared to control. Using an IL-17 reporter mouse, we investigated the source of IL-17 and found that myeloid cells were a common IL-17-producing cell type in the meninges after SAH, suggesting an autocrine role for neutrophil recruitment. CONCLUSIONS Taken together, IL-17 appears to be in important factor in the recruitment of neutrophils into the meninges after SAH and could be an important target for therapies to ameliorate DCI.
Collapse
|
13
|
Dienel A, Veettil RA, Matsumura K, Savarraj JPJ, Choi HA, Kumar T P, Aronowski J, Dash P, Blackburn SL, McBride DW. α 7-Acetylcholine Receptor Signaling Reduces Neuroinflammation After Subarachnoid Hemorrhage in Mice. Neurotherapeutics 2021; 18:1891-1904. [PMID: 33970466 PMCID: PMC8609090 DOI: 10.1007/s13311-021-01052-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) causes a robust inflammatory response which leads worse brain injury and poor outcomes. We investigated if stimulation of nicotinic acetylcholine α7 receptors (α7-AChR) (receptors shown to have anti-inflammatory effects) would reduce inflammation and improve outcomes. To investigate the level of peripheral inflammation after aSAH, inflammatory markers were measured in plasma samples collected in a cohort of aSAH patients. To study the effect of α7-AChR stimulation, SAH was induced in adult mice which were then treated with a α7-AChR agonist, galantamine, or vehicle. A battery of motor and cognitive tests were performed 24 h after subarachnoid hemorrhage. Mice were euthanized and tissue collected for analysis of markers of inflammation or activation of α7-AChR-mediated transduction cascades. A separate cohort of mice was allowed to survive for 28 days to assess long-term neurological deficits and histological outcome. Microglia cell culture subjected to hemoglobin toxicity was used to assess the effects of α7-AChR agonism. Analysis of eighty-two patient plasma samples confirmed enhanced systemic inflammation after aSAH. α7-AChR agonism reduced neuroinflammation at 24 h after SAH in male and female mice, which was associated with improved outcomes. This coincided with JAK2/STAT3 and IRAK-M activity modulations and a robust improvement in neurological/cognitive status that was effectively reversed by interfering with various components of these signaling pathways. Pharmacologic inhibition partially reversed the α7-AChR agonist's benefits, supporting α7-AChR as a target of the agonist's therapeutic effect. The cell culture experiment showed that α7-AChR agonism is directly beneficial to microglia. Our results demonstrate that activation of α7-AChR represents an attractive target for treatment of SAH. Our findings suggest that α7-AChR agonists, and specifically galantamine, might provide therapeutic benefit to aSAH patients.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Remya A Veettil
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Kanako Matsumura
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Jude P J Savarraj
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - H Alex Choi
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Peeyush Kumar T
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | - Pramod Dash
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Spiros L Blackburn
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Devin W McBride
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA.
| |
Collapse
|
14
|
Yao Y, Fang X, Yuan J, Qin F, Yu T, Xia D, Li Z, Lai N. Interleukin-6 in Cerebrospinal Fluid Small Extracellular Vesicles as a Potential Biomarker for Prognosis of Aneurysmal Subarachnoid Haemorrhage. Neuropsychiatr Dis Treat 2021; 17:1423-1431. [PMID: 34012263 PMCID: PMC8128493 DOI: 10.2147/ndt.s304394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Aneurysmal subarachnoid hemorrhage (aSAH) is a severe form of stroke characterized by high rates of mortality and disability. Identifying circulating biomarkers is helpful to improve outcomes. In this study, for the first time, we identify interleukin-6 (IL-6) in cerebrospinal fluid (CSF) small extracellular vesicles (sEVs) as potential biomarkers for prognosis of aSAH. METHODS We extracted small extracellular vesicles from the CSF of 103 aSAH patients and 40 healthy controls in a prospective observational study. Subsequently, we measured IL-6sEVs levels using an enzyme-linked immunosorbent assay. Results were statistically analyzed to determine the function of IL-6sEVs for disease monitoring of aSAH. RESULTS CSF IL-6 sEVs showed distinct pattern differences between healthy controls and aSAH patients. The concentration of IL-6sEVs in CSF is significantly correlated with the severity of aSAH patients. The areas under the receiver operating characteristic curves of IL-6sEVs for identifying severe aSAH patient from aSAH patients were 0.900. After multivariate logistic regression analysis, IL-6sEVs were associated with neurological outcome at 1 year. IL-6sEVs levels were greater and positively associated with disease processes and outcome. CONCLUSION There is a neuroinflammatory cascade in aSAH patients. IL-6sEVs in CSF may be a biomarker for the progression of aSAH.
Collapse
Affiliation(s)
- Yang Yao
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
- Department of Nursing, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
| | - Xinggen Fang
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
| | - Jinlong Yuan
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
| | - Feiyun Qin
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
| | - Tao Yu
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
| | - Dayong Xia
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
| | - Zhenbao Li
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
| | - Niansheng Lai
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
| |
Collapse
|
15
|
Zeiler FA, Mathieu F, Monteiro M, Glocker B, Ercole A, Cabeleira M, Stocchetti N, Smielewski P, Czosnyka M, Newcombe V, Menon DK. Systemic Markers of Injury and Injury Response Are Not Associated with Impaired Cerebrovascular Reactivity in Adult Traumatic Brain Injury: A Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) Study. J Neurotrauma 2020; 38:870-878. [PMID: 33096953 DOI: 10.1089/neu.2020.7304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The role of extra-cranial injury burden and systemic injury response on cerebrovascular response in traumatic brain injury (TBI) is poorly documented. This study preliminarily assesses the association between admission features of extra-cranial injury burden on cerebrovascular reactivity. Using the Collaborative European Neurotrauma Effectiveness Research in TBI High-Resolution ICU (HR ICU) sub-study cohort, we evaluated those patients with both archived high-frequency digital intra-parenchymal intra-cranial pressure monitoring data of a minimum of 6 h in duration, and the presence of a digital copy of their admission computed tomography (CT) scan. Digital physiologic signals were processed for pressure reactivity index (PRx) and both the percent time above defined PRx thresholds and mean hourly dose above threshold. This was conducted for both the first 72 h and entire duration of recording. Admission extra-cranial injury characteristics and CT injury scores were obtained from the database, with quantitative contusion, edema, intraventricular hemorrhage, and extra-axial lesion volumes were obtained via semi-automated segmentation. Comparison between admission extra-cranial markers of injury and PRx metrics was conducted using Mann-Whitney U testing, and logistic regression techniques, adjusting for known CT injury metrics associated with impaired PRx. A total of 165 patients were included. Evaluating the entire ICU recording period, there was limited association between metrics of extra-cranial injury burden and impaired cerebrovascular reactivity. Using the first 72 h of recording, admission temperature (p = 0.042) and white blood cell % (WBC %; p = 0.013) were statistically associated with impaired cerebrovascular reactivity on Mann-Whitney U and univariate logistic regression. After adjustment for admission age, pupillary status, GCS motor score, pre-hospital hypoxia/hypotension, and intra-cranial CT characteristics associated with impaired reactivity, temperature (p = 0.021) and WBC % (p = 0.013) remained significantly associated with mean PRx values above +0.25 and +0.35, respectively. Markers of extra-cranial injury burden and systemic injury response do not appear to be strongly associated with impaired cerebrovascular reactivity in TBI during both the initial and entire ICU stay.
Collapse
Affiliation(s)
- Frederick A Zeiler
- Division of Anesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biomedical Engineering, University of Manitoba, Winnipeg, Manitoba, Canada.,Center on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
| | - François Mathieu
- Division of Anesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Miguel Monteiro
- Biomedical Image Analysis Group, Imperial College London, London, United Kingdom
| | - Ben Glocker
- Biomedical Image Analysis Group, Imperial College London, London, United Kingdom
| | - Ari Ercole
- Division of Anesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Manuel Cabeleira
- Brain Physics Laboratory, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Nino Stocchetti
- Neuro ICU Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Physiopathology and Transplantation, Milan University, Milan, Italy
| | - Peter Smielewski
- Brain Physics Laboratory, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Marek Czosnyka
- Brain Physics Laboratory, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.,Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Virginia Newcombe
- Division of Anesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - David K Menon
- Division of Anesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
16
|
Tobieson L, Czifra Z, Wåhlén K, Marklund N, Ghafouri B. Proteomic investigation of protein adsorption to cerebral microdialysis membranes in surgically treated intracerebral hemorrhage patients - a pilot study. Proteome Sci 2020; 18:7. [PMID: 32728348 PMCID: PMC7382826 DOI: 10.1186/s12953-020-00163-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background Cerebral microdialysis (CMD) is a minimally invasive technique for sampling the interstitial fluid in human brain tissue. CMD allows monitoring the metabolic state of tissue, as well as sampling macromolecules such as proteins and peptides. Recovery of proteins or peptides can be hampered by their adsorption to the CMD membrane as has been previously shown in-vitro, however, protein adsorption to CMD membranes has not been characterized following implantation in human brain tissue. Methods In this paper, we describe the pattern of proteins adsorbed to CMD membranes compared to that of the microdialysate and of cerebrospinal fluid (CSF). We retrieved CMD membranes from three surgically treated intracerebral hemorrhage (ICH) patients, and analyzed protein adsorption to the membranes using two-dimensional gel electrophoresis (2-DE) in combination with nano-liquid mass spectrometry. We compared the proteome profile of three compartments; the CMD membrane, the microdialysate and ventricular CSF collected at time of CMD removal. Results We found unique protein patterns in the molecular weight range of 10–35 kDa for each of the three compartments. Conclusion This study highlights the importance of analyzing the membranes in addition to the microdialysate when using CMD to sample proteins for biomarker investigation.
Collapse
Affiliation(s)
- Lovisa Tobieson
- Department of Neurosurgery in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, University Hospital, SE-581 85 Linköping, Sweden
| | - Zita Czifra
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Karin Wåhlén
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Niklas Marklund
- Department of Neurosurgery in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, University Hospital, SE-581 85 Linköping, Sweden.,Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Neurosurgery, Lund, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
17
|
Abstract
Cerebral autoregulatory dysfunction after traumatic brain injury (TBI) is strongly linked to poor global outcome in patients at 6 months after injury. However, our understanding of the drivers of this dysfunction is limited. Genetic variation among individuals within a population gives rise to single-nucleotide polymorphisms (SNPs) that have the potential to influence a given patient's cerebrovascular response to an injury. Associations have been reported between a variety of genetic polymorphisms and global outcome in patients with TBI, but few studies have explored the association between genetic variants and cerebrovascular function after injury. In this Review, we explore polymorphisms that might play an important part in cerebral autoregulatory capacity after TBI. We outline a variety of SNPs, their biological substrates and their potential role in mediating cerebrovascular reactivity. A number of candidate polymorphisms exist in genes that are involved in myogenic, endothelial, metabolic and neurogenic vascular responses to injury. Furthermore, polymorphisms in genes involved in inflammation, the central autonomic response and cortical spreading depression might drive cerebrovascular reactivity. Identification of candidate genes involved in cerebral autoregulation after TBI provides a platform and rationale for further prospective investigation of the link between genetic polymorphisms and autoregulatory function.
Collapse
|
18
|
Han M, Liu D, Qiu J, Yuan H, Hu Q, Xue H, Li T, Ma W, Zhang Q, Li G, Wang Z. Evaluation of H 2S-producing enzymes in cerebrospinal fluid and its relationship with interleukin-6 and neurologic deficits in subarachnoid hemorrhage. Biomed Pharmacother 2019; 123:109722. [PMID: 31865144 DOI: 10.1016/j.biopha.2019.109722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Recent studies have suggested that H2S may be involved in the pathophysiology of subarachnoid hemorrhage (SAH). Endogenous H2S is mainly formed by cystathionine β-synthase (CBS), d-amino-acid oxidase (DAO), and 3-mercaptopyruvate sulfotransferase (3-MST) from the substrate cysteine in the central nervous system. In this study, we assessed the expression of CBS, 3-MST, and DAO in cerebrospinal fluid (CSF) from patients with SAH and rats and the expression in the rat brain. METHODS CSF samples were collected within 48 h of aneurysm rupture in SAH patients. The CBS, DAO and 3-MST levels in CSF were measured using Western blot analyses, and correlations with the inflammatory parameter Interleukin-6 (IL-6) were assessed. Six months after SAH, the clinical outcomes were assessed. RESULTS In human CSF samples, the CBS and DAO protein levels were detected and increased after SAH. However, 3-MST was not detected in the control group CSF but increased after SAH. Strong correlations were observed between the increasing levels of CBS, DAO, and 3-MST and IL-6 2 days after SAH. Furthermore, high CBS, 3-MST and DAO levels in the CSF samples were correlated with poor outcomes at 6 months after SAH onset. We also found that the expression of CBS, DAO and 3-MST in the rat CSF and brain (parietal cortex and hippocampus) increased following SAH. We detected strong correlations between the increases in CBS, 3-MST and IL-6 in the rat CSF and brain samples. CONCLUSIONS These results indicate that the upregulated expression of CBS, DAO and 3-MST after SAH was closely associated with the inflammatory response and neurological deficits after SAH.
Collapse
Affiliation(s)
- Min Han
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, P.R. China; Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, P.R. China
| | - Dexiang Liu
- Department of Medical Psychology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, Shandong, 250012, P.R. China
| | - Jie Qiu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, P.R. China
| | - Hongtao Yuan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, P.R. China
| | - Quan Hu
- Department of Neurosurgery, Taian Central Hospital, 29#, Long Tan Road, Taian, Shandong Province, 271000, P.R. China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, P.R. China; Department of Physiology, School of Basic Medical Sciences, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, P.R. China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, P.R. China
| | - WeiWei Ma
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, P.R. China
| | - Qiong Zhang
- Department of Cardiology, The 5th People's Hospital of Jinan, 24297#, Jingshi Road, Jinan, Shandong Province, 250022, P.R. China; Department of Physiology, School of Basic Medical Sciences, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, P.R. China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, P.R. China.
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|
19
|
Sharma A, Muresanu DF, Ozkizilcik A, Tian ZR, Lafuente JV, Manzhulo I, Mössler H, Sharma HS. Sleep deprivation exacerbates concussive head injury induced brain pathology: Neuroprotective effects of nanowired delivery of cerebrolysin with α-melanocyte-stimulating hormone. PROGRESS IN BRAIN RESEARCH 2019; 245:1-55. [PMID: 30961865 DOI: 10.1016/bs.pbr.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Lynes J, Sanchez V, Dominah G, Nwankwo A, Nduom E. Current Options and Future Directions in Immune Therapy for Glioblastoma. Front Oncol 2018; 8:578. [PMID: 30568917 PMCID: PMC6290347 DOI: 10.3389/fonc.2018.00578] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is in need of innovative treatment approaches. Immune therapy for cancer refers to the use of the body's immune system to target malignant cells in the body. Such immune therapeutics have recently been very successful in treating a diverse group of cancerous lesions. As a result, many new immune therapies have gained Food and Drug Administration approval for the treatment of cancer, and there has been an explosion in the study of immune therapeutics for cancer treatment over the past few years. However, the immune suppression of glioblastoma and the unique immune microenvironment of the brain make immune therapeutics more challenging to apply to the brain than to other systemic cancers. Here, we discuss the existing barriers to successful immune therapy for glioblastoma and the ongoing development of immune therapeutics. We will discuss the discovery and classification of immune suppressive factors in the glioblastoma microenvironment; the development of vaccine-based therapies; the use of convection-enhanced delivery to introduce tumoricidal viruses into the tumor microenvironment, leading to secondary immune responses; the emerging use of adoptive cell therapy in the treatment of glioblastoma; and future frontiers, such as the use of cerebral microdialysis for immune monitoring and the use of sequencing to develop patient-specific therapeutics. Armed with a better understanding of the challenges inherent in immune therapy for glioblastoma, we may soon see more successes in immune-based clinical trials for this deadly disease.
Collapse
Affiliation(s)
- John Lynes
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States.,MedStar Georgetown University Hospital, Washington, DC, United States
| | - Victoria Sanchez
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Gifty Dominah
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Anthony Nwankwo
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Edjah Nduom
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| |
Collapse
|
21
|
Interleukin-6 Levels in Cerebrospinal Fluid and Plasma in Patients with Severe Spontaneous Subarachnoid Hemorrhage. World Neurosurg 2018; 122:e612-e618. [PMID: 30814021 DOI: 10.1016/j.wneu.2018.10.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammatory processes play a key role in the pathophysiology of subarachnoid hemorrhage (SAH). This study evaluated whether different temporal patterns of intrathecal and systemic inflammation could be identified in the acute phase after SAH. The intensity of the inflammation was also assessed in clinical subgroups. METHODS Cerebrospinal fluid (CSF) and blood samples were collected at days 1, 4, and 10 after ictus in 44 patients with severe SAH. Interleukin-6 (IL-6) was analyzed by a routine monoclonal antibody-based method. Median IL-6 values for each day were calculated. Day 4 IL-6 values were compared in dichotomized groups (age, sex, World Federation of Neurosurgical Societies [WFNS] grade, Fisher scale grade, outcome, vasospasm, central nervous system infection and systemic infections). RESULTS CSF IL-6 levels were significantly elevated from day 1 to days 4 and 10, whereas plasma IL-6 showed a different trend at lower levels. Median CSF IL-6 concentrations for days 1, 4, and 10 were 876.5, 3361, and 1567 ng/L, whereas plasma was 26, 27.5, and 15.9 ng/L, respectively. No significant differences in CSF concentrations were observed between the subgroups, with the most prominent one being in day 4 IL-6 in the WFNS subgroups (grades 1-3 vs. 4-5, 1158.5 vs. 5538 ng/L; P = 0.056). Patients with systemic infection had significantly higher plasma IL-6 concentrations than patients without infection (31 vs. 16.05 ng/L, respectively; P = 0.028). CONCLUSIONS Distinctly different inflammatory patterns could be seen intrathecally compared with the systemic circulation. In plasma, a significant difference in the intensity of the inflammation was seen in cases with systemic infection. No other subgroup showed statistically significant differences.
Collapse
|
22
|
de Oliveira Manoel AL, Macdonald RL. Neuroinflammation as a Target for Intervention in Subarachnoid Hemorrhage. Front Neurol 2018; 9:292. [PMID: 29770118 PMCID: PMC5941982 DOI: 10.3389/fneur.2018.00292] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a sub-type of hemorrhagic stroke associated with the highest rates of mortality and long-term neurological disabilities. Despite the improvement in the management of SAH patients and the reduction in case fatality in the last decades, disability and mortality remain high in this population. Brain injury can occur immediately and in the first days after SAH. This early brain injury can be due to physical effects on the brain such as increased intracranial pressure, herniations, intracerebral, intraventricular hemorrhage, and hydrocephalus. After the first 3 days, angiographic cerebral vasospasm (ACV) is a common neurological complication that in severe cases can lead to delayed cerebral ischemia and cerebral infarction. Consequently, the prevention and treatment of ACV continue to be a major goal. However, most treatments for ACV are vasodilators since ACV is due to arterial vasoconstriction. Other targets also have included those directed at the underlying biochemical mechanisms of brain injury such as inflammation and either independently or as a consequence, cerebral microthrombosis, cortical spreading ischemia, blood–brain barrier breakdown, and cerebral ischemia. Unfortunately, no pharmacologic treatment directed at these processes has yet shown efficacy in SAH. Enteral nimodipine and the endovascular treatment of the culprit aneurysm, remain the only treatment options supported by evidence from randomized clinical trials to improve patients’ outcome. Currently, there is no intervention directly developed and approved to target neuroinflammation after SAH. The goal of this review is to provide an overview on anti-inflammatory drugs tested after aneurysmal SAH.
Collapse
Affiliation(s)
- Airton Leonardo de Oliveira Manoel
- Adult Critical Care Unit, Hospital Paulistano - United Health Group, São Paulo, Brazil.,Keenan Research Center for Biomedical Science, Department of Surgery, Li Ka Shing Knowledge Institute, University of Toronto, Toronto, ON, Canada
| | - R Loch Macdonald
- Division of Neurosurgery, St. Michael's Hospital, Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre for Biomedical Science, Department of Surgery, Li Ka Shing Knowledge Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Chaudhry SR, Stoffel-Wagner B, Kinfe TM, Güresir E, Vatter H, Dietrich D, Lamprecht A, Muhammad S. Elevated Systemic IL-6 Levels in Patients with Aneurysmal Subarachnoid Hemorrhage Is an Unspecific Marker for Post-SAH Complications. Int J Mol Sci 2017; 18:ijms18122580. [PMID: 29194369 PMCID: PMC5751183 DOI: 10.3390/ijms18122580] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/31/2022] Open
Abstract
Background: Aneurysmal subarachnoid hemorrhage (aSAH) is still a fatal and morbid disease, although bleeding aneurysms can be secured in almost all cases. Occurrence of post-SAH complications including cerebral vasospasm, delayed cerebral ischemia, hydrocephalus, epilepsy, and infections are the main determinants of clinical outcome. Hence, it is important to search for early predictors for specific post-SAH complications to treat these complications properly. Both cellular and molecular (cytokines) inflammation play a key role after aSAH during the phase of occurrence of post-SAH complications. Interleukin-6 (IL-6) is a well-known cytokine that has been extensively analyzed in cerebrospinal fluid (CSF) of patients after aSAH, but detailed studies exploring the role of systemic IL-6 in aSAH associated complications and its impact on early clinical outcome prediction are lacking. The current study aims to analyze the systemic IL-6 levels over two weeks after bleeding and its role in post-SAH complications. Methods: We recruited 80 aSAH patients prospectively who underwent peripheral venous blood withdrawal in serum gel tubes. The blood was centrifuged to harvest the serum, which was immediately frozen at −80 °C until analysis. Serum IL-6 levels were quantified using Immulite immunoassay system. Patient records including age, gender, post-SAH complications, aneurysm treatment, and clinical outcome (modified Rankin scale and Glasgow outcome scale) were retrieved to allow different subgroup analysis. Results: Serum IL-6 levels were significantly raised after aSAH compared to healthy controls over the first two weeks after hemorrhage. Serum IL-6 levels were found to be significantly elevated in aSAH patients presenting with higher Hunt and Hess grades, increasing age, and both intraventricular and intracerebral hemorrhage. Interestingly, serum IL-6 was also significantly raised in aSAH patients who developed seizures, cerebral vasospasm (CVS), and chronic hydrocephalus. IL-6 levels were sensitive to the development of infections and showed an increase in patients who developed pneumoniae. Intriguingly, we found a delayed increase in serum IL-6 in patients developing cerebral infarction. Finally, IL-6 levels were significantly higher in patients presenting with poor clinical outcome in comparison to good clinical outcome at discharge from hospital. Conclusion: Serum IL-6 levels were elevated early after aSAH and remained high over the two weeks after initial bleeding. Serum IL-6 was elevated in different aSAH associated complications, acting as a non-specific marker for post-SAH complications and an important biomarker for clinical outcome at discharge.
Collapse
Affiliation(s)
- Shafqat Rasul Chaudhry
- Department of Neurosurgery, University Hospital Bonn, D-53127 Bonn, Germany.
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany.
| | - Birgit Stoffel-Wagner
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, D-53127 Bonn, Germany.
| | - Thomas Mehari Kinfe
- Department of Neurosurgery, University Hospital Bonn, D-53127 Bonn, Germany.
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Bonn, D-53127 Bonn, Germany.
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, D-53127 Bonn, Germany.
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, D-53127 Bonn, Germany.
| | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany.
| | - Sajjad Muhammad
- Department of Neurosurgery, University Hospital Bonn, D-53127 Bonn, Germany.
| |
Collapse
|
24
|
Carteron L, Bouzat P, Oddo M. Cerebral Microdialysis Monitoring to Improve Individualized Neurointensive Care Therapy: An Update of Recent Clinical Data. Front Neurol 2017; 8:601. [PMID: 29180981 PMCID: PMC5693841 DOI: 10.3389/fneur.2017.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/27/2017] [Indexed: 01/04/2023] Open
Abstract
Cerebral microdialysis (CMD) allows bedside semicontinuous monitoring of patient brain extracellular fluid. Clinical indications of CMD monitoring are focused on the management of secondary cerebral and systemic insults in acute brain injury (ABI) patients [mainly, traumatic brain injury (TBI), subarachnoid hemorrhage, and intracerebral hemorrhage (ICH)], specifically to tailor several routine interventions—such as optimization of cerebral perfusion pressure, blood transfusion, glycemic control and oxygen therapy—in the individual patient. Using CMD as clinical research tool has greatly contributed to identify and better understand important post-injury mechanisms—such as energy dysfunction, posttraumatic glycolysis, post-aneurysmal early brain injury, cortical spreading depressions, and subclinical seizures. Main CMD metabolites (namely, lactate/pyruvate ratio, and glucose) can be used to monitor the brain response to specific interventions, to assess the extent of injury, and to inform about prognosis. Recent consensus statements have provided guidelines and recommendations for CMD monitoring in neurocritical care. Here, we summarize recent clinical investigation conducted in ABI patients, specifically focusing on the role of CMD to guide individualized intensive care therapy and to improve our understanding of the complex disease mechanisms occurring in the immediate phase following ABI. Promising brain biomarkers will also be described.
Collapse
Affiliation(s)
- Laurent Carteron
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besançon, University of Bourgogne - Franche-Comté, Besançon, France
| | - Pierre Bouzat
- Department of Anesthesiology and Critical Care, University Hospital Grenoble, Grenoble, France
| | - Mauro Oddo
- Department of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|