1
|
Fischer D, Edlow BL, Freeman HJ, Alaiev D, Wu Q, Ware JB, Detre JA, Aguirre GK. Reconstructing Covert Consciousness: Neural Decoding as a Novel Consciousness Assessment. Neurology 2025; 104:e210208. [PMID: 39883908 PMCID: PMC11781786 DOI: 10.1212/wnl.0000000000210208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/23/2024] [Indexed: 02/01/2025] Open
Abstract
Determining the level of consciousness in patients with brain injury-and more fundamentally, establishing what they can experience-is ethically and clinically impactful. Patient behaviors may unreliably reflect their level of consciousness: a subset of unresponsive patients demonstrate covert consciousness by willfully modulating their brain activity to commands through fMRI or EEG. However, current paradigms for assessing covert consciousness remain fundamentally limited because they are insensitive, rely on imperfect assumptions of functional neuroanatomy, and do not reflect the spectrum of conscious experience. Neural decoding, in which stimuli and concepts are reconstructed from brain activity, offers a novel approach to covert consciousness assessment that overcomes many of these limitations. In this article, we discuss the current state of covert consciousness assessments, their shortcomings, the state of the science in neural decoding, the potential application of neural decoding to disorders of consciousness, and future directions that may help realize this potential. To do so, we searched PubMed and Google Scholar databases for pertinent articles published between January 1990 and September 2024, using the search terms "covert consciousness," "cognitive motor dissociation," "neural decoding," and "semantic decoding." Redefining covert consciousness with neural decoding may improve sensitivity, enhance granularity, and more directly address the question of what patients can experience after brain injury.
Collapse
Affiliation(s)
- David Fischer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston; and
| | - Holly J Freeman
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston; and
| | - Daniel Alaiev
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Qichao Wu
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Jeffrey B Ware
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - John A Detre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Geoffrey K Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
2
|
Fló E, Fraiman D, Sitt JD. Assessing brain-muscle networks during motor imagery to detect covert command-following. BMC Med 2025; 23:68. [PMID: 39915775 PMCID: PMC11803995 DOI: 10.1186/s12916-025-03846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND In this study, we evaluated the potential of a network approach to electromyography and electroencephalography recordings to detect covert command-following in healthy participants. The motivation underlying this study was the development of a diagnostic tool that can be applied in common clinical settings to detect awareness in patients that are unable to convey explicit motor or verbal responses, such as patients that suffer from disorders of consciousness (DoC). METHODS We examined the brain and muscle response during movement and imagined movement of simple motor tasks, as well as during resting state. Brain-muscle networks were obtained using non-negative matrix factorization (NMF) of the coherence spectra for all the channel pairs. For the 15/38 participants who showed motor imagery, as indexed by common spatial filters and linear discriminant analysis, we contrasted the configuration of the networks during imagined movement and resting state at the group level, and subject-level classifiers were implemented using as features the weights of the NMF together with trial-wise power modulations and heart response to classify resting state from motor imagery. RESULTS Kinesthetic motor imagery produced decreases in the mu-beta band compared to resting state, and a small correlation was found between mu-beta power and the kinesthetic imagery scores of the Movement Imagery Questionnaire-Revised Second version. The full-feature classifiers successfully distinguished between motor imagery and resting state for all participants, and brain-muscle functional networks did not contribute to the overall classification. Nevertheless, heart activity and cortical power were crucial to detect when a participant was mentally rehearsing a movement. CONCLUSIONS Our work highlights the importance of combining EEG and peripheral measurements to detect command-following, which could be important for improving the detection of covert responses consistent with volition in unresponsive patients.
Collapse
Affiliation(s)
- Emilia Fló
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, Paris, France.
| | - Daniel Fraiman
- Departamento de Matemática y Ciencias, Universidad de San Andrés, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Jacobo Diego Sitt
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, Paris, France.
| |
Collapse
|
3
|
Threlkeld ZD, Bodien YG, Edlow BL. A scientific approach to diagnosis of disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:49-66. [PMID: 39986727 DOI: 10.1016/b978-0-443-13408-1.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Disorder of consciousness (DoC) are the shared clinical manifestation of severe brain injuries resulting from a variety of etiologies. The nosology of DoC, as well as the armamentarium of methods available to diagnose it, has rapidly evolved. As a result, the diagnosis of DoC is complex and dynamic. We offer an evidence-based approach to DoC diagnosis, highlighting the challenges and pitfalls therein. Accordingly, we summarize the contemporary taxonomy of DoC and its development. We discuss the standardized behavioral diagnostic tools that form the foundation of DoC diagnosis, the evidence for their use, and their limitations. We also highlight recent advances in functional MRI (fMRI) and electroencephalography (EEG) techniques to increase the sensitivity and specificity of DoC diagnosis. We discuss the concept of covert consciousness (i.e., cognitive motor dissociation) as a discrete diagnostic category of DoC, as well as its diagnostic implications. Finally, we underscore issues of neuroethics and equity raised by contemporary models of DoC.
Collapse
Affiliation(s)
- Zachary D Threlkeld
- Department of Neurology, Stanford School of Medicine, Stanford, CA, United States.
| | - Yelena G Bodien
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States
| | - Brian L Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
4
|
Maza A, Goizueta S, Dolores Navarro M, Noé E, Ferri J, Naranjo V, Llorens R. EEG-based responses of patients with disorders of consciousness and healthy controls to familiar and non-familiar emotional videos. Clin Neurophysiol 2024; 168:104-120. [PMID: 39486289 DOI: 10.1016/j.clinph.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVE To investigate the differences in the brain responses of healthy controls (HC) and patients with disorders of consciousness (DOC) to familiar and non-familiar audiovisual stimuli and their consistency with the clinical progress. METHODS EEG responses of 19 HC and 19 patients with DOC were recorded while watching emotionally-valenced familiar and non-familiar videos. Differential entropy of the EEG recordings was used to train machine learning models aimed to distinguish brain responses to stimuli type. The consistency of brain responses with the clinical progress of the patients was also evaluated. RESULTS Models trained using data from HC outperformed those for patients. However, the performance of the models for patients was not influenced by their clinical condition. The models were successfully trained for over 75% of participants, regardless of their clinical condition. More than 75% of patients whose CRS-R scores increased post-study displayed distinguishable brain responses to both stimuli. CONCLUSIONS Responses to emotionally-valenced stimuli enabled modelling classifiers that were sensitive to the familiarity of the stimuli, regardless of the clinical condition of the participants and were consistent with their clinical progress in most cases. SIGNIFICANCE EEG responses are sensitive to familiarity of emotionally-valenced stimuli in HC and patients with DOC.
Collapse
Affiliation(s)
- Anny Maza
- Institute for Human-Centered Technology Research, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46011, Spain
| | - Sandra Goizueta
- Institute for Human-Centered Technology Research, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46011, Spain
| | - María Dolores Navarro
- IRENEA. Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, València, Spain
| | - Enrique Noé
- IRENEA. Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, València, Spain
| | - Joan Ferri
- IRENEA. Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, València, Spain
| | - Valery Naranjo
- Institute for Human-Centered Technology Research, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46011, Spain
| | - Roberto Llorens
- Institute for Human-Centered Technology Research, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46011, Spain.
| |
Collapse
|
5
|
Wang J, Lai Q, Han J, Qin P, Wu H. Neuroimaging biomarkers for the diagnosis and prognosis of patients with disorders of consciousness. Brain Res 2024; 1843:149133. [PMID: 39084451 DOI: 10.1016/j.brainres.2024.149133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The progress in neuroimaging and electrophysiological techniques has shown substantial promise in improving the clinical assessment of disorders of consciousness (DOC). Through the examination of both stimulus-induced and spontaneous brain activity, numerous comprehensive investigations have explored variations in brain activity patterns among patients with DOC, yielding valuable insights for clinical diagnosis and prognostic purposes. Nonetheless, reaching a consensus on precise neuroimaging biomarkers for patients with DOC remains a challenge. Therefore, in this review, we begin by summarizing the empirical evidence related to neuroimaging biomarkers for DOC using various paradigms, including active, passive, and resting-state approaches, by employing task-based fMRI, resting-state fMRI (rs-fMRI), electroencephalography (EEG), and positron emission tomography (PET) techniques. Subsequently, we conducted a review of studies examining the neural correlates of consciousness in patients with DOC, with the findings holding potential value for the clinical application of DOC. Notably, previous research indicates that neuroimaging techniques have the potential to unveil covert awareness that conventional behavioral assessments might overlook. Furthermore, when integrated with various task paradigms or analytical approaches, this combination has the potential to significantly enhance the accuracy of both diagnosis and prognosis in DOC patients. Nonetheless, the stability of these neural biomarkers still needs additional validation, and future directions may entail integrating diagnostic and prognostic methods with big data and deep learning approaches.
Collapse
Affiliation(s)
- Jiaying Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Qiantu Lai
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Junrong Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Pazhou Lab, Guangzhou 510330, China.
| | - Hang Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
6
|
Edlow BL, Menon DK. Covert Consciousness in the ICU. Crit Care Med 2024; 52:1414-1426. [PMID: 39145701 DOI: 10.1097/ccm.0000000000006372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
OBJECTIVES For critically ill patients with acute severe brain injuries, consciousness may reemerge before behavioral responsiveness. The phenomenon of covert consciousness (i.e., cognitive motor dissociation) may be detected by advanced neurotechnologies such as task-based functional MRI (fMRI) and electroencephalography (EEG) in patients who appear unresponsive on the bedside behavioral examination. In this narrative review, we summarize the state-of-the-science in ICU detection of covert consciousness. Further, we consider the prognostic and therapeutic implications of diagnosing covert consciousness in the ICU, as well as its potential to inform discussions about continuation of life-sustaining therapy for patients with severe brain injuries. DATA SOURCES We reviewed salient medical literature regarding covert consciousness. STUDY SELECTION We included clinical studies investigating the diagnostic performance characteristics and prognostic utility of advanced neurotechnologies such as task-based fMRI and EEG. We focus on clinical guidelines, professional society scientific statements, and neuroethical analyses pertaining to the implementation of advanced neurotechnologies in the ICU to detect covert consciousness. DATA EXTRACTION AND DATA SYNTHESIS We extracted study results, guideline recommendations, and society scientific statement recommendations regarding the diagnostic, prognostic, and therapeutic relevance of covert consciousness to the clinical care of ICU patients with severe brain injuries. CONCLUSIONS Emerging evidence indicates that covert consciousness is present in approximately 15-20% of ICU patients who appear unresponsive on behavioral examination. Covert consciousness may be detected in patients with traumatic and nontraumatic brain injuries, including patients whose behavioral examination suggests a comatose state. The presence of covert consciousness in the ICU may predict the pace and extent of long-term functional recovery. Professional society guidelines now recommend assessment of covert consciousness using task-based fMRI and EEG. However, the clinical criteria for patient selection for such investigations are uncertain and global access to advanced neurotechnologies is limited.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - David K Menon
- University Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Mofakham S, Robertson J, Lubin N, Cleri NA, Mikell CB. An Unpredictable Brain Is a Conscious, Responsive Brain. J Cogn Neurosci 2024; 36:1643-1652. [PMID: 38579270 DOI: 10.1162/jocn_a_02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Severe traumatic brain injuries typically result in loss of consciousness or coma. In deeply comatose patients with traumatic brain injury, cortical dynamics become simple, repetitive, and predictable. We review evidence that this low-complexity, high-predictability state results from a passive cortical state, represented by a stable repetitive attractor, that hinders the flexible formation of neuronal ensembles necessary for conscious experience. Our data and those from other groups support the hypothesis that this cortical passive state is because of the loss of thalamocortical input. We identify the unpredictability and complexity of cortical dynamics captured by local field potential as a sign of recovery from this passive coma attractor. In this Perspective article, we discuss how these electrophysiological biomarkers of the recovery of consciousness could inform the design of closed-loop stimulation paradigms to treat disorders of consciousness.
Collapse
|
8
|
Young MJ, Kazazian K, Fischer D, Lissak IA, Bodien YG, Edlow BL. Disclosing Results of Tests for Covert Consciousness: A Framework for Ethical Translation. Neurocrit Care 2024; 40:865-878. [PMID: 38243150 PMCID: PMC11147696 DOI: 10.1007/s12028-023-01899-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
The advent of neurotechnologies including advanced functional magnetic resonance imaging and electroencephalography to detect states of awareness not detectable by traditional bedside neurobehavioral techniques (i.e., covert consciousness) promises to transform neuroscience research and clinical practice for patients with brain injury. As these interventions progress from research tools into actionable, guideline-endorsed clinical tests, ethical guidance for clinicians on how to responsibly communicate the sensitive results they yield is crucial yet remains underdeveloped. Drawing on insights from empirical and theoretical neuroethics research and our clinical experience with advanced neurotechnologies to detect consciousness in behaviorally unresponsive patients, we critically evaluate ethical promises and perils associated with disclosing the results of clinical covert consciousness assessments and describe a semistructured approach to responsible data sharing to mitigate potential risks.
Collapse
Affiliation(s)
- Michael J Young
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA, 02114, USA.
| | - Karnig Kazazian
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA, 02114, USA
- Western Institute of Neuroscience, Western University, London, ON, Canada
| | - David Fischer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - India A Lissak
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA, 02114, USA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA, 02114, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
9
|
Abstract
Covert consciousness is a state of residual awareness following severe brain injury or neurological disorder that evades routine bedside behavioral detection. Patients with covert consciousness have preserved awareness but are incapable of self-expression through ordinary means of behavior or communication. Growing recognition of the limitations of bedside neurobehavioral examination in reliably detecting consciousness, along with advances in neurotechnologies capable of detecting brain states or subtle signs indicative of consciousness not discernible by routine examination, carry promise to transform approaches to classifying, diagnosing, prognosticating and treating disorders of consciousness. Here we describe and critically evaluate the evolving clinical category of covert consciousness, including approaches to its diagnosis through neuroimaging, electrophysiology, and novel behavioral tools, its prognostic relevance, and open questions pertaining to optimal clinical management of patients with covert consciousness recovering from severe brain injury.
Collapse
Affiliation(s)
- Michael J. Young
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian L. Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yelena G. Bodien
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Peng K, Karunakaran KD, Green S, Borsook D. Machines, mathematics, and modules: the potential to provide real-time metrics for pain under anesthesia. NEUROPHOTONICS 2024; 11:010701. [PMID: 38389718 PMCID: PMC10883389 DOI: 10.1117/1.nph.11.1.010701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
The brain-based assessments under anesthesia have provided the ability to evaluate pain/nociception during surgery and the potential to prevent long-term evolution of chronic pain. Prior studies have shown that the functional near-infrared spectroscopy (fNIRS)-measured changes in cortical regions such as the primary somatosensory and the polar frontal cortices show consistent response to evoked and ongoing pain in awake, sedated, and anesthetized patients. We take this basic approach and integrate it into a potential framework that could provide real-time measures of pain/nociception during the peri-surgical period. This application could have significant implications for providing analgesia during surgery, a practice that currently lacks quantitative evidence to guide patient tailored pain management. Through a simple readout of "pain" or "no pain," the proposed system could diminish or eliminate levels of intraoperative, early post-operative, and potentially, the transition to chronic post-surgical pain. The system, when validated, could also be applied to measures of analgesic efficacy in the clinic.
Collapse
Affiliation(s)
- Ke Peng
- University of Manitoba, Department of Electrical and Computer Engineering, Price Faculty of Engineering, Winnipeg, Manitoba, Canada
| | - Keerthana Deepti Karunakaran
- Massachusetts General Hospital, Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
| | - Stephen Green
- Massachusetts Institute of Technology, Department of Mechanical Engineering, Boston, Massachusetts, United States
| | - David Borsook
- Massachusetts General Hospital, Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, Massachusetts, United States
| |
Collapse
|
11
|
Russell ME, Hammond FM, Murtaugh B. Prognosis and enhancement of recovery in disorders of consciousness. NeuroRehabilitation 2024; 54:43-59. [PMID: 38277313 DOI: 10.3233/nre-230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Disorders of consciousness after severe brain injury encompass conditions of coma, vegetative state/unresponsive wakefulness syndrome, and minimally conscious state. DoC clinical presentation pose perplexing challenges to medical professionals, researchers, and families alike. The outcome is uncertain in the first weeks to months after a brain injury, with families and medical providers often making important decisions that require certainty. Prognostication for individuals with these conditions has been the subject of intense scientific investigation that continues to strive for valid prognostic indicators and algorithms for predicting recovery of consciousness. This manuscript aims to provide an overview of the current clinical landscape surrounding prognosis and optimizing recovery in DoC and the current and future research that could improve prognostic accuracy after severe brain injury. Improved understanding of these factors will aid healthcare professionals in providing optimal care, fostering hope, and advocating for ethical practices in the management of individuals with DoC.
Collapse
Affiliation(s)
- Mary E Russell
- Department of Physical Medicine and Rehabilitation, University of Texas McGovern Medical School, Houston, TX, USA
- TIRR Memorial Hermann - The Woodlands, Shenandoah, TX, USA
| | - Flora M Hammond
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis, IN, USA
- Rehabilitation Hospital of Indiana, Indianapolis, IN, USA
| | - Brooke Murtaugh
- Department of Rehabilitation Programs, Madonna Rehabilitation Hospitals, Lincoln, NE, USA
| |
Collapse
|
12
|
Wang J, Gao X, Xiang Z, Sun F, Yang Y. Evaluation of consciousness rehabilitation via neuroimaging methods. Front Hum Neurosci 2023; 17:1233499. [PMID: 37780959 PMCID: PMC10537959 DOI: 10.3389/fnhum.2023.1233499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Accurate evaluation of patients with disorders of consciousness (DoC) is crucial for personalized treatment. However, misdiagnosis remains a serious issue. Neuroimaging methods could observe the conscious activity in patients who have no evidence of consciousness in behavior, and provide objective and quantitative indexes to assist doctors in their diagnosis. In the review, we discussed the current research based on the evaluation of consciousness rehabilitation after DoC using EEG, fMRI, PET, and fNIRS, as well as the advantages and limitations of each method. Nowadays single-modal neuroimaging can no longer meet the researchers` demand. Considering both spatial and temporal resolution, recent studies have attempted to focus on the multi-modal method which can enhance the capability of neuroimaging methods in the evaluation of DoC. As neuroimaging devices become wireless, integrated, and portable, multi-modal neuroimaging methods will drive new advancements in brain science research.
Collapse
Affiliation(s)
| | | | | | - Fangfang Sun
- College of Automation, Hangzhou Dianzi University, Hangzhou, China
| | | |
Collapse
|
13
|
Zamora E, Chun KJ, Zamora C. Neuroimaging in Coma, Brain Death, and Related Conditions. NEUROGRAPHICS 2023; 13:190-209. [DOI: 10.3174/ng.2200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coma is a state of unresponsiveness to external stimuli, which can be secondary to a variety of CNS alterations affecting essential neuronal pathways, particularly the ascending reticular activating system. A comprehensive clinical evaluation is necessary for assessment of motor function and brainstem reflexes but is often insufficient for determination of the underlying etiology and extent of injury. Diagnostic brain imaging is typically needed for management and decision-making, particularly in acute settings where prompt diagnosis of reversible/treatable conditions is essential, as well as for prognostication. Understanding the pathophysiologic mechanisms leading to coma and comalike states and their imaging manifestations will enable selection of appropriate modalities and facilitate a clinically relevant interpretation. For evaluation of brain death, diagnostic imaging has a supportive role, and when indicated, selection of an ancillary diagnostic test is based on multiple factors, including susceptibility to confounding factors and specificity, in addition to safety, convenience, and availability.Learning objective: To describe the pathophysiology of alterations of consciousness and discuss the role of neuroimaging modalities in the evaluation of coma, brain death, and associated conditions
Collapse
|
14
|
Lindenbaum L, Steppacher I, Mehlmann A, Kissler JM. The effect of neural pre-stimulus oscillations on post-stimulus somatosensory event-related potentials in disorders of consciousness. Front Neurosci 2023; 17:1179228. [PMID: 37360157 PMCID: PMC10287968 DOI: 10.3389/fnins.2023.1179228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Brain activity of people in a disorder of consciousness (DoC) is diffuse and different from healthy people. In order to get a better understanding of their cognitive processes and functions, electroencephalographic activity has often been examined in patients with DoC, including detection of event-related potentials (ERPs) and spectral power analysis. However, the relationship between pre-stimulus oscillations and post-stimulus ERPs has rarely been explored in DoC, although it is known from healthy participants that pre-stimulus oscillations predispose subsequent stimulus detection. Here, we examine to what extent pre-stimulus electroencephalography band power in DoC relates to post-stimulus ERPs in a similar way as previously documented in healthy people. 14 DoC patients in an unresponsive wakefulness syndrome (UWS, N = 2) or a minimally conscious state (MCS, N = 12) participated in this study. In an active oddball paradigm patients received vibrotactile stimuli. Significant post-stimulus differences between brain responses to deviant and standard stimulation could be found in six MCS patients (42.86%). Regarding relative pre-stimulus frequency bands, delta oscillations predominated in most patients, followed by theta and alpha, although two patients showed a relatively normal power spectrum. The statistical analysis of the relationship between pre-stimulus power and post-stimulus event-related brain response showed multiple significant correlations in five out of the six patients. Individual results sometimes showed similar correlation patterns as in healthy subjects primarily between the relative pre-stimulus alpha power and post-stimulus variables in later time-intervals. However, opposite effects were also found, indicating high inter-individual variability in DoC patients´ functional brain activity. Future studies should determine on an individual level to what extent the relationship between pre- and post-stimulus brain activity could relate to the course of the disorder.
Collapse
Affiliation(s)
- Laura Lindenbaum
- Department of Psychology, Bielefeld University, Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Inga Steppacher
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| | | | - Johanna Maria Kissler
- Department of Psychology, Bielefeld University, Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
15
|
Kumar A, Ridha M, Claassen J. Prognosis of consciousness disorders in the intensive care unit. Presse Med 2023; 52:104180. [PMID: 37805070 PMCID: PMC10995112 DOI: 10.1016/j.lpm.2023.104180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Assessments of consciousness are a critical part of prognostic algorithms for critically ill patients suffering from severe brain injuries. There have been significant advances in the field of coma science over the past two decades, providing clinicians with more advanced and precise tools for diagnosing and prognosticating disorders of consciousness (DoC). Advanced neuroimaging and electrophysiological techniques have vastly expanded our understanding of the biological mechanisms underlying consciousness, and have helped identify new states of consciousness. One of these, termed cognitive motor dissociation, can predict functional recovery at 1 year post brain injury, and is present in up to 15-20% of patients with DoC. In this chapter, we review several tools that are used to predict DoC, describing their strengths and limitations, from the neurological examination to advanced imaging and electrophysiologic techniques. We also describe multimodal assessment paradigms that can be used to identify covert consciousness and thus help recognize patients with the potential for future recovery and improve our prognostication practices.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Neurology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Mohamed Ridha
- Department of Neurology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
16
|
Kim N, Watson W, Caliendo E, Nowak S, Schiff ND, Shah SA, Hill NJ. Objective Neurophysiologic Markers of Cognition After Pediatric Brain Injury. Neurol Clin Pract 2022; 12:352-364. [PMID: 36380885 PMCID: PMC9647802 DOI: 10.1212/cpj.0000000000200066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/22/2022] [Indexed: 01/27/2023]
Abstract
Background and Objectives Following brain injury, clinical assessments of residual and emerging cognitive function are difficult and fraught with errors. In adults, recent American Academy of Neurology (AAN) practice guidelines recommend objective neuroimaging and neurophysiologic measures to support diagnosis. Equivalent measures are lacking in pediatrics-an especially great challenge due to the combined heterogeneity of both brain injury and pediatric development. Therefore, we aim to establish quantitative, clinically practicable measures of cognitive function following pediatric brain injury. Methods Participants with and without brain injury were aged 8-18 years, clinically classified according to cognitive recovery state: N = 8 in disorders of consciousness (DoC), N = 7 in confusional state, N = 19 cognitively impaired, and N = 13 typically developing uninjured controls. We prospectively measured electroencephalographic markers of sensory processing and attention in an auditory oddball paradigm, and of covert movement attempts in a command-following paradigm. Results In 3 participants with DoC, EEG markers of active attempted command following revealed cognitive function that clinical assessment had failed to detect. These same 3 individuals could also be distinguished from the rest of their group by 2 event-related potentials that correlate with sensory processing and orienting attention in the oddball paradigm. Considered across the whole participant group, magnitudes of these 2 ERP markers significantly increased as cognitive recovery progressed (ANOVA: each p < 0.001); viewed jointly, the 2 ERP markers cleanly delineated the 4 cognitive states. Discussion Despite heterogeneity of brain injuries and brain development, our objective EEG markers reflected cognitive recovery independent of motor function. Two of these markers required no active participation. Together, they allowed us to identify 3 individuals who meet the criteria for cognitive-motor dissociation. To diagnose, prognose, and track cognitive recovery accurately, such markers should be used in pediatrics.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Radiology (NK, EC, SAS), Weill Cornell Medicine, New York, New York; Blythedale Children's Hospital (WW, SN), Valhalla, New York; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York, New York; and National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center, Albany, New York
| | - William Watson
- Department of Radiology (NK, EC, SAS), Weill Cornell Medicine, New York, New York; Blythedale Children's Hospital (WW, SN), Valhalla, New York; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York, New York; and National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center, Albany, New York
| | - Eric Caliendo
- Department of Radiology (NK, EC, SAS), Weill Cornell Medicine, New York, New York; Blythedale Children's Hospital (WW, SN), Valhalla, New York; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York, New York; and National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center, Albany, New York
| | - Sophie Nowak
- Department of Radiology (NK, EC, SAS), Weill Cornell Medicine, New York, New York; Blythedale Children's Hospital (WW, SN), Valhalla, New York; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York, New York; and National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center, Albany, New York
| | - Nicholas D Schiff
- Department of Radiology (NK, EC, SAS), Weill Cornell Medicine, New York, New York; Blythedale Children's Hospital (WW, SN), Valhalla, New York; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York, New York; and National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center, Albany, New York
| | - Sudhin A Shah
- Department of Radiology (NK, EC, SAS), Weill Cornell Medicine, New York, New York; Blythedale Children's Hospital (WW, SN), Valhalla, New York; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York, New York; and National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center, Albany, New York
| | - N Jeremy Hill
- Department of Radiology (NK, EC, SAS), Weill Cornell Medicine, New York, New York; Blythedale Children's Hospital (WW, SN), Valhalla, New York; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York, New York; and National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center, Albany, New York
| |
Collapse
|
17
|
Wade DT, Turner-Stokes L, Playford ED, Allanson J, Pickard J. Prolonged disorders of consciousness: A response to a "critical evaluation of the new UK guidelines.". Clin Rehabil 2022; 36:1267-1275. [PMID: 35546561 PMCID: PMC9354059 DOI: 10.1177/02692155221099704] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND In 2020, The London Royal College of Physicians published "Prolonged disorders of consciousness following sudden-onset brain injury: national clinical guidelines". In 2021, in the journal Brain, Scolding et al. published "a critical evaluation of the new UK guidelines". This evaluation focussed on one of the 73 recommendations in the National Clinical Guidelines. They also alleged that the guidelines were unethical. CRITICISMS They criticised our recommendation not to use activation protocols using fMRI, electroencephalography, or Positron Emission Tomography. They claim these tests can (a) detect 'covert consciousness', (b) add predictive value and (c) should be part of routine clinical care. They also suggest that our guideline was driven by cost considerations, leading to clinicians deciding to withdraw treatment at 72 h. EVIDENCE Our detailed review of the evidence confirms the American Academy of Neurology Practise Guideline (2018) and the European Academy of Neurology Guideline (2020), which agree that insufficient evidence supports their approach. ETHICS The ethical objections are based on unwarranted assumptions. Our guideline does not make any recommendations about management until at least four weeks have passed. We explicitly recommend that expert assessors undertake ongoing surveillance and monitoring; we do not suggest that patients be abandoned. Our recommendation will increase the cost We had ethicists in the working party. CONCLUSION We conclude the "critical evaluation" fails to provide evidence for their criticism and that the ethical objections arise from incorrect assumptions and unsupported interpretations of evidence and our guideline. The 2020 UK national guidelines remain valid.
Collapse
Affiliation(s)
| | | | | | - Judith Allanson
- Department of Neurological Rehabilitation, 405352Addenbrookes Hospital, Cambridge, UK
| | - John Pickard
- Academic Neurosurgery, Department of Clinical Neurosciences, 406021University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
18
|
Naro A, Pignolo L, Lucca LF, Calabrò RS. An action-observation/motor-imagery based approach to differentiate disorders of consciousness: what is beneath the tip of the iceberg? Restor Neurol Neurosci 2021; 39:181-197. [PMID: 33998559 DOI: 10.3233/rnn-201130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The evaluation of motor imagery in persons with prolonged Disorders of Consciousness (pDOC) is a practical approach to differentiate between patients with Minimally Conscious State (MCS) and Unresponsive Wakefulness Syndrome (UWS) and to identify residual awareness even in individuals with UWS. Investigating the influence of motor observation on motor imagery could be helpful in this regard. OBJECTIVE In order to corroborate the clinical diagnosis and identify misdiagnosed individuals, we used EEG recordings, to assess the influence of the low-level perceptual and motoric mechanisms on motor observation on motor imagery, taking into account the role of the high-level cognitive mechanisms in patients with pDOC. METHODS We assessed the influence of motor observation of walking in first-person or third-person view (by a video provision) on motor imagery of walking in the first-person view on the visual N190 (expression of motor observation processing), the readiness potential (RP) (expressing motor preparation), and the P3 component (high-level cognitive processes) in a sample of 10 persons with MCS, 10 with UWS, and 10 healthy controls (CG). Specifically, the video showed a first-view or third-view walk down the street while the participants were asked to imagine a first-view walking down the street. RESULTS CG showed greater N190 response (low-level sensorimotor processing) in the non-matching than in the matching condition. Conversely, the P3 and RP responses (high-level sensorimotor processing) were greater in the matching than in the non-matching condition. Remarkably, 6 out of 10 patients with MCS showed the preservation of both high- and low-level sensorimotor processing. One UWS patient showed responses similar to those six patients, suggesting a preservation of cognitively-mediated sensorimotor processing despite a detrimental motor preparation process. The remaining patients with MCS did not show diversified EEG responses, suggesting limited cognitive functioning. CONCLUSIONS Our study suggests that identifying the low-level visual and high-level motor preparation processes in response to a simple influence of motor observation of motor imagery tasks potentially supports the clinical differential diagnosis of with MCS and UWS. This might help identify UWS patients which were misdiagnosed and who deserve more sophisticated diagnoses.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | | | | |
Collapse
|
19
|
Treating Traumatic Brain Injuries with Electroceuticals: Implications for the Neuroanatomy of Consciousness. NEUROSCI 2021. [DOI: 10.3390/neurosci2030018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
According to the Centers for Disease Control and Prevention (CDC), traumatic brain injury (TBI) is the leading cause of loss of consciousness, long-term disability, and death in children and young adults (age 1 to 44). Currently, there are no United States Food and Drug Administration (FDA) approved pharmacological treatments for post-TBI regeneration and recovery, particularly related to permanent disability and level of consciousness. In some cases, long-term disorders of consciousness (DoC) exist, including the vegetative state/unresponsive wakefulness syndrome (VS/UWS) characterized by the exhibition of reflexive behaviors only or a minimally conscious state (MCS) with few purposeful movements and reflexive behaviors. Electroceuticals, including non-invasive brain stimulation (NIBS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS) have proved efficacious in some patients with TBI and DoC. In this review, we examine how electroceuticals have improved our understanding of the neuroanatomy of consciousness. However, the level of improvements in general arousal or basic bodily and visual pursuit that constitute clinically meaningful recovery on the Coma Recovery Scale-Revised (CRS-R) remain undefined. Nevertheless, these advancements demonstrate the importance of the vagal nerve, thalamus, reticular activating system, and cortico-striatal-thalamic-cortical loop in the process of consciousness recovery.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW In the study of brain-injured patients with disorders of consciousness (DoC), structural and functional MRI seek to provide insights into the neural correlates of consciousness, identify neurophysiologic signatures of covert consciousness, and identify biomarkers for recovery of consciousness. RECENT FINDINGS Cortical volume, white matter volume and integrity, and structural connectivity across many grey and white matter regions have been shown to vary with level of awareness in brain-injured patients. Resting-state functional connectivity (rs-FC) within and between canonical cortical networks also correlates with DoC patients' level of awareness. Stimulus-based and motor-imagery fMRI paradigms have identified some behaviorally unresponsive DoC patients with cortical processing and activation patterns that mirror healthy controls. Emerging techniques like dynamic rs-FC have begun to identify temporal trends in brain-wide connectivity that may represent novel neural correlates of consciousness. SUMMARY Structural and functional MRI will continue to advance our understanding of brain regions supporting human consciousness. Measures of regional and global white matter integrity and rs-FC in particular networks have shown significant improvement over clinical features in identifying acute and chronic DoC patients likely to recover awareness. As they are refined, functional MRI paradigms may additionally provide opportunities for interacting with behaviorally unresponsive patients.
Collapse
|
21
|
Aloi D, della Rocchetta AI, Ditchfield A, Coulborn S, Fernández-Espejo D. Therapeutic Use of Transcranial Direct Current Stimulation in the Rehabilitation of Prolonged Disorders of Consciousness. Front Neurol 2021; 12:632572. [PMID: 33897592 PMCID: PMC8058460 DOI: 10.3389/fneur.2021.632572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Patients with Prolonged Disorders of Consciousness (PDOC) have catastrophic disabilities and very complex needs for care. Therapeutic options are very limited, and patients often show little functional improvement over time. Neuroimaging studies have demonstrated that a significant number of PDOC patients retain a high level of cognitive functioning, and in some cases even awareness, and are simply unable to show this with their external behavior - a condition known as cognitive-motor dissociation (CMD). Despite vast implications for diagnosis, the discovery of covert cognition in PDOC patients is not typically associated with a more favorable prognosis, and the majority of patients will remain in a permanent state of low responsiveness. Recently, transcranial direct current stimulation (tDCS) has attracted attention as a potential therapeutic tool in PDOC. Research to date suggests that tDCS can lead to clinical improvements in patients with a minimally conscious state (MCS), especially when administered over multiple sessions. While promising, the outcomes of these studies have been highly inconsistent, partially due to small sample sizes, heterogeneous methodologies (in terms of both tDCS parameters and outcome measures), and limitations related to electrode placement and heterogeneity of brain damage inherent to PDOC. In addition, we argue that neuroimaging and electrophysiological assessments may serve as more sensitive biomarkers to identify changes after tDCS that are not yet apparent behaviorally. Finally, given the evidence that concurrent brain stimulation and physical therapy can enhance motor rehabilitation, we argue that future studies should focus on the integration of tDCS with conventional rehabilitation programmes from the subacute phase of care onwards, to ascertain whether any synergies exist.
Collapse
Affiliation(s)
- Davide Aloi
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | | | - Alice Ditchfield
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Sean Coulborn
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Davinia Fernández-Espejo
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
22
|
Edlow BL, Claassen J, Schiff ND, Greer DM. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies. Nat Rev Neurol 2021; 17:135-156. [PMID: 33318675 PMCID: PMC7734616 DOI: 10.1038/s41582-020-00428-x] [Citation(s) in RCA: 350] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Substantial progress has been made over the past two decades in detecting, predicting and promoting recovery of consciousness in patients with disorders of consciousness (DoC) caused by severe brain injuries. Advanced neuroimaging and electrophysiological techniques have revealed new insights into the biological mechanisms underlying recovery of consciousness and have enabled the identification of preserved brain networks in patients who seem unresponsive, thus raising hope for more accurate diagnosis and prognosis. Emerging evidence suggests that covert consciousness, or cognitive motor dissociation (CMD), is present in up to 15-20% of patients with DoC and that detection of CMD in the intensive care unit can predict functional recovery at 1 year post injury. Although fundamental questions remain about which patients with DoC have the potential for recovery, novel pharmacological and electrophysiological therapies have shown the potential to reactivate injured neural networks and promote re-emergence of consciousness. In this Review, we focus on mechanisms of recovery from DoC in the acute and subacute-to-chronic stages, and we discuss recent progress in detecting and predicting recovery of consciousness. We also describe the developments in pharmacological and electrophysiological therapies that are creating new opportunities to improve the lives of patients with DoC.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Nicholas D Schiff
- Feil Family Brain Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - David M Greer
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
23
|
Chatelle C, Rosenthal ES, Bodien YG, Spencer-Salmon CA, Giacino JT, Edlow BL. EEG Correlates of Language Function in Traumatic Disorders of Consciousness. Neurocrit Care 2020; 33:449-457. [PMID: 31900883 PMCID: PMC7373666 DOI: 10.1007/s12028-019-00904-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND/OBJECTIVE Behavioral examinations may fail to detect language function in patients with severe traumatic brain injury (TBI) due to confounds such as having an endotracheal tube. We investigated whether resting and stimulus-evoked electroencephalography (EEG) methods detect the presence of language function in patients with severe TBI. METHODS Four EEG measures were assessed: (1) resting background (applying Forgacs' criteria), (2) reactivity to speech, (3) background and reactivity (applying Synek's criteria); and (4) an automated support vector machine (classifier for speech versus rest). Cohen's kappa measured agreement between the four EEG measures and evidence of language function on a behavioral coma recovery scale-revised (CRS-R) and composite (CRS-R or functional MRI) reference standard. Sensitivity and specificity of each EEG measure were calculated against the reference standards. RESULTS We enrolled 17 adult patients with severe TBI (mean ± SD age 27.0 ± 7.0 years; median [range] 11.5 [2-1173] days post-injury) and 16 healthy subjects (age 28.5 ± 7.8 years). The classifier, followed by Forgacs' criteria for resting background, demonstrated the highest agreement with the behavioral reference standard. Only Synek's criteria for background and reactivity showed significant agreement with the composite reference standard. The classifier and resting background showed balanced sensitivity and specificity for behavioral (sensitivity = 84.6% and 80.8%; specificity = 57.1% for both) and composite reference standards (sensitivity = 79.3% and 75.9%, specificity = 50% for both). CONCLUSIONS Methods applying an automated classifier, resting background, or resting background with reactivity may identify severe TBI patients with preserved language function. Automated classifier methods may enable unbiased and efficient assessment of larger populations or serial timepoints, while qualitative visual methods may be practical in community settings.
Collapse
Affiliation(s)
- Camille Chatelle
- GIGA Consciousness, Coma Science Group, University of Liège, Avenue de l'Hôpital, 11, 4000, Liège, Belgium.
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA.
| | - Eric S Rosenthal
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Clinical Data Animation Center, Massachusetts General Hospital, Boston, MA, USA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Jain R, Ramakrishnan AG. Electrophysiological and Neuroimaging Studies - During Resting State and Sensory Stimulation in Disorders of Consciousness: A Review. Front Neurosci 2020; 14:555093. [PMID: 33041757 PMCID: PMC7522478 DOI: 10.3389/fnins.2020.555093] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
A severe brain injury may lead to a disorder of consciousness (DOC) such as coma, vegetative state (VS), minimally conscious state (MCS) or locked-in syndrome (LIS). Till date, the diagnosis of DOC relies only on clinical evaluation or subjective scoring systems such as Glasgow coma scale, which fails to detect subtle changes and thereby results in diagnostic errors. The high rate of misdiagnosis and inability to predict the recovery of consciousness for DOC patients have created a huge research interest in the assessment of consciousness. Researchers have explored the use of various stimulation and neuroimaging techniques to improve the diagnosis. In this article, we present the important findings of resting-state as well as sensory stimulation methods and highlight the stimuli proven to be successful in the assessment of consciousness. Primarily, we review the literature based on (a) application/non-use of stimuli (i.e., sensory stimulation/resting state-based), (b) type of stimulation used (i.e., auditory, visual, tactile, olfactory, or mental-imagery), (c) electrophysiological signal used (EEG/ERP, fMRI, PET, EMG, SCL, or ECG). Among the sensory stimulation methods, auditory stimulation has been extensively used, since it is easier to conduct for these patients. Olfactory and tactile stimulation have been less explored and need further research. Emotionally charged stimuli such as subject’s own name or narratives in a familiar voice or subject’s own face/family pictures or music result in stronger responses than neutral stimuli. Studies based on resting state analysis have employed measures like complexity, power spectral features, entropy and functional connectivity patterns to distinguish between the VS and MCS patients. Resting-state EEG and fMRI are the state-of-the-art techniques and have a huge potential in predicting the recovery of coma patients. Further, EMG and mental-imagery based studies attempt to obtain volitional responses from the VS patients and thus could detect their command-following capability. This may provide an effective means to communicate with these patients. Recent studies have employed fMRI and PET to understand the brain-activation patterns corresponding to the mental imagery. This review promotes our knowledge about the techniques used for the diagnosis of patients with DOC and attempts to provide ideas for future research.
Collapse
Affiliation(s)
- Ritika Jain
- Medical Intelligence and Language Engineering Laboratory, Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India
| | - Angarai Ganesan Ramakrishnan
- Medical Intelligence and Language Engineering Laboratory, Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
25
|
Annen J, Laureys S, Gosseries O. Brain-computer interfaces for consciousness assessment and communication in severely brain-injured patients. BRAIN-COMPUTER INTERFACES 2020; 168:137-152. [DOI: 10.1016/b978-0-444-63934-9.00011-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Edlow BL, Fins JJ. Assessment of Covert Consciousness in the Intensive Care Unit: Clinical and Ethical Considerations. J Head Trauma Rehabil 2019; 33:424-434. [PMID: 30395042 PMCID: PMC6317885 DOI: 10.1097/htr.0000000000000448] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To propose a practical ethical framework for how task-based functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) may be used in the intensive care unit (ICU) to identify covert consciousness in patients with acute severe traumatic brain injury (TBI). METHODS We present 2 clinical scenarios in which investigational task-based fMRI and EEG were performed in critically ill patients with acute severe TBI who appeared unconscious on the bedside behavioral assessment. From these cases, we consider the clinical and ethical challenges that emerge and suggest how to reconcile them. We also provide recommendations regarding communication with families about ICU patients with covert consciousness. RESULTS Covert consciousness was detected acutely in a patient who died in the ICU due to withdrawal of life-sustaining therapy, whereas covert consciousness was not detected in a patient who subsequently recovered consciousness, communication, and functional independence. These cases raise ethical challenges about how assessment of covert consciousness in the ICU might inform treatment decisions, prognostication, and perceptions about the benefits and burdens of ongoing care. CONCLUSIONS Given that covert consciousness can be detected acutely in the ICU, we recommend that clinicians reconsider evaluative norms for ICU patients. As our clinical appreciation of covert consciousness evolves and its ethical import unfolds, we urge prognostic humility and transparency when clinicians communicate with families in the ICU about goals of care.
Collapse
Affiliation(s)
- Brian L Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown (Dr Edlow); and Division of Medical Ethics and Consortium for the Advanced Study of Brain Injury, Weill Cornell Medical College, New York, and The Rockefeller University, New York, and the Solomon Center for Health Law and Policy, Yale Law School, New Haven, Connecticut (Dr Fins)
| | | |
Collapse
|
27
|
Edlow BL, Threlkeld ZD, Fehnel KP, Bodien YG. Recovery of Functional Independence After Traumatic Transtentorial Herniation With Duret Hemorrhages. Front Neurol 2019; 10:1077. [PMID: 31649617 PMCID: PMC6794605 DOI: 10.3389/fneur.2019.01077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/24/2019] [Indexed: 01/08/2023] Open
Abstract
Historically, Duret hemorrhages have conferred a devastating prognosis. However, recent case reports suggest that cognitive and functional recovery are possible after Duret hemorrhages. Here, we describe a patient who recovered consciousness, communication, and functional independence after Duret hemorrhages caused by traumatic transtentorial herniation. We performed prospective, standardized behavioral assessments, structural MRI scans and stimulus-based functional MRI (fMRI) scans during the first 2 years of recovery. The multimodal assessments revealed reintegration of neural networks mediating language and consciousness, concurrent with the reemergence of functional independence. These observations provide insights into network-based mechanisms of recovery from coma and add to a growing body of evidence indicating that Duret hemorrhages are not invariably associated with a poor prognosis.
Collapse
Affiliation(s)
- Brian L Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Zachary D Threlkeld
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, United States
| | - Katie P Fehnel
- Department of Neurosurgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yelena G Bodien
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, United States
| |
Collapse
|
28
|
Wang F, Hu N, Hu X, Jing S, Heine L, Thibaut A, Huang W, Yan Y, Wang J, Schnakers C, Laureys S, Di H. Detecting Brain Activity Following a Verbal Command in Patients With Disorders of Consciousness. Front Neurosci 2019; 13:976. [PMID: 31572121 PMCID: PMC6753948 DOI: 10.3389/fnins.2019.00976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/30/2019] [Indexed: 11/20/2022] Open
Abstract
Background The accurate assessment of patients with disorders of consciousness (DOC) is a challenge to most experienced clinicians. As a potential clinical tool, functional magnetic resonance imaging (fMRI) could detect residual awareness without the need for the patients’ actual motor responses. Methods We adopted a simple active fMRI motor paradigm (hand raising) to detect residual awareness in these patients. Twenty-nine patients were recruited. They met the diagnosis of minimally conscious state (MCS) (male = 6, female = 2; n = 8), vegetative state/unresponsive wakefulness syndrome (VS/UWS) (male = 17, female = 4; n = 21). Results We analyzed the command-following responses for robust evidence of statistically reliable markers of motor execution, similar to those found in 15 healthy controls. Of the 29 patients, four (two MCS, two VS/UWS) could adjust their brain activity to the “hand-raising” command, and they showed activation in motor-related regions (which could not be discovered in the own-name task). Conclusion Longitudinal behavioral assessments showed that, of these four patients, two in a VS/UWS recovered to MCS and one from MCS recovered to MCS+ (i.e., showed command following). In patients with no response to hand raising task, six VS/UWS and three MCS ones showed recovery in follow-up procedure. The simple active fMRI “hand-raising” task can elicit brain activation in patients with DOC, similar to those observed in healthy volunteers. Activity of the motor-related network may be taken as an indicator of high-level cognition that cannot be discerned through conventional behavioral assessment.
Collapse
Affiliation(s)
- Fuyan Wang
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Nantu Hu
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Xiaohua Hu
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Department of Rehabilitation, Hangzhou Wujing Hospital, Hangzhou, China
| | - Shan Jing
- Department of Rehabilitation, Hangzhou Wujing Hospital, Hangzhou, China
| | - Lizette Heine
- INSERM, U1028, CNRS, UMR5292, Auditory Cognition and Psychoacoustics Team, Lyon Neuroscience Research Center, Lyon, France.,Coma Science Group, GIGA-Research, CHU University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Research, CHU University Hospital of Liège, Liège, Belgium
| | - Wangshan Huang
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Yifan Yan
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Jing Wang
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Caroline Schnakers
- Coma Science Group, GIGA-Research, CHU University Hospital of Liège, Liège, Belgium.,Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Laureys
- Coma Science Group, GIGA-Research, CHU University Hospital of Liège, Liège, Belgium
| | - Haibo Di
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
29
|
Wutzl B, Leibnitz K, Rattay F, Kronbichler M, Murata M, Golaszewski SM. Genetic algorithms for feature selection when classifying severe chronic disorders of consciousness. PLoS One 2019; 14:e0219683. [PMID: 31295332 PMCID: PMC6622536 DOI: 10.1371/journal.pone.0219683] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/30/2019] [Indexed: 11/18/2022] Open
Abstract
The diagnosis and prognosis of patients with severe chronic disorders of consciousness are still challenging issues and a high rate of misdiagnosis is evident. Hence, new tools are needed for an accurate diagnosis, which will also have an impact on the prognosis. In recent years, functional Magnetic Resonance Imaging (fMRI) has been gaining more and more importance when diagnosing this patient group. Especially resting state scans, i.e., an examination when the patient does not perform any task in particular, seems to be promising for these patient groups. After preprocessing the resting state fMRI data with a standard pipeline, we extracted the correlation matrices of 132 regions of interest. The aim was to find the regions of interest which contributed most to the distinction between the different patient groups and healthy controls. We performed feature selection using a genetic algorithm and a support vector machine. Moreover, we show by using only those regions of interest for classification that are most often selected by our algorithm, we get a much better performance of the classifier.
Collapse
Affiliation(s)
- Betty Wutzl
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, Osaka, Japan
- Institute for Analysis and Scientific Computing, TU Wien, Vienna, Austria
- Department of Neurology, Paracelsus Medical University, Salzburg, Austria
- * E-mail:
| | - Kenji Leibnitz
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, Osaka, Japan
| | - Frank Rattay
- Institute for Analysis and Scientific Computing, TU Wien, Vienna, Austria
| | - Martin Kronbichler
- Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Masayuki Murata
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, Osaka, Japan
| | - Stefan Martin Golaszewski
- Department of Neurology, Paracelsus Medical University, Salzburg, Austria
- Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, Vienna, Austria
| |
Collapse
|
30
|
Vassilieva A, Olsen MH, Peinkhofer C, Knudsen GM, Kondziella D. Automated pupillometry to detect command following in neurological patients: a proof-of-concept study. PeerJ 2019; 7:e6929. [PMID: 31139508 PMCID: PMC6521812 DOI: 10.7717/peerj.6929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/09/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Levels of consciousness in patients with acute and chronic brain injury are notoriously underestimated. Paradigms based on electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) may detect covert consciousness in clinically unresponsive patients but are subject to logistical challenges and the need for advanced statistical analysis. METHODS To assess the feasibility of automated pupillometry for the detection of command following, we enrolled 20 healthy volunteers and 48 patients with a wide range of neurological disorders, including seven patients in the intensive care unit (ICU), who were asked to engage in mental arithmetic. RESULTS Fourteen of 20 (70%) healthy volunteers and 17 of 43 (39.5%) neurological patients, including 1 in the ICU, fulfilled prespecified criteria for command following by showing pupillary dilations during ≥4 of five arithmetic tasks. None of the five sedated and unconscious ICU patients passed this threshold. CONCLUSIONS Automated pupillometry combined with mental arithmetic appears to be a promising paradigm for the detection of covert consciousness in people with brain injury. We plan to build on this study by focusing on non-communicating ICU patients in whom the level of consciousness is unknown. If some of these patients show reproducible pupillary dilation during mental arithmetic, this would suggest that the present paradigm can reveal covert consciousness in unresponsive patients in whom standard investigations have failed to detect signs of consciousness.
Collapse
Affiliation(s)
- Alexandra Vassilieva
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Markus Harboe Olsen
- Department of Neuroanesthesiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Costanza Peinkhofer
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Medical Faculty, University of Trieste, Trieste, Italy
| | - Gitte Moos Knudsen
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences and Medicine, University of Copenhagen, Copenhagen, Denmark
- Neurobiology Research Unit, Rigshospitalet, Copenhagen University Hospital and Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences and Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
31
|
Functional diversity of brain networks supports consciousness and verbal intelligence. Sci Rep 2018; 8:13259. [PMID: 30185912 PMCID: PMC6125486 DOI: 10.1038/s41598-018-31525-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/15/2018] [Indexed: 11/08/2022] Open
Abstract
How are the myriad stimuli arriving at our senses transformed into conscious thought? To address this question, in a series of studies, we asked whether a common mechanism underlies loss of information processing in unconscious states across different conditions, which could shed light on the brain mechanisms of conscious cognition. With a novel approach, we brought together for the first time, data from the same paradigm-a highly engaging auditory-only narrative-in three independent domains: anesthesia-induced unconsciousness, unconsciousness after brain injury, and individual differences in intellectual abilities during conscious cognition. During external stimulation in the unconscious state, the functional differentiation between the auditory and fronto-parietal systems decreased significantly relatively to the conscious state. Conversely, we found that stronger functional differentiation between these systems in response to external stimulation predicted higher intellectual abilities during conscious cognition, in particular higher verbal acuity scores in independent cognitive testing battery. These convergent findings suggest that the responsivity of sensory and higher-order brain systems to external stimulation, especially through the diversification of their functional responses is an essential feature of conscious cognition and verbal intelligence.
Collapse
|
32
|
Threlkeld ZD, Bodien YG, Rosenthal ES, Giacino JT, Nieto-Castanon A, Wu O, Whitfield-Gabrieli S, Edlow BL. Functional networks reemerge during recovery of consciousness after acute severe traumatic brain injury. Cortex 2018; 106:299-308. [PMID: 29871771 PMCID: PMC6120794 DOI: 10.1016/j.cortex.2018.05.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/12/2018] [Accepted: 05/03/2018] [Indexed: 01/26/2023]
Abstract
Integrity of the default mode network (DMN) is believed to be essential for human consciousness. However, the effects of acute severe traumatic brain injury (TBI) on DMN functional connectivity are poorly understood. Furthermore, the temporal dynamics of DMN reemergence during recovery of consciousness have not been studied longitudinally in patients with acute severe TBI. We performed resting-state functional magnetic resonance imaging (rs-fMRI) to measure DMN connectivity in 17 patients admitted to the intensive care unit (ICU) with acute severe TBI and in 16 healthy control subjects. Eight patients returned for follow-up rs-fMRI and behavioral assessment six months post-injury. At each time point, we analyzed DMN connectivity by measuring intra-network correlations (i.e. positive correlations between DMN nodes) and inter-network anticorrelations (i.e. negative correlations between the DMN and other resting-state networks). All patients were comatose upon arrival to the ICU and had a disorder of consciousness (DoC) at the time of acute rs-fMRI (9.2 ± 4.6 days post-injury): 2 coma, 4 unresponsive wakefulness syndrome, 7 minimally conscious state, and 4 post-traumatic confusional state. We found that, while DMN anticorrelations were absent in patients with acute DoC, patients who recovered from coma to a minimally conscious or confusional state while in the ICU showed partially preserved DMN correlations. Patients who remained in coma or unresponsive wakefulness syndrome in the ICU showed no DMN correlations. All eight patients assessed longitudinally recovered beyond the confusional state by 6 months post-injury and showed normal DMN correlations and anticorrelations, indistinguishable from those of healthy subjects. Collectively, these findings suggest that recovery of consciousness after acute severe TBI is associated with partial preservation of DMN correlations in the ICU, followed by long-term normalization of DMN correlations and anticorrelations. Both intra-network DMN correlations and inter-network DMN anticorrelations may be necessary for full recovery of consciousness after acute severe TBI.
Collapse
Affiliation(s)
- Zachary D Threlkeld
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA.
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA.
| | - Alfonso Nieto-Castanon
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, USA.
| | - Ona Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Susan Whitfield-Gabrieli
- Martinos Imaging Center at McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
33
|
Haugg A, Cusack R, Gonzalez-Lara LE, Sorger B, Owen AM, Naci L. Do Patients Thought to Lack Consciousness Retain the Capacity for Internal as Well as External Awareness? Front Neurol 2018; 9:492. [PMID: 29997565 PMCID: PMC6030833 DOI: 10.3389/fneur.2018.00492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/06/2018] [Indexed: 01/04/2023] Open
Abstract
It is well established that some patients, who are deemed to have disorders of consciousness, remain entirely behaviorally non-responsive and are diagnosed as being in a vegetative state, yet can nevertheless demonstrate covert awareness of their external environment by modulating their brain activity, a phenomenon known as cognitive-motor dissociation. However, the extent to which these patients retain internal awareness remains unknown. To investigate the potential for internal and external awareness in patients with chronic disorders of consciousness (DoC), we asked whether the pattern of juxtaposition between the functional time-courses of the default mode (DMN) and fronto-parietal networks, shown in healthy individuals to mediate the naturally occurring dominance switching between internal and external aspects of consciousness, was present in these patients. We used a highly engaging movie by Alfred Hitchcock to drive the recruitment of the fronto-parietal networks, including the dorsal attention (DAN) and executive control (ECN) networks, and their maximal juxtaposition to the DMN in response to the complex stimulus, relative to rest and a scrambled, meaningless movie baseline condition. We tested a control group of healthy participants (N = 13/12) and two groups of patients with disorders of consciousness, one comprised of patients who demonstrated independent, neuroimaging-based evidence of covert external awareness (N = 8), and the other of those who did not (N = 8). Similarly to the healthy controls, only the group of patients with overt and, critically, covert external awareness showed significantly heightened differentiation between the DMN and the DAN in response to movie viewing relative to their resting state time-courses, which was driven by the movie's narrative. This result suggested the presence of functional integrity in the DMN and fronto-parietal networks and their relationship to one another in patients with covert external awareness. Similar to the effect in healthy controls, these networks became more strongly juxtaposed to one another in response to movie viewing relative to the baseline conditions, suggesting the potential for internal and external awareness during complex stimulus processing. Furthermore, our results suggest that naturalistic paradigms can dissociate between groups of DoC patients with and without covert awareness based on the functional integrity of brain networks.
Collapse
Affiliation(s)
- Amelie Haugg
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Swiss Federal Institute of Technology, University of Zurich, Zurich, Switzerland
| | - Rhodri Cusack
- School of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | - Bettina Sorger
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Adrian M Owen
- The Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Lorina Naci
- School of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Bao W, He F, Yu L, Gao J, Meng F, Ding Y, Zou H, Luo B. Complement cascade on severe traumatic brain injury patients at the chronic unconscious stage: implication for pathogenesis. Expert Rev Mol Diagn 2018; 18:761-766. [PMID: 29718755 DOI: 10.1080/14737159.2018.1471985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Patients who awake from severely traumatic brain injury (TBI) may remain unconscious for many years. Although behavioral assessment and functional imaging are currently used as diagnostic tools, the molecular basis underlying chronic condition has yet to be explored. METHOD Plasma samples were obtained at 3 time points (1, 3 and 6 months) from 18 patients with chronic disorders of consciousness who survived severe TBI, and 6 healthy volunteers. A coupled isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics approach was used to screen differentially expressed proteins (DEPs) between patients and controls. Potential molecular mechanisms were further discussed through bioinformatics analyses. RESULT In total, 300 plasma proteins <1% false discovery rates were identified and 32 proteins were consistently altered between patients and controls. Biological pathway analysis revealed that the DEPs were predominantly involved in complement cascade. CONCLUSIONS This study discussed potential mechanisms of complement cascade underlying chronic stage in severe TBI.
Collapse
Affiliation(s)
- Wangxiao Bao
- a Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science , Zhejiang University School of Medicine , Hangzhou , China
| | - Fangping He
- a Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science , Zhejiang University School of Medicine , Hangzhou , China
| | - Lihua Yu
- b Department of Neurology , Zhejiang Provincial People's Hospital , Hangzhou , China.,e People's Hospital of Hangzhou Medical College , Hangzhou Zhejiang Province , China
| | - Jian Gao
- c Department of Rehabilitation , Hangzhou Hospital of Zhejiang CAPR , Hangzhou , China
| | - Fanxia Meng
- a Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science , Zhejiang University School of Medicine , Hangzhou , China
| | - Yahui Ding
- d Department of Neurology, First Affiliated Hospital , Zhejiang Provincial People's Hospital , Hangzhou , China.,e People's Hospital of Hangzhou Medical College , Hangzhou Zhejiang Province , China
| | - Hai Zou
- d Department of Neurology, First Affiliated Hospital , Zhejiang Provincial People's Hospital , Hangzhou , China.,e People's Hospital of Hangzhou Medical College , Hangzhou Zhejiang Province , China
| | - Benyan Luo
- a Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science , Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
35
|
Mélotte E, Maudoux A, Delhalle S, Martial C, Antonopoulos G, Larroque SK, Wannez S, Faymonville ME, Kaux JF, Laureys S, Gosseries O, Vanhaudenhuyse A. Is oral feeding compatible with an unresponsive wakefulness syndrome? J Neurol 2018; 265:954-961. [PMID: 29464377 DOI: 10.1007/s00415-018-8794-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/23/2017] [Accepted: 02/10/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The aim of the study is to explore the possibility of oral feeding in unresponsive wakefulness syndrome/vegetative state (UWS/VS) patients. METHOD We reviewed the clinical information of 68 UWS/VS patients (mean age 45 ± 11; range 16-79 years) searching for mention of oral feeding. UWS/VS diagnosis was made after repeated behavioural assessments using the Coma Recovery Scale-Revised. Patients also had complementary neuroimaging evaluations (positron emission tomography, functional magnetic resonance imaging and electroencephalography and diffusion tensor imaging). RESULTS Out of the 68 UWS/VS patients, only two could resume oral feeding (3%). The first patient had oral feeding (only liquid and semi liquid) in addition to gastrostomy feeding and the second one could achieve full oral feeding (liquid and mixed solid food). Clinical assessments concluded that they fulfilled the criteria for a diagnosis of UWS/VS. Results from neuroimaging and neurophysiology were typical for the first patient with regard to the diagnosis of UWS/VS but atypical for the second patient. CONCLUSION Oral feeding that implies a full and complex oral phase could probably be considered as a sign of consciousness. However, we actually do not know which components are necessary to consider the swallowing conscious as compared to reflex. We also discussed the importance of swallowing assessment and management in all patients with altered state of consciousness.
Collapse
Affiliation(s)
- Evelyne Mélotte
- Physical and Rehabilitation Medicine Department, University Hospital of Liege, Liège, Belgium. .,GIGA Consciousness, Coma Science Group and Neurology Department, University and University Hospital of Liege, Liège, Belgium.
| | - Audrey Maudoux
- GIGA Consciousness, Coma Science Group and Neurology Department, University and University Hospital of Liege, Liège, Belgium.,Otorhinolaryngology Head and Neck Surgery Department, University and University Hospital of Liege, Liège, Belgium
| | - Sabrina Delhalle
- Otorhinolaryngology Head and Neck Surgery Department, University and University Hospital of Liege, Liège, Belgium
| | - Charlotte Martial
- GIGA Consciousness, Coma Science Group and Neurology Department, University and University Hospital of Liege, Liège, Belgium
| | - Georgios Antonopoulos
- GIGA Consciousness, Coma Science Group and Neurology Department, University and University Hospital of Liege, Liège, Belgium
| | - Stephen Karl Larroque
- GIGA Consciousness, Coma Science Group and Neurology Department, University and University Hospital of Liege, Liège, Belgium
| | - Sarah Wannez
- GIGA Consciousness, Coma Science Group and Neurology Department, University and University Hospital of Liege, Liège, Belgium
| | - Marie-Elisabeth Faymonville
- Hypnosis and Pain GIGA Center and Algology and Palliative Care Department, University and University Hospital of Liege, Liège, Belgium
| | - Jean-François Kaux
- Physical and Rehabilitation Medicine Department, University Hospital of Liege, Liège, Belgium
| | - Steven Laureys
- GIGA Consciousness, Coma Science Group and Neurology Department, University and University Hospital of Liege, Liège, Belgium
| | - Olivia Gosseries
- GIGA Consciousness, Coma Science Group and Neurology Department, University and University Hospital of Liege, Liège, Belgium
| | - Audrey Vanhaudenhuyse
- GIGA Consciousness, Coma Science Group and Neurology Department, University and University Hospital of Liege, Liège, Belgium.,Hypnosis and Pain GIGA Center and Algology and Palliative Care Department, University and University Hospital of Liege, Liège, Belgium
| |
Collapse
|