1
|
Zhang C, Yong X, Cao Y, Hsu YC, Shi H, Wu F, Zhang Y, Lu S. Amide proton transfer MRI may reflect effective reperfusion and predict functional outcomes in patients with ischemic stroke. J Cereb Blood Flow Metab 2025; 45:421-430. [PMID: 39479945 PMCID: PMC11846100 DOI: 10.1177/0271678x241297110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024]
Abstract
Perfusion imaging is useful to assess tissue recovery in patients with acute ischemic stroke (AIS); however, it cannot reflect tissue metabolism. We postulated that amide proton transfer (APT) imaging can characterize the tissue status after reperfusion therapy, thus providing prognostic value for 90-day functional outcomes. We included 63 patients with AIS and large-vessel occlusion (LVO). The APT signals, including APT# and NOE# (nuclear Overhauser enhancement) were quantified. Ischemic lesions observed on APT# and diffusion-weighted imaging (DWI) were classified according to their mismatch patterns (APT# < DWI; APT# ≥ DWI). Predictors of 90-day good outcomes (modified Rankin scale score 0-2) were evaluated. Patients with successful reperfusion exhibited higher APT#, smaller percentage change of APT#, and a greater likelihood of presenting APT# < DWI compared to those with poor reperfusion (all P < 0.05). The APT# (odds ratio [OR] = 11.48, P = 0.046) and a mismatch pattern of APT# < DWI (OR = 7.41, P = 0.020) independently predicted good outcomes besides the clinical parameters. A mismatch pattern of APT# ≥ DWI was a significant marker of poor outcomes despite successful reperfusion (P = 0.002). Our study provides preliminary evidence that APT may reveal tissue recovery after reperfusion and predict good outcomes at 90 days in patients with AIS and LVO.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xingwang Yong
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yuezhou Cao
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare Ltd., Shanghai, China
| | - Haibin Shi
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feiyun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Shanshan Lu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Li Y, Ma CH. Advancements in Imaging for the Diagnosis of Wake-up Stroke. Neurologist 2025; 30:55-59. [PMID: 39382203 DOI: 10.1097/nrl.0000000000000585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
BACKGROUND The concept of wake-up stroke (WUS) as a distinct subtype of acute ischaemic stroke, characterized by an uncertain onset time, traditionally resulted in the exclusion of patients from intravenous thrombolysis treatment. REVIEW SUMMARY Advancements in neuroimaging have prompted a shift in the approach to intravenous thrombolysis treatment, moving away from a strict focus on the onset time window toward consideration of the tissue time window. This paradigm shift has expanded the opportunity for a larger cohort of patients with WUS to receive timely and effective treatment, ultimately leading to improved prognosis. CONCLUSIONS This study reviews the WUS pathogenesis and the progress of various imaging diagnostic techniques to clarify the WUS onset time and select the optimal treatment plan.
Collapse
Affiliation(s)
- Yang Li
- Department of Radiological Imaging
| | - Chun-Hui Ma
- Department of Pathology, Faculty of Medical Imaging, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Chung JJ, Kim H, Ji Y, Lu D, Zhou IY, Sun PZ. Improving standardization and accuracy of in vivo omega plot exchange parameter determination using rotating-frame model-based fitting of quasi-steady-state Z-spectra. Magn Reson Med 2025; 93:151-165. [PMID: 39221563 PMCID: PMC11518644 DOI: 10.1002/mrm.30259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Although Ω-plot-driven quantification of in vivo amide exchange properties has been demonstrated, differences in scan parameters may complicate the fidelity of determination. This work systematically evaluated the use of quasi-steady-state (QUASS) Z-spectra reconstruction to standardize in vivo amide exchange quantification across acquisition conditions and further determined it in vivo. METHODS Simulation and in vivo rodent brain chemical exchange saturation transfer (CEST) data at 4.7 T were fit with and without QUASS reconstruction using both multi-Lorentzian and model-based fitting approaches. pH modulation was accomplished both in simulation and in vivo by inducing global ischemia via cardiac arrest. Amide parameters were determined via Ω-plots and compared across methods. RESULTS Simulation showed that Ω-plots using multi-Lorentzian fitting could underestimate the exchange rate, with error increasing as conditions diverged from the steady state. In comparison, model-based fitting using QUASS estimated the same exchange rate within 2%. These results aligned with in vivo findings where multi-Lorentzian fitting of native Z-spectra resulted in an exchange rate of 64 ± 13 s-1 (38 ± 16 s-1 after cardiac arrest), whereas model-based fitting of QUASS Z-spectra yielded an exchange rate of 126 ± 25 s-1 (49 ± 13 s-1). CONCLUSION The model-based fitting of QUASS CEST Z-spectra enables consistent and accurate quantification of exchange parameters through Ω-plot construction by reducing error due to signal overlap and nonequilibrium CEST effects.
Collapse
Affiliation(s)
- Julius Juhyun Chung
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA
| | - Hahnsung Kim
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Yang Ji
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Dongshuang Lu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Phillip Zhe Sun
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
4
|
Zhou L, Pan W, Huang R, Wang T, Wei Z, Wang H, Zhang Y, Li Y. Amide Proton Transfer-Weighted MRI, Associations with Clinical Severity and Prognosis in Ischemic Strokes. J Magn Reson Imaging 2024; 60:2509-2517. [PMID: 38426606 DOI: 10.1002/jmri.29333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The National Institutes of Health Stroke Scale (NIHSS) and the modified Rankin scale (mRS) scores have important shortcomings. Amide proton transfer-weighted (APTw) imaging might offer more valuable information in ischemic strokes assessment. PURPOSE To utilize APTw, apparent diffusion coefficient (ADC), and computed tomography perfusion (CTP) for the assessment of clinical symptom severity and 90-day prognosis in patients diagnosed with ischemic stroke. STUDY TYPE Prospective. SUBJECTS 61 patients (mean age 63.2 ± 9.7 years; 46 males, 15 females) with ischemic strokes were included in the study. FIELD STRENGTH/SEQUENCE 3T/turbo spin echo (TSE) T1-weighted imaging, T2-weighted imaging, T2-fluid attenuated inversion recovery (T2-FLAIR), diffusion-weighted imaging (DWI), and single-shot TSE APTw imaging. ASSESSMENT APTw, ADC, and CTP were used to compare patient subgroups and construct a prognostic nomogram model. STATISTICAL TESTS Kolmogorov-Smirnov test, t-test, Mann-Whitney U test, chi-square test, Pearson correlation analysis, multivariate logistic regression analysis, decision curve analysis (DCA), receiver operating characteristic curves (ROCs). The significance threshold was set at P < 0.05. RESULTS Correlation analysis revealed that APTw and NIHSS exhibit the highest correlation (r = -0.634, 95% confidence interval [CI] -0.418 to -0.782), surpassing that of ADC and lesion size. Multivariable analysis revealed APTw (odds ratio [OR] 0.905, 95% CI 0.845-0.970), ADC (OR 0.745, 95% CI 0.609-0.911), and infarct core-cerebral blood volume (IC-CBV) (OR 0.547, 95% CI 0.310-0.964) as potential risk factors associated with a poor prognosis. The nomogram model demonstrated the highest predictive efficacy, with an area under the curve (AUC) of 0.960 (95% CI 0.911-0.988), exceeding that of APTw, ADC, and IC-CBV individually. DATA CONCLUSION The APTw technique holds potential value in categorizing and managing patients with ischemic stroke, offering guidance for the implementation of clinical treatment strategies. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Le Zhou
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou city, Jiangsu Province, China
| | - Wanqian Pan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Renjun Huang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou city, Jiangsu Province, China
| | - Tianye Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zifan Wei
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Hui Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou city, Jiangsu Province, China
- Institute of Medical Imaging, Soochow University, Suzhou city, Jiangsu Province, China
| |
Collapse
|
5
|
Jiang M, Li G, He Q, Zhang Y, Li W, Gao Y, Yan J. Multimodal imaging evaluation of early neurological deterioration following acute ischemic stroke. Quant Imaging Med Surg 2024; 14:4763-4778. [PMID: 39022232 PMCID: PMC11250343 DOI: 10.21037/qims-24-153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Background Early neurologic deterioration occurs in up to one-third of patients with acute ischemic stroke (IS), often leading to poor functional outcomes. At present, few studies have applied amide proton transfer (APT) imaging to the evaluation of early neurological deterioration (END). This study analyzed the value of computed tomography perfusion (CTP) combined with multimodal magnetic resonance imaging (MRI) in patients with acute IS with END. Methods This retrospective study included patients with acute IS who were admitted to the neurology inpatient department in a tertiary hospital from October 2021 to June 2023. Patients with acute IS underwent CTP within 24 hours of stroke onset and MRI [arterial spin labeling (ASL), susceptibility-weighted imaging (SWI), and APT] within 7 days. END was defined as an elevation of ≥2 points on the National Institute of Health Stroke Scale (NIHSS) within 7 days of stroke onset. Univariable and multivariable analyses were used to compare clinical and imaging biomarkers in patients with acute IS with and without END. The performance of potential biomarkers in distinguishing between the two groups was evaluated using receiver operating characteristic (ROC) curve analysis. Results Among the 70 patients with acute IS, 20 (29%) had END. After conducting univariable analysis, variables were selected for entry into a binary logistic regression analysis based on our univariable analysis results, previous research findings, clinical experience, and methodological standards. The results indicated that relative cerebral blood volume (CBV) on CTP, relative cerebral blood flow (CBF) on ASL, and relative signal intensity on amide proton transfer-weighted (APTw) imaging were independent risk factors for END. The areas under the ROC curves for these risk factors were 0.710 [95% confidence interval (CI): 0.559-0.861, P=0.006], 0.839 (95% CI: 0.744-0.933, P<0.001), and 0.804 (95% CI: 0.676-0.932, P<0.001), respectively. The combined area under the curve (AUC), sensitivity, and specificity of the four indices (0.941, 100%, and 78%, respectively) were higher than those of the four indices alone. Conclusions CTP combined with multi-modal MRI better evaluated hemodynamics, tissue metabolism, and other relevant patient information, providing an objective basis for the clinical assessment of patients with acute IS with END and facilitating the development of accurate and personalized treatment plans.
Collapse
Affiliation(s)
- Meien Jiang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guomin Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qinmeng He
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yulin Zhang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wuming Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yunyu Gao
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Jianhao Yan
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
6
|
Wu L, Lu D, Sun PZ. Comparison of model-free Lorentzian and spinlock model-based fittings in quantitative CEST imaging of acute stroke. Magn Reson Med 2023; 90:1958-1968. [PMID: 37335834 PMCID: PMC10538953 DOI: 10.1002/mrm.29772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE CEST MRI detects complex tissue changes following acute stroke. Our study aimed to test if spinlock model-based fitting of the quasi-steady-state (QUASS)-reconstructed equilibrium CEST MRI improves the determination of multi-pool signal changes over the commonly-used model-free Lorentzian fitting in acute stroke. THEORY AND METHODS Multiple three-pool CEST Z-spectra were simulated using Bloch-McConnell equations for a range of T1 , relaxation delay, and saturation times. The multi-pool CEST signals were solved from the simulated Z-spectra to test the accuracy of routine Lorentzian (model-free) and spinlock (model-based) fittings without and with QUASS reconstruction. In addition, multiparametric MRI scans were obtained in rat models of acute stroke, including relaxation, diffusion, and CEST Z-spectrum. Finally, we compared model-free and model-based per-pixel CEST quantification in vivo. RESULTS The spinlock model-based fitting of QUASS CEST MRI provided a nearly T1 -independent determination of multi-pool CEST signals, advantageous over the fittings of apparent CEST MRI (model-free and model-based). In vivo data also demonstrated that the spinlock model-based QUASS fitting captured significantly different changes in semisolid magnetization transfer (-0.9 ± 0.8 vs. 0.3 ± 0.8%), amide (-1.1 ± 0.4 vs. -0.5 ± 0.2%), and guanidyl (1.0 ± 0.4 vs. 0.7 ± 0.3%) signals over the model-free Lorentzian analysis. CONCLUSION Our study demonstrated that spinlock model-based fitting of QUASS CEST MRI improved the determination of the underlying tissue changes following acute stroke, promising further clinical translation of quantitative CEST imaging.
Collapse
Affiliation(s)
- Limin Wu
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Dongshuang Lu
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Phillip Zhe Sun
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Emory National Primate Research Center, Emory University, Atlanta GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA
| |
Collapse
|
7
|
Song G, Chen Y, Luo X, Gong T, Yang H, Zhou J, Li C, Chen M. Amide proton transfer-weighted MRI features of acute ischemic stroke subtypes. NMR IN BIOMEDICINE 2023; 36:e4983. [PMID: 37259224 DOI: 10.1002/nbm.4983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/14/2023] [Accepted: 05/13/2023] [Indexed: 06/02/2023]
Abstract
Stroke is a highly heterogeneous disorder with distinct subtypes, and the stroke subtype influences the outcome. Amide proton transfer-weighted (APTW) MRI has been demonstrated to be promising in stroke patients, but the image characteristics of stroke subtypes have not been sufficiently investigated. The purpose of this study was to investigate the APTW MRI features of different subtypes of acute ischemic stroke (AIS). Ninety-two AIS patients presenting within 96 h of symptom onset were enrolled and examined with a 3.0-T MRI system. Patients were grouped into four subtypes: lacunar circulation infarcts (LACI, n = 33); total anterior circulation infarcts (TACI, n = 9); partial anterior circulation infarcts (PACI, n = 28); and posterior circulation infarcts (POCI, n = 22). APTW values in the lesion (APTWlesion ) and the contralateral normal-appearing region (APTWcontral ) were measured. The change in APTW values between the acute ischemic lesion and the contralateral normal-appearing region (APTWles-con ) was calculated. A two-sample t-test, one-way ANOVA, and the Chi-square method were used. There were significant differences between APTWlesion and APTWcontral in the three categories of nonlacunar strokes (TACI, PACI, and POCI, all p < 0.01), but not for lacunar strokes (LACI, p = 0.080). TACI patients had the lowest APTWlesion and APTWles-con in all groups (p < 0.05). In the POCI group, patients with supratentorial infarcts showed significant differences between APTWlesion and APTWcontral (p = 0.001), while the differences were not significant for infratentorial infarcts (p = 0.135). Our results suggest that the APT effect was heterogeneous in different stroke subtypes, and that APTW MRI gave an excellent performence in depicting nonlacunar AIS in supratentorial locations.
Collapse
Affiliation(s)
- Guodong Song
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuhui Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojie Luo
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Gong
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huan Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chunmei Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Vinogradov E, Keupp J, Dimitrov IE, Seiler S, Pedrosa I. CEST-MRI for body oncologic imaging: are we there yet? NMR IN BIOMEDICINE 2023; 36:e4906. [PMID: 36640112 PMCID: PMC10200773 DOI: 10.1002/nbm.4906] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 05/23/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI has gained recognition as a valuable addition to the molecular imaging and quantitative biomarker arsenal, especially for characterization of brain tumors. There is also increasing interest in the use of CEST-MRI for applications beyond the brain. However, its translation to body oncology applications lags behind those in neuro-oncology. The slower migration of CEST-MRI to non-neurologic applications reflects the technical challenges inherent to imaging of the torso. In this review, we discuss the application of CEST-MRI to oncologic conditions of the breast and torso (i.e., body imaging), emphasizing the challenges and potential solutions to address them. While data are still limited, reported studies suggest that CEST signal is associated with important histology markers such as tumor grade, receptor status, and proliferation index, some of which are often associated with prognosis and response to therapy. However, further technical development is still needed to make CEST a reliable clinical application for body imaging and establish its role as a predictive and prognostic biomarker.
Collapse
Affiliation(s)
- Elena Vinogradov
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Ivan E Dimitrov
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Philips Healthcare, Gainesville, FL, USA
| | - Stephen Seiler
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Pedrosa
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Heo HY, Tee YK, Harston G, Leigh R, Chappell M. Amide proton transfer imaging in stroke. NMR IN BIOMEDICINE 2023; 36:e4734. [PMID: 35322482 PMCID: PMC9761584 DOI: 10.1002/nbm.4734] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 05/23/2023]
Abstract
Amide proton transfer (APT) imaging, a variant of chemical exchange saturation transfer MRI, has shown promise in detecting ischemic tissue acidosis following impaired aerobic metabolism in animal models and in human stroke patients due to the sensitivity of the amide proton exchange rate to changes in pH within the physiological range. Recent studies have demonstrated the possibility of using APT-MRI to detect acidosis of the ischemic penumbra, enabling the assessment of stroke severity and risk of progression, monitoring of treatment progress, and prognostication of clinical outcome. This paper reviews current APT imaging methods actively used in ischemic stroke research and explores the clinical aspects of ischemic stroke and future applications for these methods.
Collapse
Affiliation(s)
- Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yee Kai Tee
- Lee Kong Chian Faculty of Engineering and Science, University Tunku Abdul Rahman, Malaysia
| | - George Harston
- Acute Stroke Programme, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Richard Leigh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Chappell
- Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom, UK
| |
Collapse
|
10
|
Lin Q, Chen L, Zheng H, Tan H, Zhang G, Zheng W. Imaging of nerve injury in neonatal acute bilirubin encephalopathy using 1H-MRS and Glu-CEST techniques. Front Neurosci 2023; 17:1110349. [PMID: 37056307 PMCID: PMC10086169 DOI: 10.3389/fnins.2023.1110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
ObjectivesTo investigate the significance of proton magnetic resonance spectroscopy (1H-MRS) and glutamate chemical exchange saturation transfer (Glu-CEST) techniques in assessing the condition and prognosis of acute bilirubin encephalopathy patients and to understand the mechanism of nerve injury in this disease.Materials and methodsFrom September 2019 to February 2021, 31 neonates with acute bilirubin encephalopathy and 16 healthy neonates were enrolled in this study. All the quantitative results of 1H-MRS, Glu-CEST, and conventional magnetic resonance imaging (MRI) of all neonates were analyzed. The associations between statistically significant indicators of imaging and developmental quotients (DQ) were analyzed.ResultsThe 31 cases were assigned to the mild subgroup (n = 21) and moderate and severe subgroup (n = 10) according to the bilirubin-induced neurologic dysfunction (BIND) scores. The case group had elevated Cho and GABA absolute concentrations compared to the normal control group (all p < 0.05). Compared with the normal control group, the absolute concentration of GABA of the moderate and severe subgroup was significantly larger (p < 0.05). Compared with the normal control group, the Glu-CEST% values in the left basal ganglia, right thalamus, left frontal cortex and bilateral medial geniculate body of the case group was significantly larger (all p < 0.05). The moderate and severe subgroup had higher Glu-CEST% values in the left basal ganglia, right thalamus, and bilateral medial geniculate body than the normal control group (all p < 0.05). A negative association was revealed between the DQ scores and the Glu-CEST% values in the left basal ganglia (r = −0.888, p < 0.05).ConclusionThe combination of 1H-MRS and Glu-CEST techniques can monitor the intracerebral metabolite level of acute bilirubin encephalopathy and evaluate the illness severity.
Collapse
Affiliation(s)
- Qihuan Lin
- Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lanmei Chen
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Hongyi Zheng
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Hui Tan
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Gengbiao Zhang
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Wenbin Zheng
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- *Correspondence: Wenbin Zheng,
| |
Collapse
|
11
|
Wu Y, Sun PZ. Demonstration of pH imaging in acute stroke with endogenous ratiometric chemical exchange saturation transfer magnetic resonance imaging at 2 ppm. NMR IN BIOMEDICINE 2023; 36:e4850. [PMID: 36259279 DOI: 10.1002/nbm.4850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
pH change is often considered a hallmark of metabolic disruption in diseases such as ischemic stroke and cancer. Chemical exchange saturation transfer (CEST) MRI, particularly amide proton transfer (APT), has emerged as a noninvasive pH imaging approach. However, there are changes in multipool CEST effects besides APT MRI. Our study investigated radiofrequency (RF) amplitude-based ratiometric CEST pH imaging in acute stroke. Briefly, adult male Wistar rats underwent CEST MRI under two RF saturation (B1 ) levels of 0.75 and 1.5 μT following middle cerebral artery occlusion. Magnetization transfer (MT), direct water saturation, CEST at 2 ppm (CEST@2 ppm), amine (2.75 ppm), and APT (3.5 ppm) effects were resolved with the multipool Lorentzian fitting approach. The ratiometric analysis was measured in the ischemic lesion and the contralateral normal area, which was also correlated with pH-specific MT and the relaxation normalized APT (MRAPT) index. MT, amine CEST effect, and their respective ratiometric indices did not show significant changes in ischemic regions (p > 0.05), as expected. Whereas APT decreased in the ischemic lesion for B1 of 1.5 μT (p < 0.01), the correlation between the amide ratio with MRAPT index was moderate (r = 0.52, p = 0.02). By comparison, the ischemic tissue showed a significantly increased CEST@2 ppm for both saturation levels from the contralateral normal area (p ≤ 0.01). Importantly, the CEST@2 ppm ratio decreased in the ischemic lesion (p < 0.01), which highly correlated with the MRAPT index (r = 0.93, p < 0.001). To summarize, our study demonstrated the feasibility of endogenous CEST@2 ppm ratiometric imaging of pH upon acute stroke, promising to detect pH changes in metabolic diseases.
Collapse
Affiliation(s)
- Yin Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Predicting a Favorable (mRS 0-2) or Unfavorable (mRS 3-6) Stroke Outcome by Arterial Spin Labeling and Amide Proton Transfer Imaging in Post-Thrombolysis Stroke Patients. J Pers Med 2023; 13:jpm13020248. [PMID: 36836482 PMCID: PMC9962289 DOI: 10.3390/jpm13020248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
(1) Background: The objective of this study was to determine whether arterial spin labeling (ASL), amide proton transfer (APT), or their combination could distinguish between patients with a low and high modified Rankin Scale (mRS) and forecast the effectiveness of the therapy; (2) Methods: Fifty-eight patients with subacute phase ischemic stroke were included in this study. Based on cerebral blood flow (CBF) and asymmetry magnetic transfer ratio (MTRasym) images, histogram analysis was performed on the ischemic area to acquire imaging biomarkers, and the contralateral area was used as a control. Imaging biomarkers were compared between the low (mRS 0-2) and high (mRS 3-6) mRS score groups using the Mann-Whitney U test. Receiver operating characteristic (ROC) curve analysis was used to evaluate the performance of the potential biomarkers in differentiating between the two groups; (3) Results: The rAPT 50th had an area under the ROC curve (AUC) of 0.728, with a sensitivity of 91.67% and a specificity of 61.76% for differentiating between patients with low and high mRS scores. Moreover, the AUC, sensitivity, and specificity of the rASL max were 0.926, 100%, and 82.4%, respectively. Combining the parameters with logistic regression could further improve the performance in predicting prognosis, leading to an AUC of 0.968, a sensitivity of 100%, and a specificity of 91.2%; (4) Conclusions: The combination of APT and ASL may be a potential imaging biomarker to reflect the effectiveness of thrombolytic therapy for stroke patients, assisting in guiding treatment approaches and identifying high-risk patients such as those with severe disability, paralysis, and cognitive impairment.
Collapse
|
13
|
Sun PZ. Quasi-steady-state amide proton transfer (QUASS APT) MRI enhances pH-weighted imaging of acute stroke. Magn Reson Med 2022; 88:2633-2644. [PMID: 36178234 PMCID: PMC9529238 DOI: 10.1002/mrm.29408] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE Chemical exchange saturation transfer (CEST) imaging measurement depends not only on the labile proton concentration and pH-dependent exchange rate but also on experimental conditions, including the relaxation delay and radiofrequency (RF) saturation time. Our study aimed to extend a quasi-steady-state (QUASS) solution to a modified multi-slice CEST MRI sequence and test if it provides enhanced pH imaging after acute stroke. METHODS Our study derived the QUASS solution for a modified multislice CEST MRI sequence with an unevenly segmented RF saturation between image readout and signal averaging. Numerical simulation was performed to test if the generalized QUASS solution corrects the impact of insufficiently long relaxation delay, primary and secondary saturation times, and multi-slice readout. In addition, multiparametric MRI scans were obtained after middle cerebral artery occlusion, including relaxation and CEST Z-spectrum, to evaluate the performance of QUASS CEST MRI in a rodent acute stroke model. We also performed Lorentzian fitting to isolate multi-pool CEST contributions. RESULTS The QUASS analysis enhanced pH-weighted magnetization transfer asymmetry contrast over the routine apparent CEST measurements in both contralateral normal (-3.46% ± 0.62% (apparent) vs. -3.67% ± 0.66% (QUASS), P < 0.05) and ischemic tissue (-5.53% ± 0.68% (apparent) vs. -5.94% ± 0.73% (QUASS), P < 0.05). Lorentzian fitting also showed significant differences between routine and QUASS analysis of ischemia-induced changes in magnetization transfer, amide, amine, guanidyl CEST, and nuclear Overhauser enhancement (-1.6 parts per million) effects. CONCLUSION Our study demonstrated that generalized QUASS analysis enhanced pH MRI contrast and improved quantification of the underlying CEST contrast mechanism, promising for further in vivo applications.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Imaging Center, Emory National Primate Research Center, Emory University, Atlanta GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA
| |
Collapse
|
14
|
Dulyan L, Talozzi L, Pacella V, Corbetta M, Forkel SJ, Thiebaut de Schotten M. Longitudinal prediction of motor dysfunction after stroke: a disconnectome study. Brain Struct Funct 2022; 227:3085-3098. [PMID: 36334132 PMCID: PMC9653357 DOI: 10.1007/s00429-022-02589-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/20/2022] [Indexed: 06/01/2023]
Abstract
Motricity is the most commonly affected ability after a stroke. While many clinical studies attempt to predict motor symptoms at different chronic time points after a stroke, longitudinal acute-to-chronic studies remain scarce. Taking advantage of recent advances in mapping brain disconnections, we predict motor outcomes in 62 patients assessed longitudinally two weeks, three months, and one year after their stroke. Results indicate that brain disconnection patterns accurately predict motor impairments. However, disconnection patterns leading to impairment differ between the three-time points and between left and right motor impairments. These results were cross-validated using resampling techniques. In sum, we demonstrated that while some neuroplasticity mechanisms exist changing the structure-function relationship, disconnection patterns prevail when predicting motor impairment at different time points after stroke.
Collapse
Affiliation(s)
- Lilit Dulyan
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France.
- Donders Centre for Brain Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Lia Talozzi
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
| | - Valentina Pacella
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
| | - Maurizio Corbetta
- Clinica Neurologica, Department of Neuroscience, University of Padova, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
- Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Stephanie J Forkel
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France.
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Donders Centre for Brain Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
- Department of Neurosurgery, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France.
| |
Collapse
|
15
|
Zhang N, Zhang H, Gao B, Miao Y, Liu A, Song Q, Lin L, Wang J. 3D Amide Proton Transfer Weighted Brain Tumor Imaging With Compressed SENSE: Effects of Different Acceleration Factors. Front Neurosci 2022; 16:876587. [PMID: 35692419 PMCID: PMC9178274 DOI: 10.3389/fnins.2022.876587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/13/2022] [Indexed: 12/05/2022] Open
Abstract
Objectives The aim of the current study was to evaluate the performance of compressed SENSE (CS) for 3D amide proton transfer weighted (APTw) brain tumor imaging with different acceleration factors (AFs), and the results were compared with those of conventional SENSE. Methods Approximately 51 patients with brain tumor (22 males, 49.95 ± 10.52 years) with meningiomas (n = 16), metastases (n = 12), or gliomas (n = 23) were enrolled. All the patients received 3D APTw imaging scans on a 3.0 T scanner with acceleration by CS (AFs: CS2, CS3, CS4, and CS5) and SENSE (AF: S1.6). Two readers independently and subjectively evaluated the APTw images relative to image quality and measured confidence concerning image blur, distortion, motion, and ghosting artifacts, lesion recognition, and contour delineation with a 5-point Likert scale. Mean amide proton transfer (APT) values of brain tumors (APTtumor), the contralateral normal-appearing white matter (APTCNAWM), and the peritumoral edema area (if present, APTedema) and the tumor volume (VAPT) were measured for objective evaluation and determination of the optimal AF. The Ki67 labeling index was also measured by using standard immunohistochemical staining procedures in samples from patients with gliomas, and the correlation between tumor APT values and the Ki67 index was analyzed. Results The image quality of AF = CS5 was significantly lower than that of other groups. VAPT showed significant differences among the six sequences in meningiomas (p = 0.048) and gliomas (p = 0.023). The pairwise comparison showed that the VAPT values of meningiomas measured from images by CS5 were significantly lower, and gliomas were significantly larger than those by SENSE1.6 and other CS accelerations, (p < 0.05). APTtumor (p = 0.191) showed no significant difference among the three types of tumors. The APTtumor values of gliomas measured by APTw images with the SENSE factor of 1.6 and the CS factor of 2, 3, and 4 (except for CS5) were all positively correlated with Ki67. Conclusion Compressed SENSE could be successfully extended to accelerated 3D APTw imaging of brain tumors without compromising image quality using the AF of 4.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Radiology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Haonan Zhang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingbing Gao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Miao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ailian Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingwei Song
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Qingwei Song,
| | - Liangjie Lin
- MSC Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| | - Jiazheng Wang
- MSC Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| |
Collapse
|
16
|
Zhou J, Zaiss M, Knutsson L, Sun PZ, Ahn SS, Aime S, Bachert P, Blakeley JO, Cai K, Chappell MA, Chen M, Gochberg DF, Goerke S, Heo HY, Jiang S, Jin T, Kim SG, Laterra J, Paech D, Pagel MD, Park JE, Reddy R, Sakata A, Sartoretti-Schefer S, Sherry AD, Smith SA, Stanisz GJ, Sundgren PC, Togao O, Vandsburger M, Wen Z, Wu Y, Zhang Y, Zhu W, Zu Z, van Zijl PCM. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors. Magn Reson Med 2022; 88:546-574. [PMID: 35452155 PMCID: PMC9321891 DOI: 10.1002/mrm.29241] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022]
Abstract
Amide proton transfer-weighted (APTw) MR imaging shows promise as a biomarker of brain tumor status. Currently used APTw MRI pulse sequences and protocols vary substantially among different institutes, and there are no agreed-on standards in the imaging community. Therefore, the results acquired from different research centers are difficult to compare, which hampers uniform clinical application and interpretation. This paper reviews current clinical APTw imaging approaches and provides a rationale for optimized APTw brain tumor imaging at 3 T, including specific recommendations for pulse sequences, acquisition protocols, and data processing methods. We expect that these consensus recommendations will become the first broadly accepted guidelines for APTw imaging of brain tumors on 3 T MRI systems from different vendors. This will allow more medical centers to use the same or comparable APTw MRI techniques for the detection, characterization, and monitoring of brain tumors, enabling multi-center trials in larger patient cohorts and, ultimately, routine clinical use.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Linda Knutsson
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medical Radiation Physics, Lund University, Lund, Sweden.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Peter Bachert
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael A Chappell
- Mental Health and Clinical Neurosciences and Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Physics, Vanderbilt University, Nashville, Tennessee, USA
| | - Steffen Goerke
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - John Laterra
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany.,Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Mark D Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ravinder Reddy
- Center for Advance Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - A Dean Sherry
- Advanced Imaging Research Center and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Pia C Sundgren
- Department of Diagnostic Radiology/Clinical Sciences Lund, Lund University, Lund, Sweden.,Lund University Bioimaging Center, Lund University, Lund, Sweden.,Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter C M van Zijl
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Larkin JR, Foo LS, Sutherland BA, Khrapitchev A, Tee YK. Magnetic Resonance pH Imaging in Stroke - Combining the Old With the New. Front Physiol 2022; 12:793741. [PMID: 35185600 PMCID: PMC8852727 DOI: 10.3389/fphys.2021.793741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
The study of stroke has historically made use of traditional spectroscopy techniques to provide the ground truth for parameters like pH. However, techniques like 31P spectroscopy have limitations, in particular poor temporal and spatial resolution, coupled with a need for a high field strength and specialized coils. More modern magnetic resonance spectroscopy (MRS)-based imaging techniques like chemical exchange saturation transfer (CEST) have been developed to counter some of these limitations but lack the definitive gold standard for pH that 31P spectroscopy provides. In this perspective, both the traditional (31P spectroscopy) and emerging (CEST) techniques in the measurement of pH for ischemic imaging will be discussed. Although each has its own advantages and limitations, it is likely that CEST may be preferable simply due to the hardware, acquisition time and image resolution advantages. However, more experiments on CEST are needed to determine the specificity of endogenous CEST to absolute pH, and 31P MRS can be used to calibrate CEST for pH measurement in the preclinical model to enhance our understanding of the relationship between CEST and pH. Combining the two imaging techniques, one old and one new, we may be able to obtain new insights into stroke physiology that would not be possible otherwise with either alone.
Collapse
Affiliation(s)
- James R. Larkin
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Lee Sze Foo
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Brad A. Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Alexandre Khrapitchev
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Yee Kai Tee
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| |
Collapse
|
18
|
Zöllner JP, Schmitt FC, Rosenow F, Kohlhase K, Seiler A, Strzelczyk A, Stefan H. Seizures and epilepsy in patients with ischaemic stroke. Neurol Res Pract 2021; 3:63. [PMID: 34865660 PMCID: PMC8647498 DOI: 10.1186/s42466-021-00161-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND With the increased efficacy of stroke treatments, diagnosis and specific treatment needs of patients with post-stroke seizures (PSS) and post-stroke epilepsy have become increasingly important. PSS can complicate the diagnosis of a stroke and the treatment of stroke patients, and can worsen post-stroke morbidity. This narrative review considers current treatment guidelines, the specifics of antiseizure treatment in stroke patients as well as the state-of-the-art in clinical and imaging research of post-stroke epilepsy. Treatment of PSS needs to consider indications for antiseizure medication treatment as well as individual clinical and social factors. Furthermore, potential interactions between stroke and antiseizure treatments must be carefully considered. The relationship between acute recanalizing stroke therapy (intravenous thrombolysis and mechanical thrombectomy) and the emergence of PSS is currently the subject of an intensive discussion. In the subacute and chronic post-stroke phases, important specific interactions between necessary antiseizure and stroke treatments (anticoagulation, cardiac medication) need to be considered. Among all forms of prevention, primary prevention is currently the most intensively researched. This includes specifically the repurposing of drugs that were not originally developed for antiseizure properties, such as statins. PSS are presently the subject of extensive basic clinical research. Of specific interest are the role of post-stroke excitotoxicity and blood-brain barrier disruption for the emergence of PSS in the acute symptomatic as well as late (> 1 week after the stroke) periods. Current magnetic resonance imaging research focussing on glutamate excitotoxicity as well as diffusion-based estimation of blood-brain barrier integrity aim to elucidate the pathophysiology of seizures after stroke and the principles of epileptogenesis in structural epilepsy in general. These approaches may also reveal new imaging-based biomarkers for prediction of PSS and post-stroke epilepsy. CONCLUSION PSS require the performance of individual risk assessments, accounting for the potential effectiveness and side effects of antiseizure therapy. The use of intravenous thrombolysis and mechanical thrombectomy is not associated with an increased risk of PSS. Advances in stroke imaging may reveal biomarkers for PSS.
Collapse
Affiliation(s)
- Johann Philipp Zöllner
- Department of Neurology and Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
| | | | - Felix Rosenow
- Department of Neurology and Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Konstantin Kohlhase
- Department of Neurology and Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Alexander Seiler
- Department of Neurology and Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Adam Strzelczyk
- Department of Neurology and Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Hermann Stefan
- Department of Neurology - Biomagnetism, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
19
|
Kakkar P, Kakkar T, Patankar T, Saha S. Current approaches and advances in the imaging of stroke. Dis Model Mech 2021; 14:273651. [PMID: 34874055 PMCID: PMC8669490 DOI: 10.1242/dmm.048785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A stroke occurs when the blood flow to the brain is suddenly interrupted, depriving brain cells of oxygen and glucose and leading to further cell death. Neuroimaging techniques, such as computed tomography and magnetic resonance imaging, have greatly improved our ability to visualise brain structures and are routinely used to diagnose the affected vascular region of a stroke patient's brain and to inform decisions about clinical care. Currently, these multimodal imaging techniques are the backbone of the clinical management of stroke patients and have immensely improved our ability to visualise brain structures. Here, we review recent developments in the field of neuroimaging and discuss how different imaging techniques are used in the diagnosis, prognosis and treatment of stroke. Summary: Stroke imaging has undergone seismic shifts in the past decade. Although magnetic resonance imaging (MRI) is superior to computed tomography in providing vital information, further research on MRI is still required to bring its full potential into clinical practice.
Collapse
Affiliation(s)
- Pragati Kakkar
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Tarun Kakkar
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | | | - Sikha Saha
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
20
|
Guo Z, Jiang Y, Qin X, Mu R, Meng Z, Zhuang Z, Liu F, Zhu X. Amide Proton Transfer-Weighted MRI Might Help Distinguish Amnestic Mild Cognitive Impairment From a Normal Elderly Population. Front Neurol 2021; 12:707030. [PMID: 34712196 PMCID: PMC8545995 DOI: 10.3389/fneur.2021.707030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: To evaluate whether 3D amide proton transfer weighted (APTw) imaging based on magnetization transfer analysis can be used as a novel imaging marker to distinguish amnestic mild cognitive impairment (aMCI) patients from the normal elderly population by measuring changes in APTw signal intensity in the hippocampus and amygdala. Materials and Methods: Seventy patients with aMCI and 74 age- and sex-matched healthy volunteers were recruited for routine MRI and APT imaging examinations. Magnetic transfer ratio asymmetry (MTRasym) of the amide protons (at 3.5 ppm), or APTw values, were measured in the bilateral hippocampus and amygdala on three consecutive cross-sectional APT images and were compared between the aMCI and control groups. The independent sample t-test was used to evaluate the difference in APTw values of the bilateral hippocampus and amygdala between the aMCI and control groups. Receiver operator characteristic analysis was used to assess the diagnostic performance of the APTw. The paired t-test was used to assess the difference in APTw values between the left and right hippocampus and amygdala, in both the aMCI and control groups. Results: The APTw values of the bilateral hippocampus and amygdala in the aMCI group were significantly higher than those in the control group (left hippocampus 1.01 vs. 0.77% p < 0.001; right hippocampus 1.02 vs. 0.74%, p < 0.001; left amygdala 0.98 vs. 0.70% p < 0.001; right amygdala 0.94 vs. 0.71%, p < 0.001). The APTw values of the left amygdala had the largest AUC (0.875) at diagnosis of aMCI. There was no significant difference in APTw values between the left and right hippocampus and amygdala, in either group. (aMCI group left hippocampus 1.01 vs. right hippocampus 1.02%, p = 0.652; healthy control group left hippocampus 0.77 vs. right hippocampus 0.74%, p = 0.314; aMCI group left amygdala 0.98 vs. right amygdala 0.94%, p = 0.171; healthy control group left amygdala 0.70 vs. right amygdala 0.71%, p = 0.726). Conclusion: APTw can be used as a new imaging marker to distinguish aMCI patients from the normal elderly population by indirectly reflecting the changes in protein content in the hippocampus and amygdala.
Collapse
Affiliation(s)
- Zixuan Guo
- Department of Medical Imaging, Guilin Medical University, Guilin, China.,Department of Medical Imaging, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yanchun Jiang
- Department of Neurology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiaoyan Qin
- Department of Medical Imaging, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Ronghua Mu
- Department of Medical Imaging, Guilin Medical University, Guilin, China.,Department of Medical Imaging, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Zhuoni Meng
- Department of Medical Imaging, Guilin Medical University, Guilin, China.,Department of Medical Imaging, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Zeyu Zhuang
- Department of Medical Imaging, Guilin Medical University, Guilin, China.,Department of Medical Imaging, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Fuzhen Liu
- Department of Medical Imaging, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiqi Zhu
- Department of Medical Imaging, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| |
Collapse
|
21
|
Zhang N, Kang J, Wang H, Liu A, Miao Y, Ma X, Song Q, Zhang L, Wang J, Shen Z, Xu X. Differentiation of fibroadenomas versus malignant breast tumors utilizing three-dimensional amide proton transfer weighted magnetic resonance imaging. Clin Imaging 2021; 81:15-23. [PMID: 34597999 DOI: 10.1016/j.clinimag.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To explore the value of amide proton transfer-weighted (APTw) magnetic resonance imaging (MRI) for differential diagnosis of fibroadenomas and malignant breast tumors. MATERIALS AND METHODS This prospective study enrolled 56 patients with suspected breast tumors and performed APTw imaging. Based on the histopathology results, patients were divided into group 1 with malignant breast tumors (n = 41) and group 2 with fibroadenomas (n = 15). The measured image parameters (APTw value, ADC value, type of Time of Intensity Curve, maximum tumor diameter in image) and the maximal diameter of the tumors measured from surgical resection were compared between the two groups, and the diagnostic performance based on these parameters was quantified with ROC curve. Spearman's correlation coefficient was used to analyze the association between APTw or ADC values and ER, PR, HER2, and Ki-67 expressions. RESULTS The intraclass correlation coefficients (ICC = 0.87 and 0.91) indicated a good inter-observer agreement of the measured APTw values. APTw values of malignant lesions were significantly higher than those of fibroadenomas (3.21 ± 1.04% vs 1.50 ± 0.54%, p < 0.001). Area under the curve (AUC) obtained from APTw imaging, DWI, DCE, APTw imaging+DWI, APTw imaging+DWI, and APTw imaging+DWI + DCE was 0.959, 0.897, 0.976, 0.997, and 1 respectively. The APTw value showed a negative correlation with ER expression (r = -0.357). CONCLUSION APTw imaging yielded similar diagnosis performance in discriminating fibroadenomas and malignant breast tumors when compared to the DCE and better than DWI imaging, and provided supplement information on tumor cell activity to DWI images. The APTw value showed correlations with some prognostic factors for breast cancer.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Jianyun Kang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Huali Wang
- Department of Pathology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Ailian Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Yanwei Miao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Xiaolu Ma
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Qingwei Song
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China.
| | - Lina Zhang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China.
| | - Jiazheng Wang
- MSC Clinical & Technical Solutions, Philips Healthcare, 16 Tianze Road, Beijing, PR China.
| | - Zhiwei Shen
- MSC Clinical & Technical Solutions, Philips Healthcare, 16 Tianze Road, Beijing, PR China.
| | - Xiaofang Xu
- MSC Clinical & Technical Solutions, Philips Healthcare, 16 Tianze Road, Beijing, PR China.
| |
Collapse
|
22
|
Foo LS, Harston G, Mehndiratta A, Yap WS, Hum YC, Lai KW, Mohamed Mukari SA, Mohd Zaki F, Tee YK. Clinical translation of amide proton transfer (APT) MRI for ischemic stroke: a systematic review (2003-2020). Quant Imaging Med Surg 2021; 11:3797-3811. [PMID: 34341751 PMCID: PMC8245939 DOI: 10.21037/qims-20-1339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/22/2021] [Indexed: 12/15/2022]
Abstract
Amide proton transfer (APT) magnetic resonance imaging (MRI) is a pH-sensitive imaging technique that can potentially complement existing clinical imaging protocol for the assessment of ischemic stroke. This review aims to summarize the developments in the clinical research of APT imaging of ischemic stroke after 17 years of progress since its first preclinical study in 2003. Three electronic databases: PubMed, Scopus, and Cochrane Library were systematically searched for articles reporting clinical studies on APT imaging of ischemic stroke. Only articles in English published between 2003 to 2020 that involved patients presenting ischemic stroke-like symptoms that underwent APT MRI were included. Of 1,093 articles screened, 14 articles met the inclusion criteria with a total of 282 patients that had been scanned using APT imaging. Generally, the clinical studies agreed APT effect to be hypointense in ischemic tissue compared to healthy tissue, allowing for the detection of ischemic stroke. Other uses of APT imaging have also been investigated in the studies, including penumbra identification, predicting long term clinical outcome, and serving as a biomarker for supportive treatment monitoring. The published results demonstrated the potential of APT imaging in these applications, but further investigations and larger trials are needed for conclusive evidence. Future studies are recommended to report the result of asymmetry analysis at 3.5 ppm along with the findings of the study to reduce this contribution to the heterogeneity of experimental methods observed and to facilitate effective comparison of results between studies and centers. In addition, it is important to focus on the development of fast 3D imaging for full volumetric ischemic tissue assessment for clinical translation.
Collapse
Affiliation(s)
- Lee Sze Foo
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | | | - Amit Mehndiratta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India
| | - Wun-She Yap
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Yan Chai Hum
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Khin Wee Lai
- Faculty of Engineering, Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Faizah Mohd Zaki
- Department of Radiology, Universiti Kebangsaan Malaysia Medical Center (UKMMC), Kuala Lumpur, Malaysia
| | - Yee Kai Tee
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| |
Collapse
|
23
|
Foo LS, Larkin JR, Sutherland BA, Ray KJ, Yap WS, Hum YC, Lai KW, Manan HA, Sibson NR, Tee YK. Study of common quantification methods of amide proton transfer magnetic resonance imaging for ischemic stroke detection. Magn Reson Med 2021; 85:2188-2200. [PMID: 33107119 DOI: 10.1002/mrm.28565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To assess the correlation and differences between common amide proton transfer (APT) quantification methods in the diagnosis of ischemic stroke. METHODS Five APT quantification methods, including asymmetry analysis and its variants as well as two Lorentzian model-based methods, were applied to data acquired from six rats that underwent middle cerebral artery occlusion scanned at 9.4T. Diffusion and perfusion-weighted images, and water relaxation time maps were also acquired to study the relationship of these conventional imaging modalities with the different APT quantification methods. RESULTS The APT ischemic area estimates had varying sizes (Jaccard index: 0.544 ≤ J ≤ 0.971) and had varying correlations in their distributions (Pearson correlation coefficient: 0.104 ≤ r ≤ 0.995), revealing discrepancies in the quantified ischemic areas. The Lorentzian methods produced the highest contrast-to-noise ratios (CNRs; 1.427 ≤ CNR ≤ 2.002), but generated APT ischemic areas that were comparable in size to the cerebral blood flow (CBF) deficit areas; asymmetry analysis and its variants produced APT ischemic areas that were smaller than the CBF deficit areas but larger than the apparent diffusion coefficient deficit areas, though having lower CNRs (0.561 ≤ CNR ≤ 1.083). CONCLUSION There is a need to further investigate the accuracy and correlation of each quantification method with the pathophysiology using a larger scale multi-imaging modality and multi-time-point clinical study. Future studies should include the magnetization transfer ratio asymmetry results alongside the findings of the study to facilitate the comparison of results between different centers and also the published literature.
Collapse
Affiliation(s)
- Lee Sze Foo
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
| | - James R Larkin
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kevin J Ray
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Wun-She Yap
- Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
| | - Yan Chai Hum
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Jalan Universiti, Kuala Lumpur, Malaysia
| | - Hanani Abdul Manan
- Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nicola R Sibson
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Yee Kai Tee
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
| |
Collapse
|
24
|
Dai Z, Kalra S, Mah D, Seres P, Sun H, Wu R, Wilman AH. Amide signal intensities may be reduced in the motor cortex and the corticospinal tract of ALS patients. Eur Radiol 2021; 31:1401-1409. [PMID: 32909054 DOI: 10.1007/s00330-020-07243-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/21/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The aim of the study is to assess amide concentration changes in ALS patients compared with healthy controls by using quantitative amide proton transfer (APT) and multiparameter magnetic resonance imaging, and testing its correlation with clinical scores. METHODS Sixteen ALS patients and sixteen healthy controls were recruited as part of the Canadian ALS Neuroimaging Consortium, and multimodal magnetic resonance imaging was performed at 3 T, including APT and diffusion imaging. Lorentz fitting was used to quantify the amide effect. Clinical disability was evaluated using the revised ALS functional rating scale (ALSFRS-R), and its correlation with image characteristics was assessed. The diagnostic performance of different imaging parameters was evaluated with receiver operating characteristic analysis. RESULTS Our results showed that the amide peak was significantly different between the motor cortex and other gray matter territories within the brain of ALS patients (p < 0.001). Compared with controls, amide signal intensities in ALS were significantly reduced in the motor cortex (p < 0.001) and corticospinal tract (p = 0.046), while abnormalities were not detected using routine imaging methods. There was no significant correlation between amide and ALSFRS-R score. The diagnostic accuracy of the amide peak was superior to that of diffusion imaging. CONCLUSIONS This study demonstrated changes of amide signal intensities in the motor cortex and corticospinal tract of ALS patients. KEY POINTS • The neurodegenerative disease amyotrophic lateral sclerosis (ALS) has a lack of objective imaging indicators for diagnosis and assessment. • Analysis of amide proton transfer imaging revealed changes in the motor cortex and corticospinal tract of ALS patients that were not visible on standard magnetic resonance imaging. • The diagnostic accuracy of the amide peak was superior to that of diffusion imaging.
Collapse
Affiliation(s)
- Zhuozhi Dai
- Department of Radiology, 2nd Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada
| | - Sanjay Kalra
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Dennell Mah
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada
| | - Hongfu Sun
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Renhua Wu
- Department of Radiology, 2nd Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada.
| |
Collapse
|
25
|
Momosaka D, Togao O, Kikuchi K, Kikuchi Y, Wakisaka Y, Hiwatashi A. Correlations of amide proton transfer-weighted MRI of cerebral infarction with clinico-radiological findings. PLoS One 2020; 15:e0237358. [PMID: 32790705 PMCID: PMC7425944 DOI: 10.1371/journal.pone.0237358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/23/2020] [Indexed: 01/01/2023] Open
Abstract
Objective To clarify the relationship between amide proton transfer-weighted (APTW) signal, which reflects intracellular pH, and clinico-radiological findings in patients with hyperacute to subacute cerebral infarction. Materials and methods Twenty-nine patients (median age, 70 years [IQR, 54 to 74]; 15 men) were retrospectively examined. The 10th, 25th, 50th, 75th, and 90th percentiles of APTW signal (APT10, APT25, APT50, APT75 and APT90, respectively) were measured within the infarction region-of-interest (ROI), and compared between poor prognosis and good prognosis groups (modified Rankin Scale [mRS] score ≥2 and mRS score <2, respectively). Correlations between APTW signal and time after onset, lesion size, National Institutes of Health Stroke Scale (NIHSS) score, mRS score, and mean apparent diffusion coefficient (ADC) were evaluated. Results The poor prognosis group had lower APT50, APT75, and APT90 than the good prognosis group (–0.66 [–1.19 to –0.27] vs. –0.09 [–0.62 to –0.21]; –0.27 [–0.63 to –0.01] vs. 0.31 [–0.15 to 1.06]; 0.06 [–0.21 to 0.34] vs. 0.93 [0.36 to 1.50] %; p <0.05, respectively). APT50 was positively correlated with time after onset (r = 0.37, p = 0.0471) and negatively with lesion size (r = –0.39, p = 0.0388). APT75 and APT90 were negatively correlated with NIHSS (r = –0.41 and –0.43; p <0.05, respectively). APT50, APT75 and APT90 were negatively correlated with mRS (r = –0.37, –0.52 and –0.57; p <0.05, respectively). APT10 and APT25 were positively correlated with mean ADC (r = 0.37 and 0.38; p <0.05, respectively). Conclusion We demonstrated correlations between APTW signals of infarctions and clinico-radiological findings in patients with hyperacute to subacute infarctions. The poor prognosis group had a lower APTW signal than the good prognosis group. APTW signal was reduced in large infarctions, infarctions with low ADC, and in patients with high NIHSS and mRS scores.
Collapse
Affiliation(s)
- Daichi Momosaka
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Hiwatashi
- Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
26
|
Chen Y, Dai Z, Fan R, Mikulis DJ, Qiu J, Shen Z, Wang R, Lai L, Tang Y, Li Y, Jia Y, Yan G, Wu R. Glymphatic System Visualized by Chemical-Exchange-Saturation-Transfer Magnetic Resonance Imaging. ACS Chem Neurosci 2020; 11:1978-1984. [PMID: 32492333 DOI: 10.1021/acschemneuro.0c00222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Dysfunction of the glymphatic system may play a significant role in the development of neurodegenerative diseases. However, in vivo imaging of the glymphatic system is challenging. In this study, we describe an unconventional MRI method for imaging the glymphatic system based on chemical exchange saturation transfer, which we tested in an in vivo porcine model of impaired glymphatic function. The blood, lymph, and cerebrospinal fluid (CSF) from one pig were used for testing the MRI effect in vitro at 7 Tesla (T). Unilateral deep cervical lymph node ligation models were then performed in 20 adult male Sprague-Dawley rats. The brains were scanned in vivo dynamically after surgery using the new MRI method. Behavioral tests were performed after each scanning session and the results were tested for correlations with the MRI signal intensity. Finally, the pathological assessment was conducted in the same brain slices. The special MRI effect in the lymph was evident at about 1.0 ppm in water and was distinguishable from those of blood and CSF. In the model group, the intensity of this MRI signal was significantly higher in the ipsilateral than in the contralateral hippocampus. The correlation between the signal abnormality and the behavioral score was significant (Pearson's, R2 = 0.9154, p < 0.005). We conclude that the novel MRI method can visualize the glymphatic system in vivo.
Collapse
Affiliation(s)
- Yuanfeng Chen
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Zhuozhi Dai
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Ruhang Fan
- Department of Pathology, Medical College of Shantou University, Guangdong, Shantou 515031, P.R. China
| | - David John Mikulis
- Division of Neuroradiology, Department of Medical Imaging, University Health Network, Toronto, Ontario M5T 2S7, Canada
| | - Jinming Qiu
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Zhiwei Shen
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Runrun Wang
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Lihua Lai
- Department of Radiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, P. R. China
| | - Yanyan Tang
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Yan Li
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Yanlong Jia
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Gen Yan
- Department of Radiology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian Province 361022, China
| | - Renhua Wu
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
- Provincial Key Laboratory of Medical Molecular Imaging, Guangdong, Shantou 515041, P.R. China
| |
Collapse
|
27
|
Jia Y, Geng K, Cheng Y, Li Y, Chen Y, Wu R. Nanomedicine Particles Associated With Chemical Exchange Saturation Transfer Contrast Agents in Biomedical Applications. Front Chem 2020; 8:326. [PMID: 32391334 PMCID: PMC7189014 DOI: 10.3389/fchem.2020.00326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Theranostic agents are particles containing both diagnostic and medicinal agents in a single platform. Theranostic approaches often employ nanomedicine because loading both imaging probes and medicinal drugs onto nanomedicine particles is relatively straightforward, which can simultaneously provide diagnostic and medicinal capabilities within a single agent. Such systems have recently been described as nanotheranostic. Currently, nanotheranostic particles incorporating medicinal drugs are being widely explored with multiple imaging methods, including computed tomography, positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, and fluorescence imaging. However, most of these particles are metal-based multifunctional nanotheranostic agents, which pose potential toxicity or radiation risks. Hence, alternative non-metallic and biocompatible nanotheranostic agents are urgently needed. Recently, nanotheranostic agents that combine medicinal drugs and chemical exchange saturated transfer (CEST) contrast agents have shown good promise because CEST imaging technology can utilize the frequency-selective radiofrequency pulse from exchangeable protons to indirectly image without requiring metals or radioactive agents. In this review, we mainly describe the fundamental principles of CEST imaging, features of nanomedicine particles, potential applications of nanotheranostic agents, and the opportunities and challenges associated with clinical transformations.
Collapse
Affiliation(s)
- Yanlong Jia
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Kuan Geng
- Department of Radiology, The First People's Hospital of Honghe Prefecture, Mengzi, China
| | - Yan Cheng
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yan Li
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yuanfeng Chen
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Renhua Wu
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
28
|
Comparison of the reproducibility of 2D and 3D amide proton transfer weighted imaging in intracranial rat gliomas at 3 T. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42058-020-00028-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Foo LS, Yap WS, Hum YC, Manan HA, Tee YK. Analysis of model-based and model-free CEST effect quantification methods for different medical applications. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 310:106648. [PMID: 31760147 DOI: 10.1016/j.jmr.2019.106648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) holds great potential to provide new metabolic information for clinical applications such as tumor, stroke and Parkinson's Disease diagnosis. Many active research and developments have been conducted to translate this emerging MRI technique for routine clinical applications. In general, there are two CEST quantification techniques: (i) model-free and (ii) model-based techniques. The reliability of these quantification techniques depends heavily on the experimental conditions and quality of the collected data. Errors such as noise may lead to misleading quantification results and thus inaccurate diagnosis when CEST imaging becomes a standard or routine imaging scan in the future. This paper investigates the accuracy and robustness of these quantification techniques under different signal-to-noise (SNR) levels and magnetic field strengths. The quantified CEST effect before and after adding random Gaussian White Noise using model-free and model-based quantification techniques were compared. It was found that the model-free technique consistently yielded larger average percentage error across all tested parameters compared to its model-based counterpart, and that the model-based technique could withstand SNR of about 3 times lower than the model-free technique. When applied on noisy brain tumor, ischemic stroke, and Parkinson's Disease clinical data, the model-free technique failed to produce significant differences between normal and abnormal tissue whereas the model-based technique consistently generated significant differences. Although the model-free technique was less accurate and robust, its simplicity and thus speed would still make it a good approximate when the SNR was high (>50) or when the CEST effect was large and well-defined. For more accurate CEST quantification, model-based techniques should be considered. When SNR was low (<50) and the CEST effect was small such as those acquired from clinical field strength scanners, which are generally 3T and below, model-based techniques should be considered over model-free counterpart to maintain an average percentage error of less than 44% even under very noisy condition as tested in this work.
Collapse
Affiliation(s)
- Lee Sze Foo
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Malaysia
| | - Wun-She Yap
- Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Malaysia
| | - Yan Chai Hum
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Malaysia
| | - Hanani Abdul Manan
- Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Malaysia
| | - Yee Kai Tee
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Malaysia.
| |
Collapse
|
30
|
Tang Y, Xiao G, Shen Z, Zhuang C, Xie Y, Zhang X, Yang Z, Guan J, Shen Y, Chen Y, Lai L, Chen Y, Chen S, Dai Z, Wang R, Wu R. Noninvasive Detection of Extracellular pH in Human Benign and Malignant Liver Tumors Using CEST MRI. Front Oncol 2020; 10:578985. [PMID: 33224880 PMCID: PMC7667286 DOI: 10.3389/fonc.2020.578985] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/05/2020] [Indexed: 02/05/2023] Open
Abstract
PURPOSE In this study, we aimed to use 3T magnetic resonance imaging (MRI), which is clinically available, to determine the extracellular pH (pHe) of liver tumors and prospectively evaluate the ability of chemical exchange saturation transfer (CEST) MRI to distinguish between benign and malignant liver tumors. METHODS Different radiofrequency irradiation schemes were assessed for ioversol-based pH measurements at 3T. CEST effects were quantified in vitro using the asymmetric magnetization transfer ratio (MTRasym) at 4.3 ppm from the corrected Z spectrum. Generalized ratiometric analysis was conducted by rationing resolved ioversol CEST effects at 4.3 ppm at a flip angle of 60 and 350°. Fifteen patients recently diagnosed with hepatic carcinoma and five patients diagnosed with hepatic hemangioma [1 male; mean age, 48.6 (range, 37-59) years] were assessed. RESULTS By conducting dual-power CEST MRI, the pH of solutions was determined to be 6.0-7.2 at 3T in vitro. In vivo, ioversol signal intensities in the tumor region showed that the extracellular pH in hepatic carcinoma was acidic(mean ± standard deviation, 6.66 ± 0.19), whereas the extracellular pH was more physiologically neutral in hemangioma (mean ± standard deviation, 7.34 ± 0.09).The lesion size was similar between CEST pH MRI and T2-weighted imaging. CONCLUSION dual-power CEST MRI can detect extracellular pH in human liver tumors and can provide molecular-level diagnostic tools for differentiating benign and malignant liver tumors at 3T.
Collapse
Affiliation(s)
- Yanyan Tang
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- Department of Medical Imaging, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Gang Xiao
- Department of Mathematics and Statistics, Hanshan Normal University, Chaozhou, China
| | | | - Caiyu Zhuang
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yudan Xie
- Department of General Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Xiaolei Zhang
- College of Air Traffic Management, Civil Aviation Flight University of China, Guanghan, China
| | - Zhongxian Yang
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Jitian Guan
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yuanyu Shen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yanzi Chen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Lihua Lai
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yuanfeng Chen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Shuo Chen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zhuozhi Dai
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Runrun Wang
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Renhua Wu
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- Provincial Key Laboratory of Medical Molecular Imaging, Shantou, China
- *Correspondence: Renhua Wu,
| |
Collapse
|
31
|
Li Y, Ge Z, Zhang Z, Shen Z, Wang Y, Zhou T, Wu R. Broad Learning Enhanced 1H-MRS for Early Diagnosis of Neuropsychiatric Systemic Lupus Erythematosus. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:8874521. [PMID: 33299467 PMCID: PMC7704182 DOI: 10.1155/2020/8874521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023]
Abstract
In this paper, we explore the potential of using the multivoxel proton magnetic resonance spectroscopy (1H-MRS) to diagnose neuropsychiatric systemic lupus erythematosus (NPSLE) with the assistance of a support vector machine broad learning system (BL-SVM). We retrospectively analysed 23 confirmed patients and 16 healthy controls, who underwent a 3.0 T magnetic resonance imaging (MRI) sequence with multivoxel 1H-MRS in our hospitals. One hundred and seventeen metabolic features were extracted from the multivoxel 1H-MRS image. Thirty-three metabolic features selected by the Mann-Whitney U test were considered to have a statistically significant difference (p < 0.05). However, the best accuracy achieved by conventional statistical methods using these 33 metabolic features was only 77%. We turned to develop a support vector machine broad learning system (BL-SVM) to quantitatively analyse the metabolic features from 1H-MRS. Although not all the individual features manifested statistics significantly, the BL-SVM could still learn to distinguish the NPSLE from the healthy controls. The area under the receiver operating characteristic curve (AUC), the sensitivity, and the specificity of our BL-SVM in predicting NPSLE were 95%, 95.8%, and 93%, respectively, by 3-fold cross-validation. We consequently conclude that the proposed system effectively and efficiently working on limited and noisy samples may brighten a noinvasive in vivo instrument for early diagnosis of NPSLE.
Collapse
Affiliation(s)
- Yan Li
- Department of Medical Imaging, The 2nd Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Zuhao Ge
- Department of Computer Science, Shantou University, Shantou 515041, China
| | - Zhiyan Zhang
- Department of Medical Imaging, Huizhou Central Hospital, Huizhou 516000, China
| | - Zhiwei Shen
- Department of Medical Imaging, The 2nd Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Yukai Wang
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou 515041, China
| | - Teng Zhou
- Department of Computer Science, Shantou University, Shantou 515041, China
- Key Laboratory of Intelligent Manufacturing Technology (Shantou University), Ministry of Education, Shantou 515063, China
| | - Renhua Wu
- Department of Medical Imaging, The 2nd Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
32
|
Sartoretti E, Sartoretti T, Wyss M, Becker AS, Schwenk Á, van Smoorenburg L, Najafi A, Binkert C, Thoeny HC, Zhou J, Jiang S, Graf N, Czell D, Sartoretti-Schefer S, Reischauer C. Amide Proton Transfer Weighted Imaging Shows Differences in Multiple Sclerosis Lesions and White Matter Hyperintensities of Presumed Vascular Origin. Front Neurol 2019; 10:1307. [PMID: 31920930 PMCID: PMC6914856 DOI: 10.3389/fneur.2019.01307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023] Open
Abstract
Objectives: To assess the ability of 3D amide proton transfer weighted (APTw) imaging based on magnetization transfer analysis to discriminate between multiple sclerosis lesions (MSL) and white matter hyperintensities of presumed vascular origin (WMH) and to compare APTw signal intensity of healthy white matter (healthy WM) with APTw signal intensity of MSL and WHM. Materials and Methods: A total of 27 patients (16 female, 11 males, mean age 39.6 years) with multiple sclerosis, 35 patients (17 females, 18 males, mean age 66.6 years) with small vessel disease (SVD) and 20 healthy young volunteers (9 females, 11 males, mean age 29 years) were included in the MSL, the WMH, and the healthy WM group. MSL and WMH were segmented on fluid attenuated inversion recovery (FLAIR) images underlaid onto APTw images. Histogram parameters (mean, median, 10th, 25th, 75th, 90th percentile) were calculated. Mean APTw signal intensity values in healthy WM were defined by "Region of interest" (ROI) measurements. Wilcoxon rank sum tests and receiver operating characteristics (ROC) curve analyses of clustered data were applied. Results: All histogram parameters except the 75 and 90th percentile were significantly different between MSL and WMH (p = 0.018-p = 0.034). MSL presented with higher median values in all parameters. The histogram parameters offered only low diagnostic performance in discriminating between MSL and WMH. The 10th percentile yielded the highest diagnostic performance with an AUC of 0.6245 (95% CI: [0.532, 0.717]). Mean APTw signal intensity values of MSL were significantly higher than mean values of healthy WM (p = 0.005). The mean values of WMH did not differ significantly from the values of healthy WM (p = 0.345). Conclusions: We found significant differences in APTw signal intensity, based on straightforward magnetization transfer analysis, between MSL and WMH and between MSL and healthy WM. Low AUC values from ROC analyses, however, suggest that it may be challenging to determine type of lesion with APTw imaging. More advanced analysis of the APT CEST signal may be helpful for further differentiation of MSL and WMH.
Collapse
Affiliation(s)
| | - Thomas Sartoretti
- Laboratory of Translational Nutrition Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Michael Wyss
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland.,Philips Healthsystems, Zurich, Switzerland
| | - Anton S Becker
- Laboratory of Translational Nutrition Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Árpád Schwenk
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland
| | | | - Arash Najafi
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Christoph Binkert
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Harriet C Thoeny
- Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Radiology, HFR Fribourg-Hôpital Cantonal, Fribourg, Switzerland
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | | | - David Czell
- Department of Neurology, Spital Linth, Uznach, Switzerland
| | | | - Carolin Reischauer
- Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Radiology, HFR Fribourg-Hôpital Cantonal, Fribourg, Switzerland
| |
Collapse
|
33
|
Mao Y, Zhuang Z, Chen Y, Zhang X, Shen Y, Lin G, Wu R. Imaging of glutamate in acute traumatic brain injury using chemical exchange saturation transfer. Quant Imaging Med Surg 2019; 9:1652-1663. [PMID: 31728309 DOI: 10.21037/qims.2019.09.08] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Chemical exchange saturation transfer (CEST) is an important contrast mechanism in the field of magnetic resonance imaging. Herein, we used CEST for glutamate (GluCEST) imaging to evaluate the Glu alterations in acute mild to moderate traumatic brain injury (TBI) and correlated such alterations with the cognitive outcome at 1-month postinjury. Methods Thirty-two patients with well-documented mild-to-moderate TBI and 15 healthy controls (HC group) underwent 3.0-Tesla magnetic resonance imaging (MRI) with GluCEST, and magnetic resonance spectroscopy (MRS) scans. The Montreal Cognitive Assessment (MoCA) examination was administered to all study subjects at 1-month postinjury for cognitive outcome acquisition and divided TBI patients into patients with good cognitive outcome (GCO group) and with poor cognitive outcome (PCO group). Results The GluCEST% values for the occipital gray matter (OGM) and bilateral parietooccipital white matter (PWM) were higher in the PCO group compared with the HC and GCO groups (P<0.05), whereas the GluCEST% value showed no significant differences between the GCO and HC groups (P>0.05). In comparison with HCs, TBI patients had a significantly increased GluCEST% value for the OGM and bilateral PWM (P<0.05). GluCEST performed better than MRS in the prediction of cognitive outcome for TBI patients (P<0.05). Conclusions Glu is significantly increased in acute TBI and strongly correlates with the cognitive outcome at 1month postinjury. GluCEST may supply new insight into TBI and help to improve the accuracy of short-term outcome prediction.
Collapse
Affiliation(s)
- Yifei Mao
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China.,Department of Radiology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Zerui Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Yanzi Chen
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Xiaolei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Yuanyu Shen
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Guisen Lin
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Renhua Wu
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| |
Collapse
|
34
|
Wang R, Wang C, Dai Z, Chen Y, Shen Z, Xiao G, Chen Y, Zhou JN, Zhuang Z, Wu R. An Amyloid-β Targeting Chemical Exchange Saturation Transfer Probe for In Vivo Detection of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:3859-3867. [PMID: 31343167 DOI: 10.1021/acschemneuro.9b00334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A reliable and reproducible detection of Aβ deposits would be beneficial for the early diagnosis of Alzheimer's disease (AD). In the present study, the feasibility of applying chemical exchange saturation transfer (CEST) for Aβ deposit detection using angiopep-2 as a probe was evaluated, and it was demonstrated that CEST could detect angiopep-2 and Aβ-angiopep-2 aggregates in vitro. Furthermore, APP/PS1 mice injected with angiopep-2 exhibited a significantly higher in vivo CEST effect when compared with controls. The distribution of Aβ deposits detected by CEST imaging was consistent with the histological staining results. The present study is the first to report a reliable exogenous CEST probe to noninvasively evaluate Aβ deposits in APP/PS1 mice. Furthermore, these results demonstrate the potential for clinical AD diagnosis and Aβ-targeted drug therapy assessment using CEST imaging with the angiopep-2 probe.
Collapse
Affiliation(s)
- Runrun Wang
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Chenwei Wang
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230000 , P. R. China
| | - Zhuozhi Dai
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Yanzi Chen
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Zhiwei Shen
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Gang Xiao
- Department of Mathematics and Statistics , Hanshan Normal University , Chaozhou 515000 , P. R. China
| | - Yuanfeng Chen
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Jiang-Ning Zhou
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230000 , P. R. China
- Center for Excellence in Brain Science and Intelligence Technology , Chinese Academy of Sciences , Shanghai 200031 , China
| | - Zerui Zhuang
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Renhua Wu
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| |
Collapse
|
35
|
Wang R, Chen P, Shen Z, Lin G, Xiao G, Dai Z, Zhang B, Chen Y, Lai L, Zong X, Li Y, Tang Y, Wu R. Brain Amide Proton Transfer Imaging of Rat With Alzheimer's Disease Using Saturation With Frequency Alternating RF Irradiation Method. Front Aging Neurosci 2019; 11:217. [PMID: 31507405 PMCID: PMC6713910 DOI: 10.3389/fnagi.2019.00217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/02/2019] [Indexed: 02/05/2023] Open
Abstract
Amyloid-β (Aβ) deposits and some proteins play essential roles in the pathogenesis of Alzheimer's disease (AD). Amide proton transfer (APT) imaging, as an imaging modality to detect tissue protein, has shown promising features for the diagnosis of AD disease. In this study, we chose 10 AD model rats as the experimental group and 10 sham-operated rats as the control group. All the rats underwent a Y-maze test before APT image acquisition, using saturation with frequency alternating RF irradiation (APTSAFARI) method on a 7.0 T animal MRI scanner. Compared with the control group, APT (3.5 ppm) values of brain were significantly reduced in AD models (p < 0.002). The APTSAFARI imaging is more significant than APT imaging (p < 0.0001). AD model mice showed spatial learning and memory loss in the Y-maze experiment. In addition, there was significant neuronal loss in the hippocampal CA1 region and cortex compared with sham-operated rats. In conclusion, we demonstrated that APT imaging could potentially provide molecular biomarkers for the non-invasive diagnosis of AD. APTSAFARI MRI could be used as an effective tool to improve the accuracy of diagnosis of AD compared with conventional APT imaging.
Collapse
Affiliation(s)
- Runrun Wang
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Peidong Chen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zhiwei Shen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- Philips Healthcare, Shantou, China
| | - Guisen Lin
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Gang Xiao
- Department of Mathematics and Statistics, Hanshan Normal University, Chaozhou, China
| | - Zhuozhi Dai
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Bingna Zhang
- Translational Medicine, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yuanfeng Chen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Lihua Lai
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Xiaodan Zong
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yan Li
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yanyan Tang
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Renhua Wu
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- *Correspondence: Renhua Wu,
| |
Collapse
|