1
|
Kim H, Lee SR, Shin HJ, Jang S, Kim SH, Lee JS, Kim HD, Ko A, Kang HC. Clinical Manifestations and Treatments of Patients With Tuberous Sclerosis With Subependymal Giant Cell Astrocytoma. Pediatr Neurol 2025; 166:1-6. [PMID: 40020251 DOI: 10.1016/j.pediatrneurol.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND This study aims to investigate the clinical and genetic characteristics of patients with tuberous sclerosis complex (TSC) with subependymal giant cell astrocytomas (SEGAs). METHODS We conducted a retrospective study involving 263 patients with TSC, comparing clinical histories, genetic variants, and imaging data between patients with and without SEGAs. Additionally, we analyzed brain magnetic resonance imaging (MRI) findings of patients with TSC with SEGAs and evaluated the efficacy of everolimus in reducing SEGA volume. RESULTS SEGA was identified in 34 (12.9%) patients with TSC. The prevalence of pathogenic TSC2 variants was significantly higher in patients with SEGAs compared with those without SEGA. Patients with SEGAs also exhibited increased frequencies of retinal hamartomas, renal cysts, and hepatic angiomyolipomas. SEGAs were present in the initial brain imaging of 28 (82.4%) patients. Everolimus significantly reduced SEGA volume, with a median reduction of 33.7%. The most substantial reduction occurred during the first year of treatment, with a median decrease of 28.1%. CONCLUSIONS This study highlights that patients TSC with SEGAs are more likely to harbor pathogenic variants in the TSC2 gene and present with extracerebral manifestations of TSC, including retinal hamartomas, renal cysts, and hepatic angiomyolipomas. Most SEGAs were detectable from the initial brain imaging, suggesting that their presence can often be anticipated at the time of diagnosis. Everolimus proved effective and safe in significantly reducing SEGA volume during the first year of treatment in pediatric patients, although the rate of volume reduction decreased in subsequent years.
Collapse
Affiliation(s)
- Hun Kim
- Division of Pediatric Neurology, Department of Pediatrics, Hanim Precision Medicine Center, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Ryul Lee
- Division of Pediatric Neurology, Department of Pediatrics, Hanim Precision Medicine Center, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hui Jin Shin
- Division of Pediatric Neurology, Department of Pediatrics, Hanim Precision Medicine Center, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Shinyoung Jang
- Division of Pediatric Neurology, Department of Pediatrics, Hanim Precision Medicine Center, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se Hee Kim
- Division of Pediatric Neurology, Department of Pediatrics, Hanim Precision Medicine Center, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Department of Pediatrics, Hanim Precision Medicine Center, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heung Dong Kim
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ara Ko
- Division of Pediatric Neurology, Department of Pediatrics, Hanim Precision Medicine Center, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Hanim Precision Medicine Center, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Ritter DM, Twardowski S, Franz DN. Treating subependymal giant cell astrocytoma in patients with tuberous sclerosis complex: an update of the literature. Expert Rev Neurother 2025; 25:389-396. [PMID: 40052854 DOI: 10.1080/14737175.2025.2472922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Subependymal giant cell astrocytomas (SEGAs) are one of the predominant features of the tuberous sclerosis complex (TSC). Before the use of mTOR inhibitors (mTORi; everolimus and sirolimus) in TSC, many patients had to undergo surgical operations (both preemptively and emergently). However, with mTORis gaining increased use, the role of medical and surgical therapy in SEGA is unclear. AREAS COVERED The authors have based this review on publications listed in PubMed that delve into the role of surgery and mTORi in the treatment of SEGAs. EXPERT OPINION There is no sizable head-to-head comparison of surgery and medical therapy in treating SEGA. Factors that reduce the ability to do these types of studies are the lack of uniform diagnosis of SEGA, provider preference for treatment, and variability in each treatment group (dosing of mTORis and various surgical providers). However, with the safety of mTORi, the authors recommend starting mTORi therapy for any growth in a nodule on serial scans and relying on surgery only for failed mTORi therapy.
Collapse
Affiliation(s)
- David M Ritter
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sara Twardowski
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - David N Franz
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
3
|
Holler BM, Evans AR, York A, Graffeo CS. Subependymal Giant Cell Astrocytoma in an Adult without Tuberous Sclerosis: Systematic Review and Illustrative Case Example. J Neurol Surg Rep 2025; 86:e31-e35. [PMID: 40018440 PMCID: PMC11867713 DOI: 10.1055/a-2530-5965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/27/2024] [Indexed: 03/01/2025] Open
Abstract
Background Subependymal giant cell astrocytoma (SEGA) is a rare neoplasm arising from subependymal tissue. Predominantly associated with the tuberous sclerosis complex (TSC), SEGA may present with a range of diverse symptoms, most commonly seizures or neurocutaneous features of TSC. We present a novel case of sporadic SEGA in a 59-year-old woman who presented with acute intraparenchymal hemorrhage (IPH). Methods Systematic literature review and illustrative case example. Results A 59-year-old woman presented with a headache decreased level of consciousness, and acute IPH involving the anterior septum pellucidum and right medial caudate head. MRI was concerning for an underlying neoplasm, which grew slowly on follow-up imaging, prompting microsurgical resection. A gross total resection was achieved, and postoperative pathology confirmed SEGA (WHO grade I) without TSC1/2 mutation. She remained disease-free and neurologically intact at 1-year follow-up. A systematic review identified seven publications that revealed pathologically confirmed SEGA in nine adult patients without TSC. Headache, papilledema, and visual disturbances were the most common presenting symptoms. Treatment protocols included microsurgical resection versus biopsy followed by radiographic surveillance, and the overall rate of symptom-free survival was at least 80% as of the last follow-up. Conclusion We report the tenth case of sporadic SEGA in an adult patient without TSC, as well as an associated systematic review of this rare neoplastic entity. Further study is required to identify risk factors for the development of sporadic SEGA, as well as potential avenues for the management of this disease that may depart from the standard protocol in pediatric TSC patients.
Collapse
Affiliation(s)
- Brandon M Holler
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Alexander R Evans
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Abigail York
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Christopher S Graffeo
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
4
|
Pucko E, Sulejczak D, Ostrowski RP. Subependymal Giant Cell Astrocytoma: The Molecular Landscape and Treatment Advances. Cancers (Basel) 2024; 16:3406. [PMID: 39410026 PMCID: PMC11475231 DOI: 10.3390/cancers16193406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Subependymal giant cell astrocytoma (SEGA) is most often found in patients with TSC (Tuberous Sclerosis Complex). Although it has been classified as a benign tumor, it may create a serious medical problem leading to grave consequences, including young patient demise. Surgery and chemotherapy belong to the gold standard of treatment. A broader pharmacological approach involves the ever-growing number of rapalogs and ATP-competitive inhibitors, as well as compounds targeting other kinases, such as dual PI3K/mTOR inhibitors and CK2 kinase inhibitors. Novel approaches may utilize noncoding RNA-based therapeutics and are extensively investigated to this end. The purpose of our review was to characterize SEGA and discuss the latest trends in the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Emanuela Pucko
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 St., 02-106 Warsaw, Poland;
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 St., 02-106 Warsaw, Poland
| | - Robert P. Ostrowski
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 St., 02-106 Warsaw, Poland;
| |
Collapse
|
5
|
Arredondo KH, Jülich K, Roach ES. Tuberous sclerosis complex: Diagnostic features, surveillance, and therapeutic strategies. Semin Pediatr Neurol 2024; 51:101155. [PMID: 39389658 DOI: 10.1016/j.spen.2024.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024]
Abstract
Tuberous sclerosis complex (TSC) is a rare neurocutaneous disorder of mTOR pathway dysregulation resulting from pathogenic variants in the TSC1 or TSC2 genes. Expression of this disorder may involve abnormal tissue growth and dysfunction within the brain, kidneys, heart, lungs, eyes, skin, bones, and teeth. Neurological manifestations can include subependymal giant cell astrocytomas (SEGAs), high rates of infantile spasms, drug-resistant epilepsy, developmental delay, cognitive impairment, autism spectrum disorder, and other neurobehavioral manifestations. Here we review the potential clinical manifestations of TSC by system, recommended diagnostic and surveillance testing, genetic testing, currently available therapeutic options, and considerations for education and social support resources given the unique challenges of this multi-system disorder.
Collapse
Affiliation(s)
- Kristen H Arredondo
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, TX.
| | - Kristina Jülich
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, TX.
| | - E Steve Roach
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, TX.
| |
Collapse
|
6
|
Vasseghi M, Behan C, Connolly A, Cunningham D, Dempsey E, Flynn C, Galvin M, Griffin G, Moloney P, Murphy M, Owen Y, O’Malley S, O’Rourke G, O’Sullivan O, Doherty CP. Widespread service fragmentation for patients and families with tuberous sclerosis complex (TSC) in the Republic of Ireland. JOURNAL OF RARE DISEASES (BERLIN, GERMANY) 2024; 3:24. [PMID: 39165678 PMCID: PMC11330946 DOI: 10.1007/s44162-024-00049-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 08/22/2024]
Abstract
Background Tuberous sclerosis complex (TSC) is a rare approximate 1:6000 birth incidence, a genetic disease with a wide variability of physical and neuropsychiatric symptoms. Patients require lifelong care from multiple healthcare specialities, for which International and United Kingdom (UK) TSC consensus recommendations exist. Personalised care delivered by a centralised coordinated team of TSC experts is recommended. There is no such service for the estimated 600 TSC patients in the Republic of Ireland (ROI) and there is a paucity of information regarding the healthcare of this group. Purpose Evaluate the baseline care of patients with TSC attending epilepsy services in the Republic of Ireland (ROI) against UK TSC consensus recommendations. Methods Patients with a diagnosis of TSC attending 12 adult and paediatric epilepsy centres in the ROI were identified. Clinical audits measured the baseline care of a subset of these patients against UK, TSC clinical recommendations. Data was anonymised and analysed at Trinity College Dublin. Results One hundred thirty-five TSC patients attending twelve epilepsy centres were identified. Adults (n = 67) paediatric (n = 68). The care of 83 patients was audited (n = 63 ≥ 18 years) and (n = 20 < 18 years). Many baseline tests were completed, however, they required intra or interhospital referral. Care appears fragmented and there was no evidence of formal disease surveillance plans. Conclusions The number of TSC patients attending epilepsy services is lower than expected (n = 135). Specialist services and treatments for TSC are available through informal referral pathways. Although UK, TSC consensus baseline recommendations are roughly adhered to, care is fragmented. Increased coordination of care could benefit disease management. Supplementary Information The online version contains supplementary material available at 10.1007/s44162-024-00049-8.
Collapse
Affiliation(s)
- M. Vasseghi
- Academic Unit of Neurology, School of Medicine, Trinity College Dublin (The University of Dublin), Dublin, Ireland
- FutureNeuro, SFI Research Centre, Dublin, Ireland
| | - C. Behan
- Academic Unit of Neurology, School of Medicine, Trinity College Dublin (The University of Dublin), Dublin, Ireland
- St James’s Hospital, Dublin, Ireland
- FutureNeuro, SFI Research Centre, Dublin, Ireland
| | - A. Connolly
- Childrens Health Ireland at Tallaght, Dublin, Ireland
| | - D. Cunningham
- Childrens Health Ireland at Tallaght, Dublin, Ireland
| | - E. Dempsey
- Mater Misericordiae Hospital, Dublin, Ireland
| | - C. Flynn
- St. Vincent’s University Hospital, Dublin, Ireland
| | - M. Galvin
- Academic Unit of Neurology, School of Medicine, Trinity College Dublin (The University of Dublin), Dublin, Ireland
- FutureNeuro, SFI Research Centre, Dublin, Ireland
| | - G. Griffin
- Childrens Health Ireland, Dublin, Ireland
| | | | - M. Murphy
- Cork University Hospital, Cork, Ireland
| | - Y. Owen
- St. Vincent’s University Hospital, Dublin, Ireland
| | - S. O’Malley
- Childrens Health Ireland at Temple Street, Dublin, Ireland
| | | | | | - C. P. Doherty
- Academic Unit of Neurology, School of Medicine, Trinity College Dublin (The University of Dublin), Dublin, Ireland
- St James’s Hospital, Dublin, Ireland
- FutureNeuro, SFI Research Centre, Dublin, Ireland
| |
Collapse
|
7
|
Nibe P, Bavikar R, Gore C, Bhuibhar G. Subependymal Giant Cell Astrocytomas Without Tuberous Sclerosis: A Case Report on a Rare Medical Condition. Cureus 2024; 16:e64313. [PMID: 39130912 PMCID: PMC11316845 DOI: 10.7759/cureus.64313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Subependymal giant cell astrocytomas (SEGAs) are benign, slow-growing, noninvasive tumors frequently associated with the tuberous sclerosis complex (TSC). The tumor's location and the patient's age should be considered carefully before diagnosis. Considering SEGA as a differential diagnosis, even in adult patients without TSC, is essential. In the present case, a 22-year-old male presented with a progressive headache, dizziness, and blurring of vision. Radiological investigations confirmed the site of the tumor, and a positive expression of thyroid transcription factor 1 in the ganglion cell component, along with the absence of germline mutation in TSC1 and TSC2, led to the final diagnosis of SEGA without TSC.
Collapse
Affiliation(s)
- Pranjali Nibe
- Department of Pathology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Rupali Bavikar
- Department of Pathology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Charusheela Gore
- Department of Pathology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Gayatri Bhuibhar
- Department of Pathology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| |
Collapse
|
8
|
Goncalves FG, Mahecha-Carvajal ME, Desa A, Yildiz H, Talbeya JK, Moreno LA, Viaene AN, Vossough A. Imaging of supratentorial intraventricular masses in children: a pictorial review-part 2. Neuroradiology 2024; 66:699-716. [PMID: 38085360 PMCID: PMC11031612 DOI: 10.1007/s00234-023-03253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/13/2023] [Indexed: 12/22/2023]
Abstract
PURPOSE This article is the second in a two-part series aimed at exploring the spectrum of supratentorial intraventricular masses in children. In particular, this part delves into masses originating from cells of the ventricular lining, those within the septum pellucidum, and brain parenchyma cells extending into the ventricles. The aim of this series is to offer a comprehensive understanding of these supratentorial intraventricular masses, encompassing their primary clinical findings and histological definitions. METHODS We conducted a review and analysis of relevant epidemiological data, the current genetics/molecular classifications as per the fifth edition of the World Health Organization (WHO) Classification of Tumors of the Central Nervous System (WHO CNS5), and imaging findings. Each supratentorial intraventricular mass was individually evaluated, with a detailed discussion on its clinical and histological features. RESULTS This article covers a range of supratentorial intraventricular masses observed in children. These include colloid cysts, subependymal giant cell astrocytomas, ependymomas, gangliogliomas, myxoid glioneuronal tumors, central neurocytomas, high-grade gliomas, pilocytic astrocytomas, cavernous malformations, and other embryonal tumors. Each mass type is characterized both clinically and histologically, offering an in-depth review of their individual imaging characteristics. CONCLUSION The WHO CNS5 introduces notable changes, emphasizing the vital importance of molecular diagnostics in classifying pediatric central nervous system tumors. These foundational shifts have significant potential to impact management strategies and, as a result, the outcomes of intraventricular masses in children.
Collapse
Affiliation(s)
| | | | - Aishwary Desa
- Drexel University College of Medicine Philadelphia, Philadelphia, PA, USA
| | - Harun Yildiz
- Department of Radiology, Dortcelik Children's Hospital, Bursa, Turkey
| | | | - Luz Angela Moreno
- Pediatric Imaging, Department of Radiology, Fundación Hospital La Misericordia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Angela N Viaene
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Pathology Department, Children´s Hospital of Philadelphia, Philadelphia, USA
| | - Arastoo Vossough
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Radiology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
9
|
Na B, Shah S, Nghiemphu PL. Cancer Predisposition Syndromes in Neuro-oncology. Semin Neurol 2024; 44:16-25. [PMID: 38096910 DOI: 10.1055/s-0043-1777702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Although most primary central and peripheral nervous system (NS) tumors occur sporadically, there are a subset that may arise in the context of a cancer predisposition syndrome. These syndromes occur due to a pathogenic mutation in a gene that normally functions as a tumor suppressor. With increased understanding of the molecular pathogenesis of these tumors, more people have been identified with a cancer predisposition syndrome. Identification is crucial, as this informs surveillance, diagnosis, and treatment options. Moreover, relatives can also be identified through genetic testing. Although there are many cancer predisposition syndromes that increase the risk of NS tumors, in this review, we focus on three of the most common cancer predisposition syndromes, neurofibromatosis type 1, neurofibromatosis type 2, and tuberous sclerosis complex type 1 and type 2, emphasizing the clinical manifestations, surveillance guidelines, and treatment options.
Collapse
Affiliation(s)
- Brian Na
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Shilp Shah
- Department of Bioengineering, UCLA Samueli School of Engineering, Los Angeles, California
| | | |
Collapse
|
10
|
Dias SF, Richards O, Elliot M, Chumas P. Pediatric-Like Brain Tumors in Adults. Adv Tech Stand Neurosurg 2024; 50:147-183. [PMID: 38592530 DOI: 10.1007/978-3-031-53578-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Pediatric brain tumors are different to those found in adults in pathological type, anatomical site, molecular signature, and probable tumor drivers. Although these tumors usually occur in childhood, they also rarely present in adult patients, either as a de novo diagnosis or as a delayed recurrence of a pediatric tumor in the setting of a patient that has transitioned into adult services.Due to the rarity of pediatric-like tumors in adults, the literature on these tumor types in adults is often limited to small case series, and treatment decisions are often based on the management plans taken from pediatric studies. However, the biology of these tumors is often different from the same tumors found in children. Likewise, adult patients are often unable to tolerate the side effects of the aggressive treatments used in children-for which there is little or no evidence of efficacy in adults. In this chapter, we review the literature and summarize the clinical, pathological, molecular profile, and response to treatment for the following pediatric tumor types-medulloblastoma, ependymoma, craniopharyngioma, pilocytic astrocytoma, subependymal giant cell astrocytoma, germ cell tumors, choroid plexus tumors, midline glioma, and pleomorphic xanthoastrocytoma-with emphasis on the differences to the adult population.
Collapse
Affiliation(s)
- Sandra Fernandes Dias
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Division of Pediatric Neurosurgery, University Children's Hospital of Zurich - Eleonor Foundation, Zurich, Switzerland
| | - Oliver Richards
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Martin Elliot
- Department of Paediatric Oncology and Haematology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Paul Chumas
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
11
|
Riley VA, Shankar V, Holmberg JC, Sokolov AM, Neckles VN, Williams K, Lyman R, Mackay TF, Feliciano DM. Tsc2 coordinates neuroprogenitor differentiation. iScience 2023; 26:108442. [PMID: 38107199 PMCID: PMC10724693 DOI: 10.1016/j.isci.2023.108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/22/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem cells (NSCs) of the ventricular-subventricular zone (V-SVZ) generate numerous cell types. The uncoupling of mRNA transcript availability and translation occurs during the progression from stem to differentiated states. The mTORC1 kinase pathway acutely controls proteins that regulate mRNA translation. Inhibiting mTORC1 during differentiation is hypothesized to be critical for brain development since somatic mutations of mTORC1 regulators perturb brain architecture. Inactivating mutations of TSC1 or TSC2 genes cause tuberous sclerosis complex (TSC). TSC patients have growths near the striatum and ventricles. Here, it is demonstrated that V-SVZ NSC Tsc2 inactivation causes striatal hamartomas. Tsc2 removal altered translation factors, translatomes, and translational efficiency. Single nuclei RNA sequencing following in vivo loss of Tsc2 revealed changes in NSC activation states. The inability to decouple mRNA transcript availability and translation delayed differentiation leading to the retention of immature phenotypes in hamartomas. Taken together, Tsc2 is required for translational repression and differentiation.
Collapse
Affiliation(s)
- Victoria A. Riley
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Vijay Shankar
- Department of Biochemistry and Genetics, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | | | - Aidan M. Sokolov
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | | | - Kaitlyn Williams
- Clemson University Genomics and Bioinformatics Facility (CUGBF), Clemson University, Clemson, SC, USA
| | - Rachel Lyman
- Department of Biochemistry and Genetics, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Trudy F.C. Mackay
- Department of Biochemistry and Genetics, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - David M. Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| |
Collapse
|
12
|
Calderón-Garcidueñas AL, Piña-Ballantyne SA, Espinosa-Aguilar EJ. Subependymal Giant Cell Astrocytoma Non-Associated With Tuberous Sclerosis Complex and Expression of OCT-4 and INI-1: A Case Report. Cureus 2023; 15:e39187. [PMID: 37378241 PMCID: PMC10292187 DOI: 10.7759/cureus.39187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Subependymal giant cell astrocytoma (SEGA) is a rare, slow-growing tumor with a dual (neuroglial) component that is typically associated with tuberous sclerosis complex (TSC). We present the case of a healthy 19-year-old man with mild occipital trauma followed by two weeks of intense headache, with no response to analgesics. Imaging studies revealed a well-defined tumor in the left paraventricular zone. A biopsy showed a SEGA (GFAP+, NF+, nestin+, CK-EA3/EA4+, and TTF1+). TSC was ruled out. An immunohistochemistry (IHC) panel showed aberrant cytoplasmic expression of octamer-binding transcription factor 4 (OCT-4) in endothelial cells, pericytes, and some astrocyte-type cells; integrase interactor 1 (INI-1) expression was observed in the cytoplasm of neoplastic cells; SEGA was not associated with TSC; the expression of nestin and OCT-4 suggested their origin in neuroepithelial stem cells; thyroid transcription factor 1 (TTF-1) expression supported its origin in diencephalic structures. Tuberin expression was decreased. An aberrant pattern of INI-1 was observed, which, together with OCT-4 findings, has not been previously described.
Collapse
|
13
|
Subependymal Giant Cell Astrocytomas in Tuberous Sclerosis Complex-Current Views on Their Pathogenesis and Management. J Clin Med 2023; 12:jcm12030956. [PMID: 36769603 PMCID: PMC9917805 DOI: 10.3390/jcm12030956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction, Tuberous sclerosis complex (TSC) is an autosomal-dominant disorder caused by mutations inactivating TSC1 or TSC2 genes and characterized by the presence of tumors involving many organs, including the brain, heart, kidneys, and skin. Subependymal giant cell astrocytoma (SEGA) is a slow-growing brain tumor almost exclusively associated with TSC. STATE OF THE ART Despite the fact that SEGAs are benign, they require well-considered decisions regarding the timing and modality of pharmacological or surgical treatment. In TSC children and adolescents, SEGA is the major cause of mortality and morbidity. CLINICAL IMPLICATIONS Until recently, surgical resection has been the standard therapy for SEGAs but the discovery of the role of the mTOR pathway and the introduction of mTOR inhibitors to clinical practice changed the therapeutic landscape of these tumors. In the current paper, we discuss the pros and cons of mTOR inhibitors and surgical approaches in SEGA treatment. FUTURE DIRECTIONS In 2021, the International Tuberous Sclerosis Complex Consensus Group proposed a new integrative strategy for SEGA management. In the following review, we discuss the proposed recommendations and report the results of the literature search for the latest treatment directions.
Collapse
|
14
|
Ghani I, Patel S, Ghimire P, Bodi I, Bhangoo R, Vergani F, Ashkan K, Lavrador JP. Case report: 'Photodynamics of Subependymal Giant Cell Astrocytoma with 5-Aminolevulinic acid'. Front Surg 2023; 9:1065979. [PMID: 36684213 PMCID: PMC9853524 DOI: 10.3389/fsurg.2022.1065979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/02/2022] [Indexed: 01/07/2023] Open
Abstract
Subependymal Giant Cell Astrocytoma (SEGA) is a common diagnosis in patients with Tuberous Sclerosis. Although surgical treatment is often required, resection may entail a significant risk for cognitive function given the anatomical relation with critical structures such as the fornices and subgenual area. Therefore, target subtotal resections using minimal invasive approaches focused in the higher metabolic areas are valuable options to preserve quality of life while addressing specific problems caused by the tumor, such as hydrocephalus or progressive growth of a specific component of the tumor. In this report, the authors explore the potential role of 5-ALA in the identification of highly metabolic areas during SEGA resection in the context of minimal invasive approaches.
Collapse
Affiliation(s)
- Imran Ghani
- King's Neuro Lab, Department of Neurosurgery, London, United Kingdom
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Sabina Patel
- King's Neuro Lab, Department of Neurosurgery, London, United Kingdom
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Prajwal Ghimire
- School of Biomedical Engineering and Imaging Studies, King's College London, London, United Kingdom
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Istvan Bodi
- Department of Neuropathology, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Francesco Vergani
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Jose Pedro Lavrador
- King's Neuro Lab, Department of Neurosurgery, London, United Kingdom
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
15
|
Wu PB, Filley AC, Miller ML, Bruce JN. Benign Glioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:31-71. [PMID: 37452934 DOI: 10.1007/978-3-031-23705-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Benign glioma broadly refers to a heterogeneous group of slow-growing glial tumors with low proliferative rates and a more indolent clinical course. These tumors may also be described as "low-grade" glioma (LGG) and are classified as WHO grade I or II lesions according to the Classification of Tumors of the Central Nervous System (CNS) (Louis et al. in Acta Neuropathol 114:97-109, 2007). Advances in molecular genetics have improved understanding of glioma tumorigenesis, leading to the identification of common mutation profiles with significant treatment and prognostic implications. The most recent WHO 2016 classification system has introduced several notable changes in the way that gliomas are diagnosed, with a new emphasis on molecular features as key factors in differentiation (Wesseling and Capper in Neuropathol Appl Neurobiol 44:139-150, 2018). Benign gliomas have a predilection for younger patients and are among the most frequently diagnosed tumors in children and young adults (Ostrom et al. in Neuro Oncol 22:iv1-iv96, 2020). These tumors can be separated into two clinically distinct subgroups. The first group is of focal, well-circumscribed lesions that notably are not associated with an increased risk of malignant transformation. Primarily diagnosed in pediatric patients, these WHO grade I tumors may be cured with surgical resection alone (Sturm et al. in J Clin Oncol 35:2370-2377, 2017). Recurrence rates are low, and the prognosis for these patients is excellent (Ostrom et al. in Neuro Oncol 22:iv1-iv96, 2020). Diffuse gliomas are WHO grade II lesions with a more infiltrative pattern of growth and high propensity for recurrence. These tumors are primarily diagnosed in young adult patients, and classically present with seizures (Pallud et al. Brain 137:449-462, 2014). The term "benign" is a misnomer in many cases, as the natural history of these tumors is with malignant transformation and recurrence as grade III or grade IV tumors (Jooma et al. in J Neurosurg 14:356-363, 2019). For all LGG, surgery with maximal safe resection is the treatment of choice for both primary and recurrent tumors. The goal of surgery should be for gross total resection (GTR), as complete tumor removal is associated with higher rates of tumor control and seizure freedom. Chemotherapy and radiation therapy (RT), while not typically a component of first-line treatment in most cases, may be employed as adjunctive therapy in high-risk or recurrent tumors and in some select cases. The prognosis of benign gliomas varies widely; non-infiltrative tumor subtypes generally have an excellent prognosis, while diffusely infiltrative tumors, although slow-growing, are eventually fatal (Sturm et al. in J Clin Oncol 35:2370-2377, 2017). This chapter reviews the shared and unique individual features of the benign glioma including diffuse glioma, pilocytic astrocytoma and pilomyxoid astrocytoma (PMA), subependymal giant cell astrocytoma (SEGA), pleomorphic xanthoastrocytoma (PXA), subependymoma (SE), angiocentric glioma (AG), and chordoid glioma (CG). Also discussed is ganglioglioma (GG), a mixed neuronal-glial tumor that represents a notable diagnosis in the differential for other LGG (Wesseling and Capper 2018). Ependymomas of the brain and spinal cord, including major histologic subtypes, are discussed in other chapters.
Collapse
Affiliation(s)
- Peter B Wu
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, USA
| | - Anna C Filley
- Department of Neurosurgery, Columbia University Medical Center, New York, USA
| | - Michael L Miller
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, USA
| | - Jeffrey N Bruce
- Department of Neurosurgery, Columbia University Medical Center, New York, USA.
| |
Collapse
|
16
|
Pereira CCDS, Dantas FDG, Manreza MLGD. Clinical profile of tuberous sclerosis complex patients with and without epilepsy: a need for awareness for early diagnosis. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:1004-1010. [PMID: 36535284 PMCID: PMC9770081 DOI: 10.1055/s-0042-1758456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a multisystemic disorder. Its clinical features manifest differently in several organs, prompting the need for better knowledge. OBJECTIVE The goal of the present study is to evaluate the neurological findings of TSC, such as cerebral lesions and epilepsy, and to raise awareness of non-neurological findings that could contribute to an earlier diagnosis and treatment. METHODS This was a natural history study of patients with a definitive diagnosis of TSC who were referred to a specialized outpatient clinic and followed-up for 2 years with clinical and radiological exams. RESULTS A total of 130 TSC patients (59 males [45.4%], mean age 20.4 years old [1 to 56 years old]); 107 patients (82.3%) were diagnosed with epilepsy. Seizures predominantly began at < 1 year old (72.8%); focal seizures predominated (86.9%); epileptic spasms occurred in 34.5% of patients, and refractory epilepsy was present in 55.1%. Neuropsychiatric disorders, cortical tubers and cerebellar tubers were significantly more frequent in the epilepsy group. Moreover, rhabdomyomas were significantly more frequent in the epilepsy group (p = 0.044), while lymphangioleiomyomatosis was significantly less frequent in the epilepsy group (p = 0.009). Other non-neurological findings did not differ significantly between the groups with and without epilepsy. CONCLUSIONS The present study of TSC patients demonstrated the predominantly neurological involvement and significantly higher proportion of TSC-associated neuropsychiatric disorders in the epilepsy group. Higher proportions of cortical and cerebellar tubers may be a risk factor for epilepsy and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Conceição Campanario da Silva Pereira
- Universidade de São Paulo, Hospital das Clinicas de São Paulo, Departamento de Neurologia Infantil, São Paulo SP, Brazil.,Address for correspondence Conceição Campanario da Silva Pereira
| | - Felipe Diego Gomes Dantas
- Universidade de São Paulo, Hospital das Clínicas de São Paulo, Departamento de Neurorradiologia, São Paulo SP, Brazil.
| | | |
Collapse
|
17
|
Patil P, Pencheva BB, Patil VM, Fangusaro J. Nervous system (NS) Tumors in Cancer Predisposition Syndromes. Neurotherapeutics 2022; 19:1752-1771. [PMID: 36056180 PMCID: PMC9723057 DOI: 10.1007/s13311-022-01277-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Genetic syndromes which develop one or more nervous system (NS) tumors as one of the manifestations can be grouped under the umbrella term of NS tumor predisposition syndromes. Understanding the underlying pathological pathways at the molecular level has led us to many radical discoveries, in understanding the mechanisms of tumorigenesis, tumor progression, interactions with the tumor microenvironment, and development of targeted therapies. Currently, at least 7-10% of all pediatric cancers are now recognized to occur in the setting of genetic predisposition to cancer or cancer predisposition syndromes. Specifically, the cancer predisposition rate in pediatric patients with NS tumors has been reported to be as high as 15%, though it can approach 50% in certain tumor types (i.e., choroid plexus carcinoma associated with Li Fraumeni Syndrome). Cancer predisposition syndromes are caused by pathogenic variation in genes that primarily function as tumor suppressors and proto-oncogenes. These variants are found in the germline or constitutional DNA. Mosaicism, however, can affect only certain tissues, resulting in varied manifestations. Increased understanding of the genetic underpinnings of cancer predisposition syndromes and the ability of clinical laboratories to offer molecular genetic testing allows for improvement in the identification of these patients. The identification of a cancer predisposition syndrome in a CNS tumor patient allows for changes to medical management to be made, including the initiation of cancer surveillance protocols. Finally, the identification of at-risk biologic relatives becomes feasible through cascade (genetic) testing. These fundamental discoveries have also broadened the horizon of novel therapeutic possibilities and have helped to be better predictors of prognosis and survival. The treatment paradigm of specific NS tumors may also vary based on the patient's cancer predisposition syndrome and may be used to guide therapy (i.e., immune checkpoint inhibitors in constitutional mismatch repair deficiency [CMMRD] predisposition syndrome) [8]. Early diagnosis of these cancer predisposition syndromes is therefore critical, in both unaffected and affected patients. Genetic counselors are uniquely trained master's level healthcare providers with a focus on the identification of hereditary disorders, including hereditary cancer, or cancer predisposition syndromes. Genetic counseling, defined as "the process of helping people understand and adapt to the medical, psychological and familial implications of genetic contributions to disease" plays a vital role in the adaptation to a genetic diagnosis and the overall management of these diseases. Cancer predisposition syndromes that increase risks for NS tumor development in childhood include classic neurocutaneous disorders like neurofibromatosis type 1 and type 2 (NF1, NF2) and tuberous sclerosis complex (TSC) type 1 and 2 (TSC1, TSC2). Li Fraumeni Syndrome, Constitutional Mismatch Repair Deficiency, Gorlin syndrome (Nevoid Basal Cell Carcinoma), Rhabdoid Tumor Predisposition syndrome, and Von Hippel-Lindau disease. Ataxia Telangiectasia will also be discussed given the profound neurological manifestations of this syndrome. In addition, there are other cancer predisposition syndromes like Cowden/PTEN Hamartoma Tumor Syndrome, DICER1 syndrome, among many others which also increase the risk of NS neoplasia and are briefly described. Herein, we discuss the NS tumor spectrum seen in the abovementioned cancer predisposition syndromes as with their respective germline genetic abnormalities and recommended surveillance guidelines when applicable. We conclude with a discussion of the importance and rationale for genetic counseling in these patients and their families.
Collapse
Affiliation(s)
- Prabhumallikarjun Patil
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Bojana Borislavova Pencheva
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Vinayak Mahesh Patil
- Intensive Care Unit Medical Officer, District Hospital Vijayapura, Karnataka, India
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
18
|
Rudà R, Capper D, Waldman AD, Pallud J, Minniti G, Kaley TJ, Bouffet E, Tabatabai G, Aronica E, Jakola AS, Pfister SM, Schiff D, Lassman AB, Solomon DA, Soffietti R, Weller M, Preusser M, Idbaih A, Wen PY, van den Bent MJ. EANO - EURACAN - SNO Guidelines on circumscribed astrocytic gliomas, glioneuronal, and neuronal tumors. Neuro Oncol 2022; 24:2015-2034. [PMID: 35908833 PMCID: PMC9713532 DOI: 10.1093/neuonc/noac188] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the new WHO 2021 Classification of CNS Tumors the chapter "Circumscribed astrocytic gliomas, glioneuronal and neuronal tumors" encompasses several different rare tumor entities, which occur more frequently in children, adolescents, and young adults. The Task Force has reviewed the evidence of diagnostic and therapeutic interventions, which is low particularly for adult patients, and draw recommendations accordingly. Tumor diagnosis, based on WHO 2021, is primarily performed using conventional histological techniques; however, a molecular workup is important for differential diagnosis, in particular, DNA methylation profiling for the definitive classification of histologically unresolved cases. Molecular factors are increasing of prognostic and predictive importance. MRI finding are non-specific, but for some tumors are characteristic and suggestive. Gross total resection, when feasible, is the most important treatment in terms of prolonging survival and achieving long-term seizure control. Conformal radiotherapy should be considered in grade 3 and incompletely resected grade 2 tumors. In recurrent tumors reoperation and radiotherapy, including stereotactic radiotherapy, can be useful. Targeted therapies may be used in selected patients: BRAF and MEK inhibitors in pilocytic astrocytomas, pleomorphic xanthoastrocytomas, and gangliogliomas when BRAF altered, and mTOR inhibitor everolimus in subependymal giant cells astrocytomas. Sequencing to identify molecular targets is advocated for diagnostic clarification and to direct potential targeted therapies.
Collapse
Affiliation(s)
- Roberta Rudà
- Corresponding Author: Roberta Rudà, Department of Neurology, Castelfranco Veneto/Treviso Hospital and Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Turin, Italy ()
| | - David Capper
- Department of Neuropathology, Charité Universitätsmedizin Berlin, Berlin and German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adam D Waldman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh and Department of Brain Science, Imperial College London, United Kingdom
| | - Johan Pallud
- Department of Neurosurgery, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy and IRCCS Neuromed (IS), Italy
| | - Thomas J Kaley
- Department of Neurology, Brain Tumor Service, Memorial Sloan Kettering Cancer Center, New York, US
| | - Eric Bouffet
- Division of Paediatric Oncology, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Ghazaleh Tabatabai
- Department of Neurology & Neurooncology, University of Tübingen, German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Germany
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam and Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Asgeir S Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden. Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden
| | - Stefan M Pfister
- Hopp Children´s Cancer Center Heidelberg (KiTZ), Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), and Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, US
| | - Andrew B Lassman
- Division of Neuro-Oncology, Department of Neurology and the Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY, US
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, CA, US
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience, University and City of Health and Science Hospital, Turin, Italy
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | | | | |
Collapse
|
19
|
Subependymal giant-cell astrocytoma: a surgical review in the modern era of mTOR inhibitors. Neurochirurgie 2022; 68:627-636. [PMID: 35907444 DOI: 10.1016/j.neuchi.2022.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/05/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Surgical removal has been the historical treatment for subependymal giant-cell astrocytoma (SEGA) in tuberous sclerosis complex (TSC) patients. In the past decade, mTOR inhibitors have shown efficacy in the treatment of SEGA, significantly reducing tumor size. The aim of this study was to assess the safety and efficacy of surgical treatment at a time when mTOR inhibitors have changed standard treatment. MATERIAL AND METHODS We conducted a single-center retrospective study including all patients treated by surgery for SEGA from October 2003 to September 2019, with a review of all SEGA surgical case series, following PRISMA guidelines. Research focused on demographics, surgical indications, surgical approach, use of CSF shunt, morbidity and mortality, resection quality, recurrence rate and treatment of recurrence, follow-up and long-term clinical status. RESULTS Eleven patients were included, with a median age at surgery of 16.0 years. Gross total resection was achieved in 8 patients (72%), with no permanent morbidity. One patient needed further surgery for tumor recurrence. Eighteen studies were reviewed, totaling 263 TSC patients affected by SEGA and 286 surgical procedures. Gross total resection was achieved in 81.1% of cases, mortality was 4.9% and permanent morbidity 6.1%. Tumor recurrence occurred in 11.5% of cases, and was secondary to partial tumor resection at first surgery in the majority of cases. CONCLUSION Surgical treatment of SEGA is still a valid and effective option. Morbidity is low and complete disappearance of SEGA can be achieved in selected cases.
Collapse
|
20
|
Kim JG, Choi JC, Kim HJ, Rhim JK, Jung TJ, Hyun CL, Joo JD. Bilateral posterior cerebral artery stroke following transtentorial herniation caused by a subependymal giant cell astrocytoma in a patient with tuberous sclerosis: a case report. JOURNAL OF NEUROCRITICAL CARE 2021. [DOI: 10.18700/jnc.210034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: Acute increased intracranial pressure (IICP) is a life-threatening condition that requires urgent treatment. Rapid IICP with hydrocephalus may be complicated by ischemic stroke, convulsions, loss of consciousness, brain herniation, and death. Extremely rare complications include intracranial vessel entrapment and ischemic stroke due to sudden IICP in cases with benign tumors. Case Report: We report a case of bilateral posterior cerebral artery region infarction and complicated hydrocephalus with subependymal giant cell astrocytoma in a patient with tuberous sclerosis. Conclusion: We postulate that the temporary IICP induced by seizure led to transient bilateral posterior cerebral artery entrapment, causing ischemic stroke without vascular occlusion.
Collapse
|
21
|
Sidira C, Vargiami E, Anastasiou A, Talimtzi P, Kyriazi M, Dragoumi P, Spanou M, Ntinopoulos A, Dalpa E, Evangeliou A, Zafeiriou DI. The Complex Interplay of Cortex, Cerebellum, and Age in a Cohort of Pediatric Patients With Tuberous Sclerosis Complex. Pediatr Neurol 2021; 123:43-49. [PMID: 34399109 DOI: 10.1016/j.pediatrneurol.2021.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/09/2021] [Accepted: 06/22/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND The neurodevelopmental impairment in tuberous sclerosis complex (TSC) has a multifactorial origin. Various factors have been proposed as predictors of neurological outcome such as tuber load, seizure onset, and TSC2 mutation. Cerebellar lesions have been associated with worse neuroradiological phenotype, but their contribution is not well understood. METHODS A partly retrospective and partly prospective pediatric cohort study was conducted at three hospitals in Greece between 2015 and 2020. Patients aged ≤ 18 years with a confirmed TSC daignosis were included and underwent brain imaging, a semistructured interview (authorized Greek version of the tuberous sclerosis-associated neuropsychiatric disorders, or TAND, checklist), and intellectual ability assessment. RESULTS The study populations consisted of 45 patients with TSC (22 females, 23 males; mean age 9.53 years). Twenty patients (44.4%) had cerebellar lesions. Cerebellar involvement was the most powerful predictor of tuber load (P = 0.03). Cerebellar lesions were associated with giant cell astrocytomas (SEGAs) (P = 0.01) and severe neurological outcome (P = 0.01). Even though in the univariate analysis early seizure onset, tuber load, and cerebellar involvement were associated with intellectual impairment and neurological severity, none of them was an independent predictor of cognitive outcome and neurological severity. CONCLUSIONS Cerebellar lesions are common among individuals with TSC. Cerebellar involvement correlates with supratentorial derangement and the development of SEGAs, which is suggestive of a more severe clinical and neuroradiological phenotype. Cerebellar involvement and early seizure onset were not independent predictors of either neurological severity or intellectual disability or neurobehavioral outcome; their role in TSC clinical phenotype should be further investigated.
Collapse
Affiliation(s)
- Christina Sidira
- 1st Paediatric Department, Developmental Centre "A. Fokas", Aristotle University of Thessaloniki, "Hippokration" General Hospital, Thessaloniki, Greece
| | - Efthymia Vargiami
- 1st Paediatric Department, Developmental Centre "A. Fokas", Aristotle University of Thessaloniki, "Hippokration" General Hospital, Thessaloniki, Greece
| | | | - Persefoni Talimtzi
- Department of Hygiene, Social-Preventive Medicine & Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Kyriazi
- 1st Paediatric Department, Developmental Centre "A. Fokas", Aristotle University of Thessaloniki, "Hippokration" General Hospital, Thessaloniki, Greece
| | - Pinelopi Dragoumi
- 1st Paediatric Department, Developmental Centre "A. Fokas", Aristotle University of Thessaloniki, "Hippokration" General Hospital, Thessaloniki, Greece
| | - Maria Spanou
- 3(rd)Pediatric Department, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | - Argirios Ntinopoulos
- 3(rd)Pediatric Department, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | - Efterpi Dalpa
- 4(th) Pediatric Department, Aristotle University of Thessaloniki, "Papageorgiou" General Hospital, Thessaloniki, Greece
| | - Athanasios Evangeliou
- 4(th) Pediatric Department, Aristotle University of Thessaloniki, "Papageorgiou" General Hospital, Thessaloniki, Greece
| | - Dimitrios I Zafeiriou
- 1st Paediatric Department, Developmental Centre "A. Fokas", Aristotle University of Thessaloniki, "Hippokration" General Hospital, Thessaloniki, Greece.
| |
Collapse
|
22
|
Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Management Recommendations. Pediatr Neurol 2021; 123:50-66. [PMID: 34399110 DOI: 10.1016/j.pediatrneurol.2021.07.011] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease affecting multiple body systems with wide variability in presentation. In 2013, Pediatric Neurology published articles outlining updated diagnostic criteria and recommendations for surveillance and management of disease manifestations. Advances in knowledge and approvals of new therapies necessitated a revision of those criteria and recommendations. METHODS Chairs and working group cochairs from the 2012 International TSC Consensus Group were invited to meet face-to-face over two days at the 2018 World TSC Conference on July 25 and 26 in Dallas, TX, USA. Before the meeting, working group cochairs worked with group members via e-mail and telephone to (1) review TSC literature since the 2013 publication, (2) confirm or amend prior recommendations, and (3) provide new recommendations as required. RESULTS Only two changes were made to clinical diagnostic criteria reported in 2013: "multiple cortical tubers and/or radial migration lines" replaced the more general term "cortical dysplasias," and sclerotic bone lesions were reinstated as a minor criterion. Genetic diagnostic criteria were reaffirmed, including highlighting recent findings that some individuals with TSC are genetically mosaic for variants in TSC1 or TSC2. Changes to surveillance and management criteria largely reflected increased emphasis on early screening for electroencephalographic abnormalities, enhanced surveillance and management of TSC-associated neuropsychiatric disorders, and new medication approvals. CONCLUSIONS Updated TSC diagnostic criteria and surveillance and management recommendations presented here should provide an improved framework for optimal care of those living with TSC and their families.
Collapse
|
23
|
Cervesi C, Di Marzio GM, Kiren V, Cattaruzzi E, Costa P, Carrozzi M. Sclerosi tuberosa ed everolimus: una nuova storia. MEDICO E BAMBINO 2021; 40:443-449. [DOI: 10.53126/meb40443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Tuberous sclerosis complex (TSC) is a rare autosomal dominant disorder, due to inactivating muta-tions of TSC1 or TSC2 mTOR pathway genes and is characterized by variable multisystem manifestations ranging from hamartomas to malignant neoplasms. It frequently associated to seizures, intellectual disability and behavioural disorders. Surgical treatment has traditionally been used to manage subependymal giant cells astrocytomas (SEGA). The introduction of mTOR inhibitor rapamycin, with its definite role both as primary and as adjuvant treatment, has significantly modified the management opportunities in the clinical practice. It is important to consider both treatment options in a balanced way and not only the SEGA, but also the individual patient and their associated comorbidities. The pros and the cons of both options should be discussed by a multidisciplinary team before establishing an individualized treatment recommendation. The paper reports the case of a patient with an asymptomatic SEGA who was treated with everolimus. The treatment was effective in reducing the size of the tumour, it was safe and well tolerated.
Collapse
Affiliation(s)
- Chiara Cervesi
- SC di Neuropsichiatria Infantile, IRCCS Materno-Infantile “Burlo Garofolo”, Trieste
| | | | - Valentina Kiren
- SC di Neuropsichiatria Infantile, IRCCS Materno-Infantile “Burlo Garofolo”, Trieste
| | | | - Paola Costa
- SC di Neuropsichiatria Infantile, IRCCS Materno-Infantile “Burlo Garofolo”, Trieste
| | - Marco Carrozzi
- SC di Neuropsichiatria Infantile, IRCCS Materno-Infantile “Burlo Garofolo”, Trieste
| |
Collapse
|
24
|
Rebaine Y, Nasser M, Girerd B, Leroux C, Cottin V. Tuberous sclerosis complex for the pulmonologist. Eur Respir Rev 2021; 30:30/161/200348. [PMID: 34348978 PMCID: PMC9488995 DOI: 10.1183/16000617.0348-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare multisystem genetic disorder affecting almost all organs with no sex predominance. TSC has an autosomal-dominant inheritance and is caused by a heterozygous mutation in either the TSC1 or TSC2 gene leading to hyperactivation of the mammalian target of rapamycin (mTOR). TSC is associated with several pulmonary manifestations including lymphangioleiomyomatosis (LAM), multifocal micronodular pneumocyte hyperplasia (MMPH) and chylous effusions. LAM is a multisystem disorder characterised by cystic destruction of lung parenchyma, and may occur in either the setting of TSC (TSC-LAM) or sporadically (S-LAM). LAM occurs in 30–40% of adult females with TSC at childbearing age and is considered a nonmalignant metastatic neoplasm of unknown origin. TSC-LAM is generally milder and, unlike S-LAM, may occur in males. It manifests as multiple, bilateral, diffuse and thin-walled cysts with normal intervening lung parenchyma on chest computed tomography. LAM is complicated by spontaneous pneumothoraces in up to 70% of patients, with a high recurrence rate. mTOR inhibitors are the treatment of choice for LAM with moderately impaired lung function or chylous effusion. MMPH, manifesting as multiple solid and ground-glass nodules on high-resolution computed tomography, is usually harmless with no need for treatment. Tuberous sclerosis complex is associated with diverse pulmonary manifestations including LAM, multiple micronodular pneumocyte hyperplasia and chylous effusions. LAM occurs in 30–40% of adult females with tuberous sclerosis complex.https://bit.ly/3iLqZ08
Collapse
Affiliation(s)
- Yasmine Rebaine
- Dept of Respiratory Medicine, National Reference Coordinating Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France.,Division of Pulmonology, Dept of Medicine, Hôpital Charles-LeMoyne, Montréal, QC, Canada.,Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Both authors contributed equally
| | - Mouhamad Nasser
- Dept of Respiratory Medicine, National Reference Coordinating Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France.,Both authors contributed equally
| | - Barbara Girerd
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Caroline Leroux
- Université Claude Bernard Lyon 1, Université de Lyon, INRAE, UMR754, Member of ERN-LUNG, RespiFil, OrphaLung, Lyon, France
| | - Vincent Cottin
- Dept of Respiratory Medicine, National Reference Coordinating Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France .,Université Claude Bernard Lyon 1, Université de Lyon, INRAE, UMR754, Member of ERN-LUNG, RespiFil, OrphaLung, Lyon, France
| |
Collapse
|
25
|
Tomoto K, Fujimoto A, Inenaga C, Okanishi T, Imai S, Ogai M, Fukunaga A, Nakamura H, Sato K, Obana A, Masui T, Arai Y, Enoki H. Experience using mTOR inhibitors for subependymal giant cell astrocytoma in tuberous sclerosis complex at a single facility. BMC Neurol 2021; 21:139. [PMID: 33784976 PMCID: PMC8011204 DOI: 10.1186/s12883-021-02160-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Subependymal giant cell astrocytoma (SEGA) is occasionally seen in tuberous sclerosis complex (TSC). Two main options are currently available for treating SEGA: surgical resection or pharmacotherapy using mammalian target of rapamycin inhibitors (mTORi). We hypothesized that opportunities for surgical resection of SEGA would have reduced with the advent of mTORi. METHODS We retrospectively reviewed the charts of patients treated between August 1979 and July 2020, divided into a pre-mTORi era group (Pre-group) of patients treated before November 2012, and a post-mTORi era group (Post-group) comprising patients treated from November 2012, when mTORi became available in Japan for SEGA. We compared groups in terms of treatment with surgery or mTORi. We also reviewed SEGA size, rate of acute hydrocephalus, recurrence of SEGA, malignant transformation and adverse effects of mTORi. RESULTS In total, 120 patients with TSC visited our facility, including 24 patients with SEGA. Surgical resection was significantly more frequent in the Pre-group (6 of 7 patients, 86 %) than in the Post-group (2 of 17 patients, 12 %; p = 0.001). Acute hydrocephalus was seen in 1 patient (4 %), and no patients showed malignant transformation of SEGA. The group treated using mTORi showed significantly smaller SEGA compared with the group treated under a wait-and-see policy (p = 0.012). Adverse effects of pharmacotherapy were identified in seven (64 %; 6 oral ulcers, 1 irregular menstruation) of the 11 patients receiving mTORi. CONCLUSIONS The Post-group underwent surgery significantly less often than the Pre-group. Since the treatment option to use mTORi in the treatment of SEGA in TSC became available, opportunities for surgical resection have decreased in our facility.
Collapse
Affiliation(s)
- Kyoichi Tomoto
- Department of Neurosurgery, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Ayataka Fujimoto
- Department of Neurosurgery, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan.
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan.
| | - Chikanori Inenaga
- Department of Neurosurgery, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Tohru Okanishi
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Shin Imai
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Masaaki Ogai
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Akiko Fukunaga
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Hidenori Nakamura
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Keishiro Sato
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Akira Obana
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Takayuki Masui
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Yoshifumi Arai
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Hideo Enoki
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| |
Collapse
|
26
|
Tabori U, Das A, Hawkins C. Germline predisposition to glial neoplasms in children and young adults: A narrative review. GLIOMA 2021. [DOI: 10.4103/glioma.glioma_12_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Marques R, Thole H, Ruiz de Morales JG. TuberOus SClerosis Registry to Increase Disease Awareness: A Review on Alignment of Its Planning, Execution, and Publications With European Medicines Agency Guidelines. Front Neurol 2020; 11:365. [PMID: 32499750 PMCID: PMC7243042 DOI: 10.3389/fneur.2020.00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/14/2020] [Indexed: 11/30/2022] Open
Abstract
Patient registries offer a powerful and practical means of real-world data collection system for rare diseases. Many guidelines have been released to standardize patient registries, although most of them do not address issues specific to rare disease patient registries. In November 2018, the European Medicines Agency (EMA) released a draft discussion paper on methodological and operational aspects of disease registries and made proposals on good registry practice (henceforth referred to as EMA guidance). This guidance was highly anticipated by all stakeholders with a strong interest toward governance, operationalization, and study conduct in registries. With improved clarity toward conduct of patient registries, this guidance will encourage overall registry use in regulatory decision making. TuberOus SClerosis registry to increase disease Awareness (TOSCA) was an international, multicenter patient registry to assess the manifestations, interventions, and outcomes in patients with tuberous sclerosis complex (TSC). The planning of TOSCA was initiated in 2011, patient enrolment commenced in August 2012, and final analysis database was locked in August 2017, long before the EMA guidance was released. Moreover, initial publications of TOSCA, such as first interim analysis, had also been published before the release of the EMA guidance. Extensive feedback and lessons learned from the TOSCA registry have provided insights into rare disease registry planning and operations. In this paper, we tested the recommendations from the EMA guidance on a rare disease registry, that is, the TOSCA registry. We elaborated the compliance and deviations of the TOSCA registry from the EMA guidance on a point-by-point basis. A careful observation revealed that in most aspects, TOSCA was in compliance with EMA. However, there were several practical issues identified in TOSCA, which deviated from EMA guidance. These issues demonstrate that deviations from EMA guidance, particularly in rare disease registries, do not signify compromised registry quality and can be somewhat expected in small populations. Despite multiple deviations of TOSCA from the EMA guidance, TOSCA was able to meet its objectives to enhance our understanding of TSC and its manifestations.
Collapse
Affiliation(s)
- Ruben Marques
- Institute of Biomedicine (IBIOMED), University of Leon, León, Spain
| | - Henriette Thole
- Real World Evidence Centre of Excellence Oncology, Novartis Pharma AG, Basel, Switzerland
| | | |
Collapse
|
28
|
Ebrahimi-Fakhari D, Franz DN. Pharmacological treatment strategies for subependymal giant cell astrocytoma (SEGA). Expert Opin Pharmacother 2020; 21:1329-1336. [PMID: 32338549 DOI: 10.1080/14656566.2020.1751124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Subependymal ependymal giant cell astrocytomas (SEGAs) occur almost exclusively in the setting of tuberous sclerosis (TSC). They are low-grade gliomas which typically produce clinical symptoms through either mass effect or hydrocephalus. As do other manifestations of tuberous sclerosis, these lesions result from mutations in either the TSC1 or the TSC2 gene. These mutations cause hyperactivation of the mechanistic target of rapamycin (mTOR). In view of their tendency to grow slowly, clinical symptoms usually only occur when the tumors reach a considerable size. Therapy can involve surgical resection, cerebrospinal fluid diversion, or medical therapy with an mTOR inhibitor. AREAS COVERED Herein, the authors discuss the diagnosis, symptoms, and practical management of SEGAs as well as providing their expert opinion. EXPERT OPINION mTOR inhibitors have largely replaced surgery as the primary modality for the management of SEGAs. Surgical treatment is largely limited to tumors that present with acute hydrocephalus and increased intracranial pressure. Patients with TSC should undergo periodic screening with CT or preferably MRI scans of the brain from childhood to approximately age 25 to identify SEGAs which require treatment. In addition to avoiding potential morbidity associated with surgical resection, mTOR inhibitors have the potential to improve the clinical status of tuberous sclerosis patients generally.
Collapse
Affiliation(s)
- Daniel Ebrahimi-Fakhari
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, OH, USA.,Department of General Pediatrics, University Children's Hospital Muenster , Muenster, Germany
| | - David Neal Franz
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, OH, USA
| |
Collapse
|
29
|
Annear NMP, Appleton RE, Bassi Z, Bhatt R, Bolton PF, Crawford P, Crowe A, Tossi M, Elmslie F, Finlay E, Gale DP, Henderson A, Jones EA, Johnson SR, Joss S, Kerecuk L, Lipkin G, Morrison PJ, O'Callaghan FJ, Cadwgan J, Ong ACM, Sampson JR, Shepherd C, Kingswood JC. Tuberous Sclerosis Complex (TSC): Expert Recommendations for Provision of Coordinated Care. Front Neurol 2019; 10:1116. [PMID: 31781016 PMCID: PMC6851053 DOI: 10.3389/fneur.2019.01116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/07/2019] [Indexed: 01/31/2023] Open
Affiliation(s)
- Nicholas M P Annear
- St George's University Hospitals NHS Foundation Trust, London, United Kingdom.,Genetics and Genomics Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | | | - Zahabiyah Bassi
- Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Rupesh Bhatt
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Patrick F Bolton
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Pamela Crawford
- York Teaching Hospitals NHS Foundation Trust, York, United Kingdom
| | - Alex Crowe
- Wirral University Teaching Hospitals NHS Foundation Trust, Merseyside, United Kingdom
| | - Maureen Tossi
- Genetics and Genomics Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom.,Tuberous Sclerosis Association, London, United Kingdom
| | - Frances Elmslie
- St George's University Hospitals NHS Foundation Trust, London, United Kingdom.,Genetics and Genomics Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Eric Finlay
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Daniel P Gale
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Alex Henderson
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Elizabeth A Jones
- Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom.,Centre for Genomic Medicine, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Simon R Johnson
- Division of Respiratory Medicine, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, United Kingdom.,National Centre for Lymphangioleiomyomatosis, Nottingham, United Kingdom
| | - Shelagh Joss
- NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Larissa Kerecuk
- Birmingham Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Graham Lipkin
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Patrick J Morrison
- Tuberous Sclerosis Clinic, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Finbar J O'Callaghan
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Jill Cadwgan
- Evelina London Children's Hospital, St. Thomas' Hospital, London, United Kingdom.,School of Life Course Sciences, King's College London, London, United Kingdom.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, United Kingdom.,Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Julian R Sampson
- Institute of Medical Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | | | - J Chris Kingswood
- St George's University Hospitals NHS Foundation Trust, London, United Kingdom.,Genetics and Genomics Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom.,Brighton and Sussex University Hospitals NHS Trust, Brighton, United Kingdom
| |
Collapse
|