1
|
DeCarli C, Rajan KB, Jin LW, Hinman J, Johnson DK, Harvey D, Fornage M. WMH Contributions to Cognitive Impairment: Rationale and Design of the Diverse VCID Study. Stroke 2025; 56:758-776. [PMID: 39545328 PMCID: PMC11850211 DOI: 10.1161/strokeaha.124.045903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
As awareness of dementia increases, more individuals with minor cognitive complaints are requesting clinical assessment. Neuroimaging studies frequently identify incidental white matter hyperintensities, raising patient concerns about their brain health and future risk for dementia. Moreover, current US demographics indicate that ≈50% of these individuals will be from diverse backgrounds by 2060. Racial and ethnic minority populations bear a disproportionate burden of vascular risk factors magnifying dementia risk. Despite established associations between white matter hyperintensities and cognitive impairment, including dementia, no study has comprehensively and prospectively examined the impact of individual and combined magnetic resonance imaging measures of white matter injury, their risk factors, and comorbidities on cognitive performance among a diverse, nondemented, stroke-free population with cognitive complaints over an extended period of observation. The Diverse VCID (Diverse Vascular Cognitive Impairment and Dementia) study is designed to fill this knowledge gap through 3 assessments of clinical, behavioral, and risk factors; neurocognitive and magnetic resonance imaging measures; fluid biomarkers of Alzheimer disease, vascular inflammation, angiogenesis, and endothelial dysfunction; and measures of genetic risk collected prospectively over a minimum of 3 years in a cohort of 2250 individuals evenly distributed among Americans of Black/African, Latino/Hispanic, and non-Hispanic White backgrounds. The goal of this study is to investigate the basic mechanisms of small vessel cerebrovascular injury, emphasizing clinically relevant assessment tools and developing a risk score that will accurately identify at-risk individuals for possible treatment or clinical therapeutic trials, particularly individuals of diverse backgrounds where vascular risk factors and disease are more prevalent.
Collapse
Affiliation(s)
- Charles DeCarli
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| | - Kumar B. Rajan
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago IL
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine University of California Davis California USA
| | - Jason Hinman
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - David K. Johnson
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| | - Danielle Harvey
- Department of Public Health Sciences University of California Davis California USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | |
Collapse
|
2
|
Huang W, Liao L, Liu Q, Ma R, He X, Du X, Sha D. Blood biomarkers for vascular cognitive impairment based on neuronal function: a systematic review and meta-analysis. Front Neurol 2025; 16:1496711. [PMID: 39990267 PMCID: PMC11842260 DOI: 10.3389/fneur.2025.1496711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
Vascular cognitive impairment (VCI) is increasingly recognized as the second most prevalent cause of dementia, primarily attributed to vascular risk factors and cerebrovascular disease. Numerous studies suggest that blood biomarkers may play a crucial role in the detection and prognosis of VCI. This study conducted a meta-analysis to evaluate the potential of various blood biomarkers associated with neuronal function as indicators of VCI. We searched four major databases-PubMed, Embase, Web of Science, and the Cochrane Library-up to December 31, 2023, for research on blood biomarkers for VCI. Of the 4,043 studies identified, 30 met the inclusion criteria for this review. The nine peripheral biomarkers analyzed for their association with neuronal function include amyloid beta 42 (Aβ42), amyloid beta 40 (Aβ40), Aβ42/Aβ40 ratio, total Tau (t-Tau), phosphorylated tau 181 (p-tau 181), neurofilament light (NfL), brain-derived neurotrophic factor (BDNF), S100B, and soluble receptor for advanced glycation end products (sRAGE). Our findings reveal that peripheral Aβ42, Aβ42/Aβ40 ratio, NfL, and S100B significantly differ between VCI and non-VCI groups, indicating their potential as blood biomarkers for VCI.
Collapse
Affiliation(s)
- Weiquan Huang
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Libin Liao
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Liu
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Rongchao Ma
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan He
- Department of General Practice, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| | - Xiaoqiong Du
- Department of General Practice, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dujuan Sha
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
- Department of General Practice, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Alexandrova M. Potential challenges to harmonize post-stroke cognitive assessment and its prognostic value: a narrative review. J Med Life 2024; 17:963-977. [PMID: 39781311 PMCID: PMC11705473 DOI: 10.25122/jml-2024-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 01/12/2025] Open
Abstract
With advances in scientific and clinical knowledge, stroke has evolved from a major cause of death to a chronic condition affecting the daily lives of sufferers, their relatives, and society. Post-stroke cognitive impairment (PSCI) is common even among individuals with good neurological recovery. When deciding on interventions aimed to improve the life quality of post-stroke patients, identifying those at high risk of cognitive decline proves crucial. Given the complexity of PSCI assessment, this narrative review discusses the feasibility of developing standardized criteria for selecting cognitive instruments. Potential approaches for establishing harmonized procedures for post-stroke cognitive assessment are presented depending on how the cognitive impairment is defined, the cognitive domains examined, the methods used to generalize cognitive data by components/domains, and their normalization against standardized normative samples. The prognostic value of cognitive assessment to identify patients at high risk of PSCI, functional dependence, and poor survival is also discussed. Implementing harmonized criteria for assessing the cognitive status of stroke patients could reduce the now considerable heterogeneity between studies and serve as a reliable basis for determining the prevalence and predicting the occurrence/aggravation of PSCI.
Collapse
Key Words
- ACE-R, Addenbrooke's Cognitive Examination-Revised;
- AUC, area under the curve;
- CI, confidence interval;
- DSM-5, Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition;
- HR, hazard ratio;
- ICH, intracerebral hemorrhage;
- IST, Isaacs Set Test;
- MCI, mild cognitive impairment;
- MMSE, Mini-Mental State Examination;
- MoCA, Montreal Cognitive Assessment;
- NIHSS, National Institutes of Health Stroke Scale;
- NPV, negative predictive value;
- OCS, Oxford Cognitive Screen;
- OR, odds ratio;
- PPV, positive predictive value;
- PSCI
- PSCI, post-stroke cognitive impairment;
- SD, standard deviation;
- TIA, transient ischemic attack;
- VASCOG, Vascular Behavioral and Cognitive Disorders;
- VCD,vascular cognitive disorders
- cognitive assessment
- harmonized criteria
- mRS, modified Rankin scale;
- prognosis
- stroke
Collapse
Affiliation(s)
- Margarita Alexandrova
- Department of Medical Physics and Biophysics, Medical University-Pleven, Pleven, Bulgaria
| |
Collapse
|
4
|
Zhou X, Zhu F. Development and Validation of a Nomogram Model for Accurately Predicting Depression in Maintenance Hemodialysis Patients: A Multicenter Cross-Sectional Study in China. Risk Manag Healthc Policy 2024; 17:2111-2123. [PMID: 39246589 PMCID: PMC11380485 DOI: 10.2147/rmhp.s456499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/23/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose Depression is a major concern in maintenance hemodialysis. However, given the elusive nature of its risk factors and the redundant nature of existing assessment forms for judging depression, further research is necessary. Therefore, this study was devoted to exploring the risk factors for depression in maintenance hemodialysis patients and to developing and validating a predictive model for assessing depression in maintenance hemodialysis patients. Patients and Methods This cross-sectional study was conducted from May 2022 to December 2022, and we recruited maintenance hemodialysis patients from a multicentre hemodialysis centre. Risk factors were identified by Lasso regression analysis and a Nomogram model was developed to predict depressed patients on maintenance hemodialysis. The predictive accuracy of the model was assessed by ROC curves, area under the ROC (AUC), consistency index (C-index), and calibration curves, and its applicability in clinical practice was evaluated using decision curves (DCA). Results A total of 175 maintenance hemodialysis patients were included in this study, and cases were randomised into a training set of 148 and a validation set of 27 (split ratio 8.5:1.5), with a depression prevalence of 29.1%. Based on age, employment, albumin, and blood uric acid, a predictive map of depression was created, and in the training set, the nomogram had an AUC of 0.7918, a sensitivity of 61.9%, and a specificity of 89.2%. In the validation set, the nomogram had an AUC of 0.810, a sensitivity of 100%, and a specificity of 61.1%. The bootstrap-based internal validation showed a c-index of 0.792, while the calibration curve showed a strong correlation between actual and predicted depression risk. Decision curve analysis (DCA) results indicated that the predictive model was clinically useful. Conclusion The nomogram constructed in this study can be used to identify depression conditions in vulnerable groups quickly, practically and reliably.
Collapse
Affiliation(s)
- Xinyuan Zhou
- Department of Nephrology, the First People's Hospital of Pinghu, Jiaxing, Zhejiang, People's Republic of China
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Fuxiang Zhu
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, People's Republic of China
| |
Collapse
|
5
|
Hsieh CH, Ko CA, Liang CS, Yeh PK, Tsai CK, Tsai CL, Lin GY, Lin YK, Tsai MC, Yang FC. Longitudinal assessment of plasma biomarkers for early detection of cognitive changes in subjective cognitive decline. Front Aging Neurosci 2024; 16:1389595. [PMID: 38828389 PMCID: PMC11140011 DOI: 10.3389/fnagi.2024.1389595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Background Individuals experiencing subjective cognitive decline (SCD) are at an increased risk of developing mild cognitive impairment and dementia. Early identification of SCD and neurodegenerative diseases using biomarkers may help clinical decision-making and improve prognosis. However, few cross-sectional and longitudinal studies have explored plasma biomarkers in individuals with SCD using immunomagnetic reduction. Objective To identify plasma biomarkers for SCD. Methods Fifty-two participants [38 with SCD, 14 healthy controls (HCs)] underwent baseline assessments, including measurements of plasma Aβ42, Aβ40, t-tau, p-tau, and α-synuclein using immunomagnetic reduction (IMR) assays, cognitive tests and the Mini-Mental State Examination (MMSE). Following initial cross-sectional analysis, 39 individuals (29 with SCD, 10 HCs) entered a longitudinal phase for reassessment of these biomarkers and the MMSE. Biomarker outcomes across different individual categories were primarily assessed using the area under the receiver operating characteristic (ROC) curve. The SCD subgroup with an MMSE decline over one point was compared to those without such a decline. Results Higher baseline plasma Aβ1-42 levels significantly discriminated participants with SCD from HCs, with an acceptable area under the ROC curve (AUC) of 67.5% [95% confidence interval (CI), 52.7-80.0%]. However, follow-up and changes in MMSE and IMR data did not significantly differ between the SCD and HC groups (p > 0.05). Furthermore, lower baseline plasma Aβ1-42 levels were able to discriminate SCD subgroups with and without cognitive decline with a satisfied performance (AUC, 75.0%; 95% CI, 55.6-89.1%). At last, the changes in t-tau and Aβ42 × t-tau could differentiate between the two SCD subgroups (p < 0.05). Conclusion Baseline plasma Aβ42 may help identify people with SCD and predict SCD progression. The role of plasma Aβ42 levels as well as their upward trends from baseline in cases of SCD that progress to mild cognitive impairment and Alzheimer's disease require further investigation.
Collapse
Affiliation(s)
- Cheng-Hao Hsieh
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-An Ko
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Kuan Yeh
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Neurology, Songshan Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Chen Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
6
|
Basak JM, Falk M, Mitchell DN, Coakley KA, Quillinan N, Orfila JE, Herson PS. Targeting BACE1-mediated production of amyloid beta improves hippocampal synaptic function in an experimental model of ischemic stroke. J Cereb Blood Flow Metab 2023; 43:66-77. [PMID: 37150606 PMCID: PMC10638992 DOI: 10.1177/0271678x231159597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023]
Abstract
Post-stroke cognitive impairment and dementia (PSCID) affects many survivors of large vessel cerebral ischemia. The molecular pathways underlying PSCID are poorly defined but may overlap with neurodegenerative pathophysiology. Specifically, synaptic dysfunction after stroke may be directly mediated by alterations in the levels of amyloid beta (Aβ), the peptide that accumulates in the brains of Alzheimer's disease (AD) patients. In this study, we use the transient middle cerebral artery occlusion (MCAo) model in young adult mice to evaluate if a large vessel stroke increases brain soluble Aβ levels. We show that soluble Aβ40 and Aβ42 levels are increased in the ipsilateral hippocampus in MCAo mice 7 days after the injury. We also analyze the level and activity of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), an enzyme that generates Aβ in the brain, and observe that BACE1 activity is increased in the ipsilateral hippocampus of the MCAo mice. Finally, we highlight that treatment of MCAo mice with a BACE1 inhibitor during the recovery period rescues stroke-induced deficits in hippocampal synaptic plasticity. These findings support a molecular pathway linking ischemia to alterations in BACE1-mediated production of Aβ, and encourage future studies that evaluate whether targeting BACE1 activity improves the cognitive deficits seen with PSCID.
Collapse
Affiliation(s)
- Jacob M Basak
- Department of Anesthesiology, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Macy Falk
- Department of Anesthesiology, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Danae N Mitchell
- Department of Anesthesiology, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Kelley A Coakley
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - James E Orfila
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Paco S Herson
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
7
|
Kang SH, Kang M, Han JH, Lee ES, Lee KJ, Chung SJ, Suh SI, Koh SB, Eo JS, Kim CK, Oh K. Independent effect of Aβ burden on cognitive impairment in patients with small subcortical infarction. Alzheimers Res Ther 2023; 15:178. [PMID: 37838715 PMCID: PMC10576878 DOI: 10.1186/s13195-023-01307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/17/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND The effect of amyloid-β (Aβ) on cognitive impairment in patients with small subcortical infarction remains controversial, although a growing body of evidence shows a substantial overlap between Alzheimer's disease (AD) and subcortical ischemic vascular dementia, another form of cerebral small vessel disease (cSVD). Therefore, we investigated the relationships between Aβ positivity and the development of post-stroke cognitive impairment (PSCI) in patients with small subcortical infarction. METHODS We prospectively recruited 37 patients aged ≥ 50 years, with first-ever small subcortical infarction, who underwent amyloid positron emission tomography, 3 months after stroke at Korea University Guro Hospital. We also enrolled CU participants matched for age and sex with stroke patients for comparison of Aβ positivity. Patients were followed up at 3 and 12 months after the stroke to assess cognitive decline. Logistic and linear mixed-effect regression analyses were performed to identify the effect of Aβ positivity on PSCI development and long-term cognitive trajectories. RESULTS At 3 months after stroke, 12/37 (32.4%) patients developed PSCI, and 11/37 (29.7%) patients had Aβ deposition. Aβ positivity (odds ratio [OR] = 72.2, p = 0.024) was predictive of PSCI development regardless of cSVD burden. Aβ positivity (β = 0.846, p = 0.014) was also associated with poor cognitive trajectory, assessed by the Clinical Dementia Rating-Sum of Box, for 1 year after stroke. CONCLUSIONS Our findings highlight that Aβ positivity is an important predictor for PSCI development and cognitive decline over 1 year. Furthermore, our results provide evidence that anti-AD medications may be a strategy for preventing cognitive decline in patients with small subcortical infarctions.
Collapse
Affiliation(s)
- Sung Hoon Kang
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Minwoong Kang
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Jung Hoon Han
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Eun Seong Lee
- Department of Nuclear Medicine, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Keon-Joo Lee
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Su Jin Chung
- Department of Neurology, Myongji Hospital, Hanyang University College of Medicine, Goyang, South Korea
| | - Sang-Il Suh
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Seong-Beom Koh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Jae Seon Eo
- Department of Nuclear Medicine, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea.
| | - Chi Kyung Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea.
| | - Kyungmi Oh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| |
Collapse
|
8
|
Maglinger B, Harp JP, Frank JA, Rupareliya C, McLouth CJ, Pahwa S, Sheikhi L, Dornbos D, Trout AL, Stowe AM, Fraser JF, Pennypacker KR. Inflammatory-associated proteomic predictors of cognitive outcome in subjects with ELVO treated by mechanical thrombectomy. BMC Neurol 2023; 23:214. [PMID: 37280551 PMCID: PMC10243077 DOI: 10.1186/s12883-023-03253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Emergent Large Vessel Occlusion (ELVO) stroke causes devastating vascular events which can lead to significant cognitive decline and dementia. In the subset of ELVO subjects treated with mechanical thrombectomy (MT) at our institution, we aimed to identify systemic and intracranial proteins predictive of cognitive function at time of discharge and at 90-days. These proteomic biomarkers may serve as prognostic indicators of recovery, as well as potential targets for novel/existing therapeutics to be delivered during the subacute stage of stroke recovery. METHODS At the University of Kentucky Center for Advanced Translational Stroke Sciences, the BACTRAC tissue registry (clinicaltrials.gov; NCT03153683) of human biospecimens acquired during ELVO stroke by MT is utilized for research. Clinical data are collected on each enrolled subject who meets inclusion criteria. Blood samples obtained during thrombectomy were sent to Olink Proteomics for proteomic expression values. Montreal Cognitive Assessments (MoCA) were evaluated with categorical variables using ANOVA and t-tests, and continuous variables using Pearson correlations. RESULTS There were n = 52 subjects with discharge MoCA scores and n = 28 subjects with 90-day MoCA scores. Several systemic and intracranial proteins were identified as having significant correlations to discharge MoCA scores as well as 90-day MoCA scores. Highlighted proteins included s-DPP4, CCL11, IGFBP3, DNER, NRP1, MCP1, and COMP. CONCLUSION We set out to identify proteomic predictors and potential therapeutic targets related to cognitive outcomes in ELVO subjects undergoing MT. Here, we identify several proteins which predicted MoCA after MT, which may serve as therapeutic targets to lessen post-stroke cognitive decline.
Collapse
Affiliation(s)
- Benton Maglinger
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jordan P Harp
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
| | - Jacqueline A Frank
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
| | | | | | - Shivani Pahwa
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - Lila Sheikhi
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - David Dornbos
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - Amanda L Trout
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
| | - Ann M Stowe
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Justin F Fraser
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Keith R Pennypacker
- Department of Neurology, University of Kentucky, Lexington, KY, USA.
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Department of Neurology and Neuroscience, Center for Advanced Translational Stroke Science, University of Kentucky, Building BBSRB, Office B383, Lexington, KY, 40536, USA.
| |
Collapse
|
9
|
Ji Y, Wang X, Wu H, Ni X, Ren C, Wang T, Zhu H, Jiang Y, Zheng K. Incidence and risk factors of post-stroke cognitive impairment in convalescent elderly patients with first-episode acute ischemic stroke. Asian J Psychiatr 2023; 84:103583. [PMID: 37043907 DOI: 10.1016/j.ajp.2023.103583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
A total of 350 first-time AIS elderly patients (aged ≥60 years) were collected and analyzed. Multivariate Logistic regression analysis showed that the lesion site, frontal temporal, cerebral white matter degeneration, age ≥ 75 years, BMI ≥ 28, onset in autumn/winter, hospitalization expenses > 20,000 yuan/month, high DBPV, high NIHSS score, and high HAMD score were risk factors for PSCI. Higher education level was a protective factor. In conclusion, the incidence of PSCI in elderly AIS patients was relatively high and related to the several factors, which indicated that more attention should be paid for such patients to prevent PSCI.
Collapse
Affiliation(s)
- Yingying Ji
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Xiaolong Wang
- Wuxi Xinwu District Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Han Wu
- Rehabilitation Department, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuemei Ni
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Caili Ren
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haohao Zhu
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China.
| | - Ying Jiang
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China.
| | - Kai Zheng
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China.
| |
Collapse
|
10
|
Ma HH, Wen JR, Fang H, Su S, Wan C, Zhang C, Lu FM, Fan LL, Wu GL, Zhou ZY, Qiao LJ, Zhang SJ, Cai YF. Hydroxysafflor Yellow A Exerts Neuroprotective Effect by Reducing Aβ Toxicity Through Inhibiting Endoplasmic Reticulum Stress in Oxygen-Glucose Deprivation/Reperfusion Cell Model. Rejuvenation Res 2023; 26:57-67. [PMID: 36734410 DOI: 10.1089/rej.2022.0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ischemia stroke is thought to be one of the vascular risks associated with neurodegenerative diseases, such as Alzheimer's disease (AD). Hydroxysafflor yellow A (HSYA) has been reported to protect against stroke and AD, while the underlying mechanism remains unclear. In this study, SH-SY5Y cell model treated with oxygen-glucose deprivation/reperfusion (OGD/R) was used to explore the potential mechanism of HSYA. Results from cell counting kit-8 (CCK-8) showed that 10 μM HSYA restored the cell viability after OGD 2 hours/R 24 hours. HSYA reduced the levels of malondialdehyde and reactive oxygen species, while improved the levels of superoxide dismutase and glutathione peroxidase. Furthermore, apoptosis was inhibited, and the expression of brain-derived neurotrophic factor was improved after HSYA treatment. In addition, the expression levels of amyloid-β peptides (Aβ) and BACE1 were decreased by HSYA, as well as the expression levels of binding immunoglobulin heavy chain protein, PKR-like endoplasmic reticulum (ER) kinase pathway, and activating transcription factor 6 pathway, whereas the expression level of protein disulfide isomerase was increased. Based on these results, HSYA might reduce Aβ toxicity after OGD/R by interfering with apoptosis, oxidation, and neurotrophic factors, as well as relieving ER stress.
Collapse
Affiliation(s)
- Hui-Han Ma
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jun-Ru Wen
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hao Fang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shan Su
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Can Wan
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chao Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fang-Mei Lu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ling-Ling Fan
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guang-Liang Wu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zi-Yi Zhou
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Li-Jun Qiao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Chen HH, Hsu MH, Lee KH, Yang SY. Development of a 36-Channel Instrument for Assaying Biomarkers of Ultralow Concentrations Utilizing Immunomagnetic Reduction. ACS MEASUREMENT SCIENCE AU 2022; 2:485-492. [PMID: 36785659 PMCID: PMC9885996 DOI: 10.1021/acsmeasuresciau.2c00030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 05/08/2023]
Abstract
With the demands of the high-throughput assay of biomarkers of ultralow concentrations in clinics, a 36-channel instrument utilizing immunomagnetic reduction (IMR) has been developed. The instrument involves the use of a high-T c superconducting-quantum-interference-device (SQUID) magnetometer to detect the signals due to the associations between target biomarker molecules and the antibody-functionalized magnetic nanoparticles in the reagent of IMR. In addition to illustrating the design and the measurements of the instrument, the assay characterizations for eight kinds of biomarkers related to neurodegenerative disease are investigated. Furthermore, the assay results among three independent instruments were compared. For an instrument, the channel-to-channel variations in measured concentrations of biomarkers are within a range of 2.09 to 5.62%. The assay accuracy was found to be from 99 to 103.7%. The p values in measured concentrations for any of the tested biomarkers were higher than 0.05 among the three instruments. The results demonstrate high throughput, high stability, and high consistency for the SQUID-IMR instruments.
Collapse
|
12
|
Hong CT, Lee HH, Chung CC, Chiu WT, Lee TY, Chen DYT, Huang LK, Hu CJ, Chan L. Poststroke Cognitive Impairment: A Longitudinal Follow-Up and Pre/Poststroke Mini-Mental State Examination Comparison. Curr Alzheimer Res 2022; 19:716-723. [PMID: 35927922 DOI: 10.2174/1567205019666220802151945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/14/2022] [Accepted: 05/07/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Poststroke cognitive impairment (PSCI) is a prevalent cause of disability in people with stroke. PSCI results from either lesion-dependent loss of cognitive function or augmentation of Alzheimer's pathology due to vascular insufficiency. The lack of prestroke cognitive assessments limits the clear understanding of the impact of PSCI on cognition. OBJECTIVE The present study aims to make a direct comparison of longitudinal cognitive assessment results to clarify the impact of ischemic stroke on PSCI and assess the cognitive decline in PSCI compared to people with Alzheimer's disease (AD). METHODS All study participants had their Mini-Mental State Examination (MMSE) at the chronic poststroke stage (≥6 months after stroke), which was compared with prestroke or acute poststroke (<6 months after stroke) MMSE to investigate the two aspects of PSCI. A group of patients with AD was used to reference the speed of neurodegenerative cognitive deterioration. Repeated measures analysis of variance was used to compare the longitudinal change of MMSE. RESULTS MMSE score between acute and chronic poststroke revealed a 1.8 ± 6.49 decline per year (n=76), which was not significantly different from the AD patients who underwent cholinesterase inhibitors treatment (-1.11 ± 2.61, p=0.35, n=232). MMSE score between prestroke and chronic poststroke (n=33) revealed a significant decline (-6.52 ± 6.86, p < 0.001). In addition, their cognitive deterioration was significantly associated with sex, age, and stroke over the white matter or basal ganglia. CONCLUSION Ischemic stroke substantially affects cognition with an average six-point drop in MMSE. The rate of cognitive decline in PSCI was similar to AD, and those with white matter or basal ganglia infarct were at greater risk of PSCI.
Collapse
Affiliation(s)
- Chien-Tai Hong
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsun-Hua Lee
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Chih Chung
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ting Chiu
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ting-Yi Lee
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - David Yen-Ting Chen
- Department of Radiology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Li-Kai Huang
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lung Chan
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Huang LK, Chao SP, Hu CJ, Chien LN, Chiou HY, Lo YC, Hsieh YC. Plasma Phosphorylated-tau181 Is a Predictor of Post-stroke Cognitive Impairment: A Longitudinal Study. Front Aging Neurosci 2022; 14:889101. [PMID: 35572134 PMCID: PMC9099290 DOI: 10.3389/fnagi.2022.889101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Post-stroke cognitive impairment (PSCI) cannot be neglected because it drastically influences the daily life of patients and their families. However, there are no studies exploring the association between preclinical blood biomarkers of neurodegeneration including plasma amyloid-β (Aβ), tau, and brain-derived neurotrophic factor (BDNF) together with the risk of PSCI. This longitudinal study was to investigate whether these blood biomarkers with imaging markers of cerebral small vessel disease can improve the prediction for PSCI. In addition, we also explored the association between blood biomarkers with the trajectories of PSCI. Methods Adult patients with first-ever acute ischemic stroke were recruited, and the cognitive and functional abilities of these patients were evaluated. Furthermore, blood biomarkers of neurodegeneration including plasma Aβ-40, Aβ-42, total tau, phosphorylated tau 181 (p-tau181), and BDNF levels and image markers of cerebral small vessel disease were measured. Each patient was followed up at 3 and 12 months at the outpatient department. Results Of 136 patients, 40 and 50 patients developed PSCI at 3 and 12 months after stroke, respectively. In functional trajectories, 27 patients did not have PSCI at 3 months but did at 12 months. By contrast, the PSCI status of 17 patients at 3 months was reversed at 12 months. Patients with high-acute plasma p-tau181 had a significantly lower PSCI risk at 3 months (odds ratio [OR] = 0.62, 95% CI = 0.40-0.94, p = 0.0243) and 12 months (OR = 0.69, 95% CI = 0.47-0.99, p = 0.0443) after adjustment for covariates and image biomarkers. Discrimination and reclassification statistics indicated that the p-tau181 level can improve discrimination ability for PSCI at 3 and 12 months, respectively. In addition, the plasma p-tau181 level was the highest in subjects without PSCI followed by those with delayed-onset PSCI and early-onset PSCI with reversal, whereas the lowest plasma p-tau181 level was found among those with persistent PSCI, showing a significant trend test (p = 0.0081). Conclusion Plasma p-tau181 is a potential biomarker for predicting early- and delayed-onset PSCI. Future studies should incorporate plasma p-tau181 as an indicator for timely cognitive intervention in the follow-up of patients with stroke.
Collapse
Affiliation(s)
- Li-Kai Huang
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Shu-Ping Chao
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Li-Nien Chien
- Graduate Institution of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan
- Health Data Analytics and Statistics Center, Office of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yi Chiou
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
- Master Program in Applied Epidemiology, College of Public Health, Taipei Medical University, Taipei, Taiwan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chen Hsieh
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Master Program in Applied Epidemiology, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
Chen G, Zhang H, Du X, Yin L, Zhang H, Zhou Q. Comparison of the prevalence and associated factors of cognitive frailty between elderly and middle-young patients receiving maintenance hemodialysis. Int Urol Nephrol 2022; 54:2703-2711. [PMID: 35366144 PMCID: PMC9463251 DOI: 10.1007/s11255-022-03188-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 03/20/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE This study aimed at comparing the prevalence of cognitive frailty and explore the differences in the influencing factors between elderly and middle-young patients receiving maintenance hemodialysis (MHD). METHODS In this cross-sectional study, the frailty phenotype, mini-mental state examination, and clinical dementia rating were used to assess the current status of cognitive frailty in 852 patients receiving MHD from four hospitals in Lianyungang City and Xuzhou City, Jiangsu Province, China; the influencing factors were then analyzed for statistical significance. RESULTS Of the total 852 patients receiving MHD, 340 were classified into an elderly group (≥ 60 years) and 512 into a middle-young group (< 60 years). The prevalence of cognitive frailty was 35.9% and 8.8%, respectively. The results of multivariate logistic regression analysis showed that the independent factors of cognitive frailty were age (P < 0.001), education level (P = 0.010), nutritional status (P = 0.001), serum albumin level (P = 0.010), calf circumference (P = 0.024), and social support level (P < 0.001) in the elderly group and comorbidity status (P = 0.037), education level (P < 0.001), nutritional status (P = 0.008), serum creatinine level (P = 0.001), waist circumference (P < 0.001), and depression (P = 0.006) in the middle-young group. CONCLUSION The prevalence of cognitive frailty was significantly higher in the elderly group than in the middle-young group, and the influencing factors differed between the two populations.
Collapse
Affiliation(s)
- Guanjie Chen
- The Affiliated Lianyungang Hospital of Xuzhou Medical University, No 6, Zhenhua East Rd, Haizhou district, Lianyungang, 222061, Jiangsu, China
| | - Hailin Zhang
- The Affiliated Lianyungang Hospital of Xuzhou Medical University, No 6, Zhenhua East Rd, Haizhou district, Lianyungang, 222061, Jiangsu, China.
| | - Xiaoju Du
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lixia Yin
- Department of Hemopurification Center, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Huipin Zhang
- The Affiliated Lianyungang Hospital of Xuzhou Medical University, No 6, Zhenhua East Rd, Haizhou district, Lianyungang, 222061, Jiangsu, China
| | - Qifan Zhou
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| |
Collapse
|
15
|
Association of Blood Amyloid Beta-Protein 1-42 with Poststroke Cognitive Impairment: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6552781. [PMID: 35402621 PMCID: PMC8986382 DOI: 10.1155/2022/6552781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/19/2022] [Indexed: 12/02/2022]
Abstract
Background Increases in blood of amyloid beta-protein (Aβ) have been noted in patients with Alzheimer's dementia (AD). Recent studies have shown that blood amyloid beta-protein 1-42 (Aβ1-42) level is closely related to poststroke cognitive impairment (PSCI), which may be the influencing factor and even a predictor of PSCI. The aim of this systematic review was to synthesize the evidence for the association of cognitive impairment among PSCI. Methods PubMed (MEDLINE), EMBASE, Cochrane Library, the Cochrane Central Register of Controlled Trial (CENTRAL), CNKI, and WanFang data were searched. Case-control, cohort, and cross-sectional studies that evaluated the association between blood Aβ1-42 and PSCI were included irrespective of language and date of publication. The outcomes of this review consisted of (1) any dementia, (2) any cognitive impairment, and (3) any cognitive impairment no dementia, which were assessed at least 3 months (90 days) after stroke. Exposure of interest was blood Aβ1-42 level (including serum and plasma). Results Of 617 records retrieved, 8 studies (6 case-control and 2 cohort studies) involving 931 stroke patients were included for further analysis. 8 studies with 931 subjects explored the correlation between Aβ1-42 and PSCI. PSCI was reported in 457 patients, and the pooled SMD of amyloid beta-protein 1-42 was -0.96 (95% CI -1.10~-0.82, I2 = 15%, P < 0.01). The results remained robust in sensitivity analysis adjusting for study quality, sample source, and cognitive scale score in analysis of studies, as well as in analysis adjusted for publication bias. Conclusions Blood Aβ1-42 level was significantly negatively related to the risk for PSCI, and more prospective studies with large sample size are needed to define a precise threshold value of blood Aβ1-42 level to predict PSCI in the future. This study is registered with PROSPERO, registration number: CRD42021246165.
Collapse
|
16
|
Cha B, Kim J, Kim JM, Choi JW, Choi J, Kim K, Cha J, Kim M. Therapeutic Effect of Repetitive Transcranial Magnetic Stimulation for Post-stroke Vascular Cognitive Impairment: A Prospective Pilot Study. Front Neurol 2022; 13:813597. [PMID: 35392634 PMCID: PMC8980431 DOI: 10.3389/fneur.2022.813597] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Post-stroke cognitive impairment (PSCI) is resistant to treatment. Recent studies have widely applied repetitive transcranial magnetic stimulation (rTMS) to treat various brain dysfunctions, such as post-stroke syndromes. Nonetheless, a protocol for PSCI has not been established. Therefore, this study is aimed to evaluate the therapeutic effect of our high-frequency rTMS protocol for PSCI during the chronic phase of stroke. Methods In this prospective study, ten patients with PSCI were enrolled and received high-frequency rTMS on the ipsilesional dorsolateral prefrontal cortex (DLPFC) for 10 sessions (5 days per week for 2 weeks). Cognitive and affective abilities were assessed at baseline and 2 and 14 weeks after rTMS initiation. To investigate the therapeutic mechanism of rTMS, the mRNA levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-1β, transforming growth factor beta [TGF-β], and tumor necrosis factor alpha [TNF-α]) in peripheral blood samples were quantified using reverse transcription polymerase chain reaction, and cognitive functional magnetic resonance imaging (fMRI) was conducted at baseline and 14 weeks in two randomly selected patients after rTMS treatment. Results The scores of several cognitive evaluations, i.e., the Intelligence Quotient (IQ) of Wechsler Adult Intelligence Scale, auditory verbal learning test (AVLT), and complex figure copy test (CFT), were increased after completion of the rTMS session. After 3 months, these improvements were sustained, and scores on the Mini-Mental Status Examination and Montreal Cognitive Assessment (MoCA) were also increased (p < 0.05). While the Geriatric Depression Scale (GeDS) did not show change among all patients, those with moderate-to-severe depression showed amelioration of the score, with marginal significance. Expression of pro-inflammatory cytokines was decreased immediately after the ten treatment sessions, among which, IL-1β remained at a lower level after 3 months. Furthermore, strong correlations between the decrease in IL-6 and increments in AVLT (r = 0.928) and CFT (r = 0.886) were found immediately after the rTMS treatment (p < 0.05). Follow-up fMRI revealed significant activation in several brain regions, such as the medial frontal lobe, hippocampus, and angular area. Conclusions High-frequency rTMS on the ipsilesional DLPFC may exert immediate efficacy on cognition with the anti-inflammatory response and changes in brain network in PSCI, lasting at least 3 months.
Collapse
Affiliation(s)
- Byoungwoo Cha
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Jongwook Kim
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Jong Moon Kim
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, South Korea
| | - Joo-Wan Choi
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, South Korea
| | - Jeein Choi
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, South Korea
| | - Kakyeong Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Jiook Cha
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Psychology, College of Social Sciences, Seoul National University, Seoul, South Korea
- AI Institute, Seoul National University, Seoul, South Korea
| | - MinYoung Kim
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, South Korea
- *Correspondence: MinYoung Kim
| |
Collapse
|
17
|
Heshmatollah A, Fani L, Koudstaal PJ, Ghanbari M, Ikram MA, Ikram MK. Plasma Amyloid Beta, Total-Tau and Neurofilament Light Chain Levels and the Risk of Stroke: A Prospective Population-Based Study. Neurology 2022; 98:e1729-e1737. [PMID: 35232820 DOI: 10.1212/wnl.0000000000200004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To unravel whether Alzheimer's disease-related pathology or neurodegeneration play a role in stroke etiology, we determined the effect of plasma levels amyloid β (Aβ), total-tau and neurofilament light chain (NfL) on risk of stroke and its subtypes. METHODS Between 2002 and 2005, we measured plasma Aβ40, Aβ42, total-tau, and NfL in 4,661 stroke-free participants from the population-based Rotterdam Study. We used Cox proportional-hazards models to determine the association between these markers with incident stroke for the entire cohort, per stroke subtype, and by median age, sex, Apolipoprotein E (APOE) ε4 carriership, and education. RESULTS After a mean follow-up of 10.8 ± 3.3 years, 379 participants suffered a first-ever stroke. Log2 total-tau at baseline showed a non-linear association with risk of any stroke and ischemic stroke: compared to the first (lowest) quartile the adjusted hazard ratio for the highest quartile total-tau was 1.68, 95% CI: 1.18-2.40 for any stroke. Log2 NfL was associated with an increased risk of any stroke (HR per SD increase 1.27, 95% CI: 1.12-1.44), ischemic stroke, and hemorrhagic stroke (HR 1.56, 95% CI: 1.14-2.12). Log2 Aβ40, Aβ42, and Aβ42/40 ratio levels were not associated with stroke risk.Discussion Participants with higher total-tau and NfL at baseline had a higher risk of stroke and several stroke subtypes. These findings support the role of markers of neurodegeneration in the etiology of stroke. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that higher plasma levels of total-tau and NfL are associated with an increased risk of subsequent stroke.
Collapse
Affiliation(s)
- Alis Heshmatollah
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Lana Fani
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Peter J Koudstaal
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
18
|
Huang KL, Hsiao IT, Chang TY, Yang SY, Chang YJ, Wu HC, Liu CH, Wu YM, Lin KJ, Ho MY, Lee TH. Neurodegeneration and Vascular Burden on Cognition After Midlife: A Plasma and Neuroimaging Biomarker Study. Front Hum Neurosci 2022; 15:735063. [PMID: 34970128 PMCID: PMC8712753 DOI: 10.3389/fnhum.2021.735063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Objectives: Neurodegeneration and vascular burden are the two most common causes of post-stroke cognitive impairment. However, the interrelationship between the plasma beta-amyloid (Aβ) and tau protein, cortical atrophy and brain amyloid accumulation on PET imaging in stroke patients is undetermined. We aimed to explore: (1) the relationships of cortical thickness and amyloid burden on PET with plasma Aβ40, Aβ42, tau protein and their composite scores in stroke patients; and (2) the associations of post-stroke cognitive presentations with these plasma and neuroimaging biomarkers. Methods: The prospective project recruited first-ever ischemic stroke patients around 3 months after stroke onset. The plasma Aβ40, Aβ42, and total tau protein were measured with the immunomagnetic reduction method. Cortical thickness was evaluated on MRI, and cortical amyloid plaque deposition was evaluated by 18F-florbetapir PET. Cognition was evaluated with Mini-Mental State Examination (MMSE), Geriatric Depression Scale (GDS), Dementia Rating Scale-2 (DRS-2). Results: The study recruited 24 stroke patients and 13 normal controls. The plasma tau and tau*Aβ42 levels were correlated with mean cortical thickness after age adjustment. The Aβ42/Aβ40 ratio was correlated with global cortical 18F-florbetapir uptake value. The DRS-2 and GDS scores were associated with mean cortical thickness and plasma biomarkers, including Aβ42/Aβ40, tau, tau*Aβ42, tau/Aβ42, and tau/Aβ40 levels, in stroke patients. Conclusion: Plasma Aβ, tau, and their composite scores were associated with cognitive performance 3 months after stroke, and these plasma biomarkers were correlated with corresponding imaging biomarkers of neurodegeneration. Further longitudinal studies with a larger sample size are warranted to replicate the study results.
Collapse
Affiliation(s)
- Kuo-Lun Huang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Yu Chang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | - Yeu-Jhy Chang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiu-Chuan Wu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Hung Liu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ming Wu
- Department of Radiology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Yang Ho
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Hai Lee
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
19
|
Chung CC, Chan L, Chen JH, Bamodu OA, Chiu HW, Hong CT. Plasma extracellular vesicles tau and β-amyloid as biomarkers of cognitive dysfunction of Parkinson's disease. FASEB J 2021; 35:e21895. [PMID: 34478572 DOI: 10.1096/fj.202100787r] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022]
Abstract
The contribution of circulatory tau and β-amyloid in Parkinson's disease (PD), especially the cognitive function, remains inconclusive. Extracellular vesicles (EVs) cargo these proteins throughout the bloodstream after they are directly secreted from many cells, including neurons. The present study aims to investigate the role of the plasma EV-borne tau and β-amyloid as biomarkers for cognitive dysfunction in PD by investigating subjects with mild to moderate stage of PD (n = 116) and non-PD controls (n = 46). Plasma EVs were isolated, and immunomagnetic reduction-based immunoassay was used to assess the levels of α-synuclein, tau, and β-amyloid 1-42 (Aβ1-42) within the EVs. Artificial neural network (ANN) models were then applied to predict cognitive dysfunction. We observed no significant difference in plasma EV tau and Aβ1-42 between PD patients and controls. Plasma EV tau was significantly associated with cognitive function. Moreover, plasma EV tau and Aβ1-42 were significantly elevated in PD patients with cognitive impairment when compared to PD patients with optimal cognition. The ANN model used the plasma EV α-synuclein, tau, and Aβ1-42, as well as the patient's age and gender, as predicting factors. The model achieved an accuracy of 91.3% in identifying cognitive dysfunction in PD patients, and plasma EV tau and Aβ1-42 are the most valuable factors. In conclusion, plasma EV tau and Aβ1-42 are significant markers of cognitive function in PD patients. Combining with the plasma EV α-synuclein, age, and sex, plasma EV tau and Aβ1-42 can identify cognitive dysfunction in PD patients. This study corroborates the prognostic roles of plasma EV tau and Aβ1-42 in PD.
Collapse
Affiliation(s)
- Chen-Chih Chung
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Lung Chan
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jia-Hung Chen
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Department of Urology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Hung-Wen Chiu
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan.,Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chien-Tai Hong
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
20
|
Lee KP, Chang AYW, Sung PS. Association between Blood Pressure, Blood Pressure Variability, and Post-Stroke Cognitive Impairment. Biomedicines 2021; 9:773. [PMID: 34356837 PMCID: PMC8301473 DOI: 10.3390/biomedicines9070773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
After stroke, dynamic changes take place from necrotic-apoptotic continuum, inflammatory response to poststroke neurogenesis, and remodeling of the network. These changes and baseline brain pathology such as small vessel disease (SVD) and amyloid burden may be associated with the occurrence of early or late poststroke cognitive impairment (PSCI) or dementia (PSD), which affect not only stroke victims but also their families and even society. We reviewed the current concepts and understanding of the pathophysiology for PSCI/PSD and identified useful tools for the diagnosis and the prediction of PSCI in serological, CSF, and image characteristics. Then, we untangled their relationships with blood pressure (BP) and blood pressure variability (BPV), important but often overlooked risk factors for PSCI/PSD. Finally, we provided evidence for the modifying effects of BP and BPV on PSCI as well as pharmacological and non-pharmacological interventions and life style modification for PSCI/PSD prevention and treatment.
Collapse
Affiliation(s)
- Kang-Po Lee
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Department of Neurology, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Alice Y. W. Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pi-Shan Sung
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
21
|
Is Cerebral Amyloid-β Deposition Related to Post-stroke Cognitive Impairment? Transl Stroke Res 2021; 12:946-957. [PMID: 34195928 DOI: 10.1007/s12975-021-00921-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 01/20/2023]
Abstract
Approximately two-thirds of ischemic stroke patients suffer from different levels of post-stroke cognitive impairment (PSCI), but the underlying mechanisms of PSCI remain unclear. Cerebral amyloid-β (Aβ) deposition, a pathological hallmark of Alzheimer's disease, has been discovered in the brains of stroke patients in some autopsy studies. However, less is known about the role of Aβ pathology in the development of PSCI. It is hypothesized that cerebral ischemic injury may lead to neurotoxic Aβ accumulation in the brain, which further induces secondary neurodegeneration and progressive cognitive decline after stroke onset. In this review, we summarized available evidence from pre-clinical and clinical studies relevant to the aforementioned hypothesis. We found inconsistency in the results obtained from studies in rodents, nonhuman primates, and stroke patients. Moreover, the causal relationship between post-stroke cerebral Aβ deposition and PSCI has been uncertain and controversial. Taken together, evidence supporting the hypothesis that brain ischemia induces cerebral Aβ deposition has been insufficient so far. And, there is still no consensus regarding the contribution of cerebral amyloid pathology to PSCI. Other non-amyloid neurodegenerative mechanisms might be involved and remain to be fully elucidated.
Collapse
|
22
|
Chung CC, Chan L, Chen JH, Hung YC, Hong CT. Plasma Extracellular Vesicle α-Synuclein Level in Patients with Parkinson's Disease. Biomolecules 2021; 11:biom11050744. [PMID: 34067663 PMCID: PMC8155846 DOI: 10.3390/biom11050744] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The most established pathognomonic protein of Parkinson's disease (PD), α-synuclein, is extensively investigated for disease diagnosis and prognosis; however, investigations into whether the free form of α-synuclein in the blood functions as a PD biomarker have not been fruitful. Extracellular vesicles (EVs) secreted from cells and present in blood transport molecules are novel platforms for biomarker identification. In blood EVs, α-synuclein originates predominantly from the brain without the interference of the blood-brain barrier. The present study investigated the role of plasma EV-borne α-synuclein as a biomarker of PD. METHODS Patients with mild to moderate stages of PD (n = 116) and individuals without PD (n = 46) were recruited to serve as the PD study group and the control group, respectively. Plasma EVs were isolated, and immunomagnetic reduction-based immunoassay was used to assess EV α-synuclein levels. Conventional statistical analysis was performed using SPSS 25.0, and p < 0.05 was considered significant. RESULTS Compared with controls, we observed significantly lower plasma EV α-synuclein levels in the patients with PD (PD: 56.0 ± 3.7 fg/mL vs. control: 74.5 ± 4.3 fg/mL, p = 0.009), and the significance remained after adjustment for age and sex. Plasma EV α-synuclein levels in the patients with PD did not correlate with age, disease duration, Part I and II scores of the Unified Parkinson's Disease Rating Scale (UPDRS), or the Mini-Mental State Examination scores. However, such levels were significantly correlated with UPDRS Part III score, which assesses motor dysfunction. Furthermore, the severity of akinetic-rigidity symptoms, but not tremor, was inversely associated with plasma EV α-synuclein level. CONCLUSION Plasma EV α-synuclein was significantly different between the control and PD group and was associated with akinetic-rigidity symptom severity in patients with PD. This study corroborates the possible diagnostic and subtyping roles of plasma EV α-synuclein in patients with PD, and it further provides a basis for this protein's clinical relevance and feasibility as a PD biomarker.
Collapse
Affiliation(s)
- Chen-Chih Chung
- Department of Neurology, Taipei Medical University–Shuang Ho Hospital, New Taipei City 23561, Taiwan; (C.-C.C.); (L.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 11031, Taiwan
| | - Lung Chan
- Department of Neurology, Taipei Medical University–Shuang Ho Hospital, New Taipei City 23561, Taiwan; (C.-C.C.); (L.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jia-Hung Chen
- Department of Neurology, Taipei Medical University–Shuang Ho Hospital, New Taipei City 23561, Taiwan; (C.-C.C.); (L.C.); (J.-H.C.)
| | - Yi-Chieh Hung
- Department of Neurosurgery, Department of Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- Department of Recreation and Healthcare Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
- Correspondence: (Y.-C.H.); (C.-T.H.); Tel.: +886-2-224-900-88 (ext. 811) (C.-T.H.)
| | - Chien-Tai Hong
- Department of Neurology, Taipei Medical University–Shuang Ho Hospital, New Taipei City 23561, Taiwan; (C.-C.C.); (L.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (Y.-C.H.); (C.-T.H.); Tel.: +886-2-224-900-88 (ext. 811) (C.-T.H.)
| |
Collapse
|
23
|
Chatterjee P, Tegg M, Pedrini S, Fagan AM, Xiong C, Singh AK, Taddei K, Gardener S, Masters CL, Schofield PR, Multhaup G, Benzinger TLS, Morris JC, Bateman RJ, Greenberg SM, van Buchem MA, Stoops E, Vanderstichele H, Teunissen CE, Hankey GJ, Wermer MJH, Sohrabi HR, Martins RN. Plasma Amyloid-Beta Levels in a Pre-Symptomatic Dutch-Type Hereditary Cerebral Amyloid Angiopathy Pedigree: A Cross-Sectional and Longitudinal Investigation. Int J Mol Sci 2021; 22:ijms22062931. [PMID: 33805778 PMCID: PMC8000178 DOI: 10.3390/ijms22062931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 01/10/2023] Open
Abstract
Plasma amyloid-beta (Aβ) has long been investigated as a blood biomarker candidate for Cerebral Amyloid Angiopathy (CAA), however previous findings have been inconsistent which could be attributed to the use of less sensitive assays. This study investigates plasma Aβ alterations between pre-symptomatic Dutch-type hereditary CAA (D-CAA) mutation-carriers (MC) and non-carriers (NC) using two Aβ measurement platforms. Seventeen pre-symptomatic members of a D-CAA pedigree were assembled and followed up 3–4 years later (NC = 8; MC = 9). Plasma Aβ1-40 and Aβ1-42 were cross-sectionally and longitudinally analysed at baseline (T1) and follow-up (T2) and were found to be lower in MCs compared to NCs, cross-sectionally after adjusting for covariates, at both T1(Aβ1-40: p = 0.001; Aβ1-42: p = 0.0004) and T2 (Aβ1-40: p = 0.001; Aβ1-42: p = 0.016) employing the Single Molecule Array (Simoa) platform, however no significant differences were observed using the xMAP platform. Further, pairwise longitudinal analyses of plasma Aβ1-40 revealed decreased levels in MCs using data from the Simoa platform (p = 0.041) and pairwise longitudinal analyses of plasma Aβ1-42 revealed decreased levels in MCs using data from the xMAP platform (p = 0.041). Findings from the Simoa platform suggest that plasma Aβ may add value to a panel of biomarkers for the diagnosis of pre-symptomatic CAA, however, further validation studies in larger sample sets are required.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.C.); (H.R.S.)
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (M.T.); (S.P.); (K.T.); (S.G.)
| | - Michelle Tegg
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (M.T.); (S.P.); (K.T.); (S.G.)
| | - Steve Pedrini
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (M.T.); (S.P.); (K.T.); (S.G.)
| | - Anne M. Fagan
- Department of Neurology, Washington University, St. Louis, MO 63130, USA; (A.M.F.); (J.C.M.); (R.J.B.)
- Knight Alzheimer’s Disease Research Center, Washington University, St. Louis, MO 63130, USA; (C.X.); (T.L.S.B.)
| | - Chengjie Xiong
- Knight Alzheimer’s Disease Research Center, Washington University, St. Louis, MO 63130, USA; (C.X.); (T.L.S.B.)
- Division of Biostatistics, Washington University, St. Louis, MO 63130, USA
| | - Abhay K. Singh
- Macquarie Business School, Macquarie University, North Ryde, NSW 2109, Australia;
| | - Kevin Taddei
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (M.T.); (S.P.); (K.T.); (S.G.)
- Australian Alzheimer’s Research Foundation, Nedlands, WA 6009, Australia
| | - Samantha Gardener
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (M.T.); (S.P.); (K.T.); (S.G.)
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia;
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, NSW 2031, Australia;
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada;
| | - Tammie L. S. Benzinger
- Knight Alzheimer’s Disease Research Center, Washington University, St. Louis, MO 63130, USA; (C.X.); (T.L.S.B.)
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John C. Morris
- Department of Neurology, Washington University, St. Louis, MO 63130, USA; (A.M.F.); (J.C.M.); (R.J.B.)
- Knight Alzheimer’s Disease Research Center, Washington University, St. Louis, MO 63130, USA; (C.X.); (T.L.S.B.)
| | - Randall J. Bateman
- Department of Neurology, Washington University, St. Louis, MO 63130, USA; (A.M.F.); (J.C.M.); (R.J.B.)
- Knight Alzheimer’s Disease Research Center, Washington University, St. Louis, MO 63130, USA; (C.X.); (T.L.S.B.)
| | - Steven M. Greenberg
- Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA 02114, USA;
| | - Mark A. van Buchem
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | | | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, 1007 MB Amsterdam, The Netherlands;
| | - Graeme J. Hankey
- Faculty of Health and Medical Sciences, Medical School, The University of Western Australia, Crawley, WA 6009, Australia;
| | - Marieke J. H. Wermer
- Department of Neurology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Hamid R. Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.C.); (H.R.S.)
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (M.T.); (S.P.); (K.T.); (S.G.)
- Australian Alzheimer’s Research Foundation, Nedlands, WA 6009, Australia
- Centre for Healthy Ageing, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Ralph N. Martins
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.C.); (H.R.S.)
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (M.T.); (S.P.); (K.T.); (S.G.)
- Australian Alzheimer’s Research Foundation, Nedlands, WA 6009, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA 6009, Australia
- The KaRa Institute of Neurological Disease, Macquarie Park, NSW 2113, Australia
- Correspondence: ; Tel.: +61-8-6304-5456; Fax: +61-8-6304-5851
| | | |
Collapse
|
24
|
Ding X, Zhang S, Jiang L, Wang L, Li T, Lei P. Ultrasensitive assays for detection of plasma tau and phosphorylated tau 181 in Alzheimer's disease: a systematic review and meta-analysis. Transl Neurodegener 2021; 10:10. [PMID: 33712071 PMCID: PMC7953695 DOI: 10.1186/s40035-021-00234-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
A lack of convenient and reliable biomarkers for diagnosis and prognosis is a common challenge for neurodegenerative diseases such as Alzheimer's disease (AD). Recent advancement in ultrasensitive protein assays has allowed the quantification of tau and phosphorylated tau proteins in peripheral plasma. Here we identified 66 eligible studies reporting quantification of plasma tau and phosphorylated tau 181 (ptau181) using four ultrasensitive methods. Meta-analysis of these studies confirmed that the AD patients had significantly higher plasma tau and ptau181 levels compared with controls, and that the plasma tau and ptau181 could predict AD with high-accuracy area under curve of the Receiver Operating Characteristic. Therefore, plasma tau and plasma ptau181 can be considered as biomarkers for AD diagnosis.
Collapse
Affiliation(s)
- Xulong Ding
- Department of Neurology and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuting Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lijun Jiang
- Mental Health Center and West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Mental Health Center and West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Koenig LN, McCue LM, Grant E, Massoumzadeh P, Roe CM, Xiong C, Moulder KL, Wang L, Zazulia AR, Kelly P, Dincer A, Zaza A, Shimony JS, Benzinger TLS, Morris JC. Lack of association between acute stroke, post-stroke dementia, race, and β-amyloid status. Neuroimage Clin 2021; 29:102553. [PMID: 33524806 PMCID: PMC7848631 DOI: 10.1016/j.nicl.2020.102553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Stroke and Alzheimer disease share risk factors and often co-occur, and both have been reported to have a higher prevalence in African Americans as compared to non-Hispanic whites. However, their interaction has not been established. The objective of this study was to determine if preclinical Alzheimer disease is a risk factor for stroke and post-stroke dementia and whether racial differences moderate this relationship. METHODS This case-control study was analyzed in 2019 using retrospective data from 2007 to 2013. Participants were adults age 65 and older with and without acute ischemic stroke. Recruitment included word of mouth and referrals in Saint Louis, MO, with stroke participants recruited from acutely hospitalized patients and non-stroke participants from community living older adults who were research volunteers. Our assessment included radiologic reads of infarcts, microbleeds, and white matter hyperintensitites (WMH); a Pittsburgh Compound B PET measure of cortical β-amyloid binding; quantitative measures of hippocampal and WMH volume; longitudinal Mini Mental State Examination (MMSE) scores; and Clinical Dementia Rating (CDR) 1 year post-stroke. RESULTS A total of 243 participants were enrolled, 81 of which had a recent ischemic stroke. Participants had a mean age of 75, 57% were women, and 52% were African American. Cortical amyloid did not differ significantly by race, stroke status, or CDR post-stroke. There were racial differences in MMSE scores at baseline (mean 26.8 for African Americans, 27.9 for non-Hispanic whites, p = 0.03), but not longitudinally. African Americans were more likely to have microbleeds (32.8% vs 22.6%, p = 0.04), and within the acute stroke group, African Americans were more likely to have small infarcts (75.6% vs 56.8%, p = 0.049). CONCLUSION Preclinical Alzheimer disease did not show evidence of being a risk factor for stroke nor predictive of post-stroke dementia. We did not observe racial differences in β-amyloid levels. However, even after controlling for several vascular risk factors, African Americans with clinical stroke presentations had greater levels of vascular pathology on MRI.
Collapse
Affiliation(s)
- Lauren N Koenig
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Lena M McCue
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO USA
| | - Elizabeth Grant
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO USA
| | - Parinaz Massoumzadeh
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Catherine M Roe
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO USA
| | - Krista L Moulder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Liang Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Allyson R Zazulia
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Peggy Kelly
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Aylin Dincer
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Aiad Zaza
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Joshua S Shimony
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA.
| |
Collapse
|
26
|
Yang SY, Liu HC, Chen WP. Immunomagnetic Reduction Detects Plasma Aβ 1-42 Levels as a Potential Dominant Indicator Predicting Cognitive Decline. Neurol Ther 2020; 9:435-442. [PMID: 33090326 PMCID: PMC7606390 DOI: 10.1007/s40120-020-00215-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/23/2020] [Indexed: 11/03/2022] Open
Abstract
Although the concentrations of Alzheimer’s disease (AD) biomarkers Aβ1–40, Aβ1–42 and tau protein are very low in human plasma, ultrasensitive assays such as immunomagnetic reduction (IMR) are able to precisely quantify them. Review articles have described the detailed working mechanism of IMR and revealed the feasibility of detecting early-stage AD by assaying these plasma biomarkers with IMR. In this review, we aimed to compare the significance of these plasma biomarkers in predicting cognitive decline in patients with Down syndrome, stroke, or amnestic mild cognitive impairment based on findings in the literature. We found that plasma Aβ1–42 might play the predominant role in predicting cognitive decline in these patients.
Collapse
Affiliation(s)
- Shieh-Yueh Yang
- MagQu Co., Ltd., New Taipei City, 231, Taiwan. .,MagQu LLC, Surprise, AZ, 85378, USA.
| | | | | |
Collapse
|
27
|
Wang ZQ, Li K, Huang J, Huo TT, Lv PY. MicroRNA Let-7i Is a Promising Serum Biomarker for Post-stroke Cognitive Impairment and Alleviated OGD-Induced Cell Damage in vitro by Regulating Bcl-2. Front Neurosci 2020; 14:215. [PMID: 32265630 PMCID: PMC7105869 DOI: 10.3389/fnins.2020.00215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background The mechanism of post-stroke cognitive impairment (PSCI) has not been explained. We aimed to investigate whether miR-let-7i participates in the PSCI and illuminates its underlying role in oxygen–glucose deprivation (OGD)-induced cell apoptosis. Methods Blood samples from 36 subjects with PSCI and 38 with post-stroke cognitive normality (Non-PSCI) were collected to evaluate the differential expression of miR-let-7 family members, using qRT-PCT analysis. Spearman correlation was performed to estimate the correlation between the miR-1et-7i level and Montreal Cognitive Assessment (MoCA) score. Treatment of SH-SY5Y cells with OGD was used to induce cell apoptosis in vitro. Effects of miR-let-7i on OGD-induced cell apoptosis was estimated after transfection. The target gene of miR-let-7i was analyzed by dual luciferase reporter gene assay. Results The expression of miR-let-7i was up-regulated in PSCI patients compared with Non-PSCI (p < 0.001) and negatively correlated with MoCA score (r = −0.643, p < 0.001). When exposed to OGD, SH-SY5Y cells showed significant apoptosis accompanied by miR-let-7i up-regulation. In OGD-treated cells, miR-let-7i up-regulation was accompanied by cell apoptosis, while down-regulation showed the opposite effect. Luciferase reporter assay showed that Bcl-2 was a target gene of miR-let-7i. Western blot showed that miR-let-7i up-regulation promoted Bcl-2 expression, while qRT-PCR showed that miR-let-7i had no effect on Bcl-2 expression. Conclusion miR-let-7i was overexpressed in PSCI patients and it could be used as a diagnostic biomarker for PSCI. We illuminated the potential mechanism that miR-let-7i alleviated OGD-induced cell damage by targeting Bcl-2 at the post-transcriptional level.
Collapse
Affiliation(s)
- Zhan-Qiang Wang
- Department of Neurology, Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China.,Department of Neurology, Cangzhou People's Hospital, Cangzhou, China
| | - Kuo Li
- Department of Neurology, Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China.,No. 2 Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Jie Huang
- Department of Neurology, Cangzhou People's Hospital, Cangzhou, China
| | - Tian-Tian Huo
- Department of Neurology, Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Pei-Yuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|