1
|
Gaweda-Walerych K, Aragona V, Lodato S, Sitek EJ, Narożańska E, Buratti E. Progranulin deficiency in the brain: the interplay between neuronal and non-neuronal cells. Transl Neurodegener 2025; 14:18. [PMID: 40234992 PMCID: PMC12001433 DOI: 10.1186/s40035-025-00475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/21/2025] [Indexed: 04/17/2025] Open
Abstract
Heterozygous mutations in GRN gene lead to insufficient levels of the progranulin (PGRN) protein, resulting in frontotemporal dementia (FTD) with TAR DNA-binding protein 43 (TDP-43) inclusions, classified pathologically as frontotemporal lobar degeneration (FTLD-TDP). Homozygous GRN mutations are exceedingly rare and cause neuronal ceroid lipofuscinosis 11, a lysosomal storage disease with onset in young adulthood, or an FTD syndrome with late-onset manifestations. In this review, we highlight the broad spectrum of clinical phenotypes associated with PGRN deficiency, including primary progressive aphasia and behavioral variant of frontotemporal dementia. We explore these phenotypes alongside relevant rodent and in vitro human models, ranging from the induced pluripotent stem cell-derived neural progenitors, neurons, microglia, and astrocytes to genetically engineered heterotypic organoids containing both neurons and astrocytes. We summarize advantages and limitations of these models in recapitulating the main FTLD-GRN hallmarks, highlighting the role of non-cell-autonomous mechanisms in the formation of TDP-43 pathology, neuroinflammation, and neurodegeneration. Data obtained from patients' brain tissues and biofluids, in parallel with single-cell transcriptomics, demonstrate the complexity of interactions among the highly heterogeneous cellular clusters present in the brain, including neurons, astrocytes, microglia, oligodendroglia, endothelial cells, and pericytes. Emerging evidence has revealed that PGRN deficiency is associated with cell cluster-specific, often conserved, genetic and molecular phenotypes in the central nervous system. In this review, we focus on how these distinct cellular populations and their dysfunctional crosstalk contribute to neurodegeneration and neuroinflammation in FTD-GRN. Specifically, we characterize the phenotypes of lipid droplet-accumulating microglia and alterations of myelin lipid content resulting from lysosomal dysfunction caused by PGRN deficiency. Additionally, we consider how the deregulation of glia-neuron communication affects the exchange of organelles such as mitochondria, and the removal of excess toxic products such as protein aggregates, in PGRN-related neurodegeneration.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Vanessa Aragona
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Emilia J Sitek
- Division of Neurological and Psychiatric Nursing, Laboratory of Clinical Neuropsychology, Neurolinguistics, and Neuropsychotherapy, Faculty of Health Sciences, Medical University of Gdansk, 80-210, Gdansk, Poland.
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland.
| | - Ewa Narożańska
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149, Trieste, Italy
| |
Collapse
|
2
|
Fieldhouse JLP, van Paassen DN, van Engelen MPE, De Boer SCM, Hartog WL, Braak S, Schoonmade LJ, Schouws SNTM, Krudop WA, Oudega ML, Mutsaerts HJMM, Teunissen CE, Vijverberg EGB, Pijnenburg YAL. The pursuit for markers of disease progression in behavioral variant frontotemporal dementia: a scoping review to optimize outcome measures for clinical trials. Front Aging Neurosci 2024; 16:1382593. [PMID: 38784446 PMCID: PMC11112081 DOI: 10.3389/fnagi.2024.1382593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Behavioral variant frontotemporal dementia (bvFTD) is a neurodegenerative disorder characterized by diverse and prominent changes in behavior and personality. One of the greatest challenges in bvFTD is to capture, measure and predict its disease progression, due to clinical, pathological and genetic heterogeneity. Availability of reliable outcome measures is pivotal for future clinical trials and disease monitoring. Detection of change should be objective, clinically meaningful and easily assessed, preferably associated with a biological process. The purpose of this scoping review is to examine the status of longitudinal studies in bvFTD, evaluate current assessment tools and propose potential progression markers. A systematic literature search (in PubMed and Embase.com) was performed. Literature on disease trajectories and longitudinal validity of frequently-used measures was organized in five domains: global functioning, behavior, (social) cognition, neuroimaging and fluid biomarkers. Evaluating current longitudinal data, we propose an adaptive battery, combining a set of sensitive clinical, neuroimaging and fluid markers, adjusted for genetic and sporadic variants, for adequate detection of disease progression in bvFTD.
Collapse
Affiliation(s)
- Jay L. P. Fieldhouse
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Dirk N. van Paassen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Marie-Paule E. van Engelen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Sterre C. M. De Boer
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Willem L. Hartog
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Simon Braak
- Department of Psychiatry, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, Netherlands
| | | | - Sigfried N. T. M. Schouws
- Department of Psychiatry, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, Netherlands
| | - Welmoed A. Krudop
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, Netherlands
| | - Mardien L. Oudega
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Department of Psychiatry, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, Netherlands
| | - Henk J. M. M. Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| | - Charlotte E. Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| | - Everard G. B. Vijverberg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Yolande A. L. Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| |
Collapse
|
3
|
Corriveau-Lecavalier N, Tosakulwong N, Lesnick TG, Fought AJ, Reid RI, Schwarz CG, Senjem ML, Jack CR, Jones DT, Vemuri P, Rademakers R, Ramos EM, Geschwind DH, Knopman DS, Botha H, Savica R, Graff-Radford J, Ramanan VK, Fields JA, Graff-Radford N, Wszolek Z, Forsberg LK, Petersen RC, Heuer HW, Boxer AL, Rosen HJ, Boeve BF, Kantarci K. Neurite-based white matter alterations in MAPT mutation carriers: A multi-shell diffusion MRI study in the ALLFTD consortium. Neurobiol Aging 2024; 134:135-145. [PMID: 38091751 PMCID: PMC10872472 DOI: 10.1016/j.neurobiolaging.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
We assessed white matter (WM) integrity in MAPT mutation carriers (16 asymptomatic, 5 symptomatic) compared to 31 non-carrier family controls using diffusion tensor imaging (DTI) (fractional anisotropy; FA, mean diffusivity; MD) and neurite orientation dispersion and density imaging (NODDI) (neurite density index; NDI, orientation and dispersion index; ODI). Linear mixed-effects models accounting for age and family relatedness revealed alterations across DTI and NODDI metrics in all mutation carriers and in symptomatic carriers, with the most significant differences involving fronto-temporal WM tracts. Asymptomatic carriers showed higher entorhinal MD and lower cingulum FA and patterns of higher ODI mostly involving temporal areas and long association and projections fibers. Regression models between estimated time to or time from disease and DTI and NODDI metrics in key regions (amygdala, cingulum, entorhinal, inferior temporal, uncinate fasciculus) in all carriers showed increasing abnormalities with estimated time to or time from disease onset, with FA and NDI showing the strongest relationships. Neurite-based metrics, particularly ODI, appear to be particularly sensitive to early WM involvement in asymptomatic carriers.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Timothy G Lesnick
- Departmenf of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Angela J Fought
- Departmenf of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Robert I Reid
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA; Center for Molecular Neurology, Antwerp University, Belgium
| | | | | | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Hilary W Heuer
- Department of Neurology, University of California San Francisco, CA, USA
| | - Adam L Boxer
- Department of Neurology, University of California San Francisco, CA, USA
| | - Howard J Rosen
- Department of Neurology, University of California San Francisco, CA, USA
| | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Corriveau-Lecavalier N, Barnard LR, Przybelski SA, Gogineni V, Botha H, Graff-Radford J, Ramanan VK, Forsberg LK, Fields JA, Machulda MM, Rademakers R, Gavrilova RH, Lapid MI, Boeve BF, Knopman DS, Lowe VJ, Petersen RC, Jack CR, Kantarci K, Jones DT. Assessing network degeneration and phenotypic heterogeneity in genetic frontotemporal lobar degeneration by decoding FDG-PET. Neuroimage Clin 2023; 41:103559. [PMID: 38147792 PMCID: PMC10944211 DOI: 10.1016/j.nicl.2023.103559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Genetic mutations causative of frontotemporal lobar degeneration (FTLD) are highly predictive of a specific proteinopathy, but there exists substantial inter-individual variability in their patterns of network degeneration and clinical manifestations. We collected clinical and 18Fluorodeoxyglucose-positron emission tomography (FDG-PET) data from 39 patients with genetic FTLD, including 11 carrying the C9orf72 hexanucleotide expansion, 16 carrying a MAPT mutation and 12 carrying a GRN mutation. We performed a spectral covariance decomposition analysis between FDG-PET images to yield unbiased latent patterns reflective of whole brain patterns of metabolism ("eigenbrains" or EBs). We then conducted linear discriminant analyses (LDAs) to perform EB-based predictions of genetic mutation and predominant clinical phenotype (i.e., behavior/personality, language, asymptomatic). Five EBs were significant and explained 58.52 % of the covariance between FDG-PET images. EBs indicative of hypometabolism in left frontotemporal and temporo-parietal areas distinguished GRN mutation carriers from other genetic mutations and were associated with predominant language phenotypes. EBs indicative of hypometabolism in prefrontal and temporopolar areas with a right hemispheric predominance were mostly associated with predominant behavioral phenotypes and distinguished MAPT mutation carriers from other genetic mutations. The LDAs yielded accuracies of 79.5 % and 76.9 % in predicting genetic status and predominant clinical phenotype, respectively. A small number of EBs explained a high proportion of covariance in patterns of network degeneration across FTLD-related genetic mutations. These EBs contained biological information relevant to the variability in the pathophysiological and clinical aspects of genetic FTLD, and for offering valuable guidance in complex clinical decision-making, such as decisions related to genetic testing.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic Rochester, USA; Department of Psychiatry and Psychology, Mayo Clinic Rochester, USA
| | | | | | | | - Hugo Botha
- Department of Neurology, Mayo Clinic Rochester, USA
| | | | | | | | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic Rochester, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic Rochester, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Jacksonville, USA; VIB-UA Center for Molecular Neurology, VIB, University of Antwerp, Belgium
| | | | - Maria I Lapid
- Department of Psychiatry and Psychology, Mayo Clinic Rochester, USA
| | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic Rochester, USA
| | | | | | | | - David T Jones
- Department of Neurology, Mayo Clinic Rochester, USA; Department of Radiology, Mayo Clinic Rochester, USA.
| |
Collapse
|
5
|
Jeremic D, Jiménez-Díaz L, Navarro-López JD. Targeting epigenetics: A novel promise for Alzheimer's disease treatment. Ageing Res Rev 2023; 90:102003. [PMID: 37422087 DOI: 10.1016/j.arr.2023.102003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
So far, the search for a cure for Alzheimer Disease (AD) has been unsuccessful. The only approved drugs attenuate some symptoms, but do not halt the progress of this disease, which affects 50 million people worldwide and will increase its incidence in the coming decades. Such scenario demands new therapeutic approaches to fight against this devastating dementia. In recent years, multi-omics research and the analysis of differential epigenetic marks in AD subjects have contributed to our understanding of AD; however, the impact of epigenetic research is yet to be seen. This review integrates the most recent data on pathological processes and epigenetic changes relevant for aging and AD, as well as current therapies targeting epigenetic machinery in clinical trials. Evidence shows that epigenetic modifications play a key role in gene expression, which could provide multi-target preventative and therapeutic approaches in AD. Both novel and repurposed drugs are employed in AD clinical trials due to their epigenetic effects, as well as increasing number of natural compounds. Given the reversible nature of epigenetic modifications and the complexity of gene-environment interactions, the combination of epigenetic-based therapies with environmental strategies and drugs with multiple targets might be needed to properly help AD patients.
Collapse
Affiliation(s)
- Danko Jeremic
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain
| | - Lydia Jiménez-Díaz
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain.
| | - Juan D Navarro-López
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain.
| |
Collapse
|
6
|
Bocchetta M, Todd EG, Bouzigues A, Cash DM, Nicholas JM, Convery RS, Russell LL, Thomas DL, Malone IB, Iglesias JE, van Swieten JC, Jiskoot LC, Seelaar H, Borroni B, Galimberti D, Sanchez-Valle R, Laforce R, Moreno F, Synofzik M, Graff C, Masellis M, Tartaglia MC, Rowe JB, Vandenberghe R, Finger E, Tagliavini F, de Mendonça A, Santana I, Butler CR, Ducharme S, Gerhard A, Danek A, Levin J, Otto M, Sorbi S, Le Ber I, Pasquier F, Rohrer JD. Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative cohort. Brain Commun 2023; 5:fcad061. [PMID: 36970046 PMCID: PMC10036293 DOI: 10.1093/braincomms/fcad061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Biomarkers that can predict disease progression in individuals with genetic frontotemporal dementia are urgently needed. We aimed to identify whether baseline MRI-based grey and white matter abnormalities are associated with different clinical progression profiles in presymptomatic mutation carriers in the GENetic Frontotemporal dementia Initiative. Three hundred eighty-seven mutation carriers were included (160 GRN, 160 C9orf72, 67 MAPT), together with 240 non-carrier cognitively normal controls. Cortical and subcortical grey matter volumes were generated using automated parcellation methods on volumetric 3T T1-weighted MRI scans, while white matter characteristics were estimated using diffusion tensor imaging. Mutation carriers were divided into two disease stages based on their global CDR®+NACC-FTLD score: presymptomatic (0 or 0.5) and fully symptomatic (1 or greater). The w-scores in each grey matter volumes and white matter diffusion measures were computed to quantify the degree of abnormality compared to controls for each presymptomatic carrier, adjusting for their age, sex, total intracranial volume, and scanner type. Presymptomatic carriers were classified as 'normal' or 'abnormal' based on whether their grey matter volume and white matter diffusion measure w-scores were above or below the cut point corresponding to the 10th percentile of the controls. We then compared the change in disease severity between baseline and one year later in both the 'normal' and 'abnormal' groups within each genetic subtype, as measured by the CDR®+NACC-FTLD sum-of-boxes score and revised Cambridge Behavioural Inventory total score. Overall, presymptomatic carriers with normal regional w-scores at baseline did not progress clinically as much as those with abnormal regional w-scores. Having abnormal grey or white matter measures at baseline was associated with a statistically significant increase in the CDR®+NACC-FTLD of up to 4 points in C9orf72 expansion carriers, and 5 points in the GRN group as well as a statistically significant increase in the revised Cambridge Behavioural Inventory of up to 11 points in MAPT, 10 points in GRN, and 8 points in C9orf72 mutation carriers. Baseline regional brain abnormalities on MRI in presymptomatic mutation carriers are associated with different profiles of clinical progression over time. These results may be helpful to inform stratification of participants in future trials.
Collapse
Affiliation(s)
- Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, Medicine and Life Sciences, College of Health, Brunel University London, London, United Kingdom
| | - Emily G Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Jennifer M Nicholas
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David L Thomas
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ian B Malone
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John C van Swieten
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Raquel Sanchez-Valle
- Neurology Department, Hospital Clinic, Institut d’Investigacions Biomèdiques, Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Faculté de Médecine, Université Laval, Quebec City, QC, Canada
| | - Fermin Moreno
- Hospital Universitario Donostia, San Sebastian, Spain
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Caroline Graff
- Department NVS, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
- Unit for Hereditary Dementia, Theme Aging, Karolinska University Hospital-Solna Stockholm, Stockholm, Sweden
| | - Mario Masellis
- Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON, Canada
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Chris R Butler
- Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | - Simon Ducharme
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Essen, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Germany
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Germany
- German Center for Neurodegenerative Diseases (DZNE), Germany
- Munich Cluster of Systems Neurology, Munich, Germany
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute—Institut du Cerveau– ICM, Inserm U1127, CNRS UMR 7225, AP-HP—Hôpital Pitié-Salpêtrière, Paris, France
- Centre deréférence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP—Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, AP-HP—Hôpital Pitié-Salpêtrière, Paris, France
| | - Florence Pasquier
- University Lille, Lille, France
- Inserm 1172, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCENDLille, Lille, France
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
7
|
Santamaría-García H, Ogonowsky N, Baez S, Palacio N, Reyes P, Schulte M, López A, Matallana D, Ibanez A. Neurocognitive patterns across genetic levels in behavioral variant frontotemporal dementia: a multiple single cases study. BMC Neurol 2022; 22:454. [PMID: 36474176 PMCID: PMC9724347 DOI: 10.1186/s12883-022-02954-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Behavioral variant frontotemporal dementia (bvFTD) has been related to different genetic factors. Identifying multimodal phenotypic heterogeneity triggered by various genetic influences is critical for improving diagnosis, prognosis, and treatments. However, the specific impact of different genetic levels (mutations vs. risk variants vs. sporadic presentations) on clinical and neurocognitive phenotypes is not entirely understood, specially in patites from underrepresented regions such as Colombia. METHODS Here, in a multiple single cases study, we provide systematic comparisons regarding cognitive, neuropsychiatric, brain atrophy, and gene expression-atrophy overlap in a novel cohort of FTD patients (n = 42) from Colombia with different genetic levels, including patients with known genetic influences (G-FTD) such as those with genetic mutations (GR1) in particular genes (MAPT, TARDBP, and TREM2); patients with risk variants (GR2) in genes associated with FTD (tau Haplotypes H1 and H2 and APOE variants including ε2, ε3, ε4); and sporadic FTD patients (S-FTD (GR3)). RESULTS We found that patients from GR1 and GR2 exhibited earlier disease onset, pervasive cognitive impairments (cognitive screening, executive functioning, ToM), and increased brain atrophy (prefrontal areas, cingulated cortices, basal ganglia, and inferior temporal gyrus) than S-FTD patients (GR3). No differences in disease duration were observed across groups. Additionally, significant neuropsychiatric symptoms were observed in the GR1. The GR1 also presented more clinical and neurocognitive compromise than GR2 patients; these groups, however, did not display differences in disease onset or duration. APOE and tau patients showed more neuropsychiatric symptoms and primary atrophy in parietal and temporal cortices than GR1 patients. The gene-atrophy overlap analysis revealed atrophy in regions with specific genetic overexpression in all G-FTD patients. A differential family presentation did not explain the results. CONCLUSIONS Our results support the existence of genetic levels affecting the clinical, neurocognitive, and, to a lesser extent, neuropsychiatric presentation of bvFTD in the present underrepresented sample. These results support tailored assessments characterization based on the parallels of genetic levels and neurocognitive profiles in bvFTD.
Collapse
Affiliation(s)
- Hernando Santamaría-García
- PhD program in Neuroscience, Pontificia Universidad Javeriana, Bogotá, Colombia.
- Memory and cognition Center, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia.
- Department of Neurology, Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA.
| | - Natalia Ogonowsky
- CONICET & Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Sandra Baez
- Faculty of Psychology, Universidad de los Andes, Bogotá, Colombia
| | - Nicole Palacio
- Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Pablo Reyes
- PhD program in Neuroscience, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Michael Schulte
- CONICET & Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Andrea López
- Pontificia Universidad Javeriana, Bogotá, Colombia
- Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | - Agustín Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago de Chile, Chile.
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
- Trinity Collegue of Dublin, Dublin, Irland.
- Global Brain Health Insititute, Universidad California San Francisco-Trinity College of Dublin, San Francisco, USA.
- Global Brain Health Insititute, Universidad California San Francisco-Trinity College of Dublin, Dublin, Irland.
| |
Collapse
|
8
|
Ryan B, O’Mara Baker A, Ilse C, Brickell KL, Kersten HM, Williams JM, Addis DR, Tippett LJ, Curtis MA. The New Zealand Genetic Frontotemporal Dementia Study (FTDGeNZ): a longitudinal study of pre-symptomatic biomarkers. J R Soc N Z 2022; 53:511-531. [PMID: 39439966 PMCID: PMC11459842 DOI: 10.1080/03036758.2022.2101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 07/08/2022] [Indexed: 10/16/2022]
Abstract
The New Zealand Genetic Frontotemporal Dementia Study (FTDGeNZ) is an emerging longitudinal study of a large New Zealand pedigree with genetic frontotemporal dementia (FTD). Natural history studies of genetic FTD cohorts provide a unique opportunity to identify biomarkers of pre-symptomatic dementia, as carriers can be identified and studied decades before expected symptom onset. FTDGeNZ was established in 2016 with the aim of identifying the earliest pre-symptomatic biomarkers of FTD, in collaboration with international multi-centre cohorts. We enrolled 25 participants from a single family between April 2016 and August 2018. Participants were genotyped to determine whether they were pre-symptomatic carriers of the mutation (MAPT IVS 10 + 16 C > T), or non-carrier controls. Participants have undergone clinical assessments including neuropsychological and mood assessment; olfactory testing; assessment of social cognition; and blood collection for analyses of microRNA and protein fluid biomarkers annually. We have also performed structural and functional MRI of the brain and assessment of autobiographical memory biennially, and retinal imaging at baseline. Here, we describe the full study protocol and the baseline demographic and clinical characteristics of the FTDGeNZ cohort, and we highlight the latest findings in the field.
Collapse
Affiliation(s)
- Brigid Ryan
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, New Zealand
| | - Ashleigh O’Mara Baker
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- School of Psychology, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, New Zealand
| | - Christina Ilse
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, New Zealand
| | - Kiri L. Brickell
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, New Zealand
| | - Hannah M. Kersten
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Joanna M. Williams
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, New Zealand
| | - Donna Rose Addis
- School of Psychology, University of Auckland, Auckland, New Zealand
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Lynette J. Tippett
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- School of Psychology, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, New Zealand
| | - Maurice A. Curtis
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, New Zealand
| |
Collapse
|
9
|
Soni N, Ora M, Bathla G, Nagaraj C, Boles Ponto LL, Graham MM, Saini J, Menda Y. Multiparametric magnetic resonance imaging and positron emission tomography findings in neurodegenerative diseases: Current status and future directions. Neuroradiol J 2021; 34:263-288. [PMID: 33666110 PMCID: PMC8447818 DOI: 10.1177/1971400921998968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by progressive neuronal loss, leading to dementia and movement disorders. NDDs broadly include Alzheimer's disease, frontotemporal lobar degeneration, parkinsonian syndromes, and prion diseases. There is an ever-increasing prevalence of mild cognitive impairment and dementia, with an accompanying immense economic impact, prompting efforts aimed at early identification and effective interventions. Neuroimaging is an essential tool for the early diagnosis of NDDs in both clinical and research settings. Structural, functional, and metabolic imaging modalities, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are widely available. They show encouraging results for diagnosis, monitoring, and treatment response evaluation. The current review focuses on the complementary role of various imaging modalities in relation to NDDs, the qualitative and quantitative utility of newer MRI techniques, novel radiopharmaceuticals, and integrated PET/MRI in the setting of NDDs.
Collapse
Affiliation(s)
- Neetu Soni
- University of Iowa Hospitals and Clinics, USA
| | - Manish Ora
- Department of Nuclear Medicine, SGPGIMS, India
| | - Girish Bathla
- Neuroradiology Department, University of Iowa Hospitals and
Clinics, USA
| | - Chandana Nagaraj
- Department of Neuro Imaging and Interventional Radiology,
NIMHANS, India
| | | | - Michael M Graham
- Division of Nuclear Medicine, University of Iowa Hospitals and
Clinics, USA
| | - Jitender Saini
- Department of Neuro Imaging and Interventional Radiology,
NIMHANS, India
| | - Yusuf Menda
- University of Iowa Hospitals and Clinics, USA
| |
Collapse
|
10
|
Escal J, Fourier A, Formaglio M, Zimmer L, Bernard E, Mollion H, Bost M, Herrmann M, Ollagnon-Roman E, Quadrio I, Dorey JM. Comparative diagnosis interest of NfL and pNfH in CSF and plasma in a context of FTD-ALS spectrum. J Neurol 2021; 269:1522-1529. [PMID: 34313819 DOI: 10.1007/s00415-021-10714-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The 'Frontotemporal dementia-Amyotrophic lateral sclerosis Spectrum' (FAS) encompasses different phenotypes, including cognitive disorders (frontotemporal dementia, FTD) and/or motor impairments (amyotrophic lateral sclerosis, ALS). The aim of this study was to apprehend the specific uses of neurofilaments light chain (NfL) and phosphorylated neurofilaments heavy chain (pNfH) in a context of FAS. METHODS First, NfL and pNfH were measured in 39 paired cerebrospinal fluid (CSF) and plasma samples of FAS and primary psychiatric disorders (PPD) patients, considered as controls. Secondly, additional plasma samples were included to examine a larger cohort of 81 samples composed of symptomatic FAS and PPD patients, presymptomatic and non-carrier relatives individuals. The measures were performed using Simoa technology. RESULTS There was a positive correlation between CSF and plasma values for NfL (p < 0.0001) and for pNfH (p = 0.0036). NfL values were higher for all phenotypes of symptomatic FAS patients compared to PPD patients (p = 0.0016 in CSF; p = 0.0003 in plasma). On the contrary, pNfH values were solely increased in FAS patients exhibiting motor impairment. Unlike symptomatic FAS patients, presymptomatic cases had comparable concentrations with non-carrier individuals. CONCLUSION NfL, but not pNfH, appeared to be useful in a context of differential diagnosis between FTD and psychiatric patients. Nevertheless, pNfH seem more specific for the diagnosis and follow-up of motor impairments. In each specific indication, measures in CSF and plasma will provide identical interpretations.
Collapse
Affiliation(s)
- Jean Escal
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France.,BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
| | - Anthony Fourier
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France. .,BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France.
| | - Maité Formaglio
- Neurocognition and Neuro-Ophthalmology Department, Lyon University Hospital, Bron, France.,Center for Memory Resources and Research, Lyon University Hospital, Lyon 1 University, Villeurbanne, France
| | - Luc Zimmer
- BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
| | - Emilien Bernard
- Reference Center of ALS of Lyon, Lyon University Hospital, Lyon 1 University, Bron, France.,NeuroMyoGène Institute, CNRS UMR 5310, INSERM U1217, Lyon 1 University, Lyon, France
| | - Hélène Mollion
- Neurocognition and Neuro-Ophthalmology Department, Lyon University Hospital, Bron, France.,Center for Memory Resources and Research, Lyon University Hospital, Lyon 1 University, Villeurbanne, France
| | - Muriel Bost
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France
| | - Mathieu Herrmann
- Department of Aging Psychiatry, Hospital Le Vinatier, Bron, France
| | - Elisabeth Ollagnon-Roman
- Department of Predictive Medicine of Neurological and Neurodegenerative Diseases, Lyon University Hospital, Lyon, France
| | - Isabelle Quadrio
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France.,BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France.,Center for Memory Resources and Research, Lyon University Hospital, Lyon 1 University, Villeurbanne, France
| | - Jean-Michel Dorey
- Department of Aging Psychiatry, Hospital Le Vinatier, Bron, France.,Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon, France
| |
Collapse
|
11
|
Bocchetta M, Todd EG, Peakman G, Cash DM, Convery RS, Russell LL, Thomas DL, Eugenio Iglesias J, van Swieten JC, Jiskoot LC, Seelaar H, Borroni B, Galimberti D, Sanchez-Valle R, Laforce R, Moreno F, Synofzik M, Graff C, Masellis M, Carmela Tartaglia M, Rowe JB, Vandenberghe R, Finger E, Tagliavini F, de Mendonça A, Santana I, Butler CR, Ducharme S, Gerhard A, Danek A, Levin J, Otto M, Sorbi S, Le Ber I, Pasquier F, Rohrer JD. Differential early subcortical involvement in genetic FTD within the GENFI cohort. Neuroimage Clin 2021; 30:102646. [PMID: 33895632 PMCID: PMC8099608 DOI: 10.1016/j.nicl.2021.102646] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Studies have previously shown evidence for presymptomatic cortical atrophy in genetic FTD. Whilst initial investigations have also identified early deep grey matter volume loss, little is known about the extent of subcortical involvement, particularly within subregions, and how this differs between genetic groups. METHODS 480 mutation carriers from the Genetic FTD Initiative (GENFI) were included (198 GRN, 202 C9orf72, 80 MAPT), together with 298 non-carrier cognitively normal controls. Cortical and subcortical volumes of interest were generated using automated parcellation methods on volumetric 3 T T1-weighted MRI scans. Mutation carriers were divided into three disease stages based on their global CDR® plus NACC FTLD score: asymptomatic (0), possibly or mildly symptomatic (0.5) and fully symptomatic (1 or more). RESULTS In all three groups, subcortical involvement was seen at the CDR 0.5 stage prior to phenoconversion, whereas in the C9orf72 and MAPT mutation carriers there was also involvement at the CDR 0 stage. In the C9orf72 expansion carriers the earliest volume changes were in thalamic subnuclei (particularly pulvinar and lateral geniculate, 9-10%) cerebellum (lobules VIIa-Crus II and VIIIb, 2-3%), hippocampus (particularly presubiculum and CA1, 2-3%), amygdala (all subregions, 2-6%) and hypothalamus (superior tuberal region, 1%). In MAPT mutation carriers changes were seen at CDR 0 in the hippocampus (subiculum, presubiculum and tail, 3-4%) and amygdala (accessory basal and superficial nuclei, 2-4%). GRN mutation carriers showed subcortical differences at CDR 0.5 in the presubiculum of the hippocampus (8%). CONCLUSIONS C9orf72 expansion carriers show the earliest and most widespread changes including the thalamus, basal ganglia and medial temporal lobe. By investigating individual subregions, changes can also be seen at CDR 0 in MAPT mutation carriers within the limbic system. Our results suggest that subcortical brain volumes may be used as markers of neurodegeneration even prior to the onset of prodromal symptoms.
Collapse
Affiliation(s)
- Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Emily G Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Georgia Peakman
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David L Thomas
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Lize C Jiskoot
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Raquel Sanchez-Valle
- Neurology Department, Hospital Clinic, Institut d'Investigacions Biomèdiques, Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada
| | - Fermin Moreno
- Hospital Universitario Donostia, San Sebastian, Spain
| | - Matthis Synofzik
- Department of Cognitive Neurology, Center for Neurology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Caroline Graff
- Karolinska Institutet, Department NVS, Division of Neurogeriatrics, Stockholm, Sweden; Unit for Hereditray Dementia, Theme Aging, Karolinska University Hospital-Solna Stockholm Sweden
| | - Mario Masellis
- Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON, Canada
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Chris R Butler
- Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | - Simon Ducharme
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom; Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich German Center for Neurodegenerative Diseases (DZNE), Munich Munich Cluster of Systems Neurology, Munich, Germany
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich German Center for Neurodegenerative Diseases (DZNE), Munich Munich Cluster of Systems Neurology, Munich, Germany
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau- ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Centre deréférence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Florence Pasquier
- Univ Lille, France; Inserm 1172 Lille, France; CHU, CNR-MAJ, Labex Distalz, LiCENDLille, France
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | | |
Collapse
|
12
|
Häkkinen S, Chu SA, Lee SE. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 145:105063. [PMID: 32890771 DOI: 10.1016/j.nbd.2020.105063] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have a strong clinical, genetic and pathological overlap. This review focuses on the current understanding of structural, functional and molecular neuroimaging signatures of genetic FTD and ALS. We overview quantitative neuroimaging studies on the most common genes associated with FTD (MAPT, GRN), ALS (SOD1), and both (C9orf72), and summarize visual observations of images reported in the rarer genes (CHMP2B, TARDBP, FUS, OPTN, VCP, UBQLN2, SQSTM1, TREM2, CHCHD10, TBK1).
Collapse
Affiliation(s)
- Suvi Häkkinen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie A Chu
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Müller HP, Del Tredici K, Lulé D, Müller K, Weishaupt JH, Ludolph AC, Kassubek J. In vivo histopathological staging in C9orf72-associated ALS: A tract of interest DTI study. Neuroimage Clin 2020; 27:102298. [PMID: 32505118 PMCID: PMC7270604 DOI: 10.1016/j.nicl.2020.102298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) can identify amyotrophic lateral sclerosis (ALS)-associated patterns of brain alterations at the group level according to a neuropathological staging system. OBJECTIVE The study was designed to investigate the in vivo staging in ALS patients with the C9orf72 expansion and potential differences to ALS patients with the SOD1 mutation. METHODS DTI-based white matter mapping was performed both by an unbiased voxel-wise statistical comparison and by a hypothesis-guided tract-wise analysis of fractional anisotropy (FA) maps according to the ALS-staging pattern for 27 ALS patients with C9orf72 expansion vs 15 ALS patients with SOD1 mutation vs 32 matched healthy controls. Clinical and neuropsychological data were acquired and correlated to DTI data. RESULTS The analysis of white matter integrity demonstrated regional FA reductions along the CST and also in frontal and prefrontal brain areas according to the proposed propagation pattern for the ALS patients with C9orf72 expansion and sporadic patients. This pattern could not be identified for the SOD1 mutation at the group level. In contrast, in the tract-specific analysis according to the neuropathological ALS-staging pattern, C9orf72 expansion ALS patients showed significant alterations of ALS-related tract systems similar to sporadic patients. CONCLUSIONS The DTI study including the tract-of-interest-based analysis showed a microstructural corticoefferent involvement pattern according to the staging scheme in C9orf72-associated ALS patients but not in the SOD1 mutation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Germany.
| |
Collapse
|