1
|
Yan S, Lin S, Qiu H, Wang X, He Y, Wang C, Huang Y. Regulation of telomerase towards tumor therapy. Cell Biosci 2023; 13:228. [PMID: 38111043 PMCID: PMC10726632 DOI: 10.1186/s13578-023-01181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023] Open
Abstract
Cancer is an aging-related disease, while aging plays an important role in the development process of tumor, thus the two are inextricably associated. Telomere attrition is one of the recognized hallmark events of senescence. Hence, targeting telomerase which could extends telomere sequences to treat tumors is widely favored. Cancer cells rely on high activity of telomerase to maintain a strong proliferative potential. By inhibiting the expression or protein function of telomerase, the growth of cancer cells can be significantly suppressed. In addition, the human immune system itself has a defense system against malignant tumors. However, excessive cell division results in dramatic shortening on telomeres and decline in the function of immune organs that facilitates cancer cell evasion. It has been shown that increasing telomerase activity or telomere length of these immune cells can attenuate senescence, improve cellular viability, and enhance the immunosuppressive microenvironment of tumor. In this paper, we review the telomerase-targeting progress using different anti-tumor strategies from the perspectives of cancer cells and immune cells, respectively, as well as tracking the preclinical and clinical studies of some representative drugs for the prevention or treatment of tumors.
Collapse
Affiliation(s)
- Siyu Yan
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Lumiere Therapeutics Co., Ltd., Suzhou, 215000, China
| | - Song Lin
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hongxin Qiu
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xining Wang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yijun He
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chuanle Wang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yan Huang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
2
|
Zaman Q, Zhang D, Reddy OS, Wong WT, Lai WF. Roles and Mechanisms of Astragaloside IV in Combating Neuronal Aging. Aging Dis 2022; 13:1845-1861. [DOI: 10.14336/ad.2022.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
|
3
|
Telomerase in Brain: The New Kid on the Block and Its Role in Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9050490. [PMID: 33946850 PMCID: PMC8145691 DOI: 10.3390/biomedicines9050490] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 01/14/2023] Open
Abstract
Telomerase is an enzyme that in its canonical function extends and maintains telomeres, the ends of chromosomes. This reverse transcriptase function is mainly important for dividing cells that shorten their telomeres continuously. However, there are a number of telomere-independent functions known for the telomerase protein TERT (Telomerase Reverse Transcriptase). This includes the shuttling of the TERT protein from the nucleus to mitochondria where it decreases oxidative stress, apoptosis sensitivity and DNA damage. Recently, evidence has accumulated on a protective role of TERT in brain and postmitotic neurons. This function might be able to ameliorate the effects of toxic proteins such as amyloid-β, pathological tau and α-synuclein involved in neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). However, the protective mechanisms of TERT are not clear yet. Recently, an activation of autophagy as an important protein degradation process for toxic neuronal proteins by TERT has been described. This review summarises the current knowledge about the non-canonical role of the telomerase protein TERT in brain and shows its potential benefit for the amelioration of brain ageing and neurodegenerative diseases such as AD and PD. This might form the basis for the development of novel strategies and therapies against those diseases.
Collapse
|
4
|
Kaliszewska A, Allison J, Martini M, Arias N. Improving Age-Related Cognitive Decline through Dietary Interventions Targeting Mitochondrial Dysfunction. Int J Mol Sci 2021; 22:ijms22073574. [PMID: 33808221 PMCID: PMC8036520 DOI: 10.3390/ijms22073574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is inevitable and it is one of the major contributors to cognitive decline. However, the mechanisms underlying age-related cognitive decline are still the object of extensive research. At the biological level, it is unknown how the aging brain is subjected to progressive oxidative stress and neuroinflammation which determine, among others, mitochondrial dysfunction. The link between mitochondrial dysfunction and cognitive impairment is becoming ever more clear by the presence of significant neurological disturbances in human mitochondrial diseases. Possibly, the most important lifestyle factor determining mitochondrial functioning is nutrition. Therefore, with the present work, we review the latest findings disclosing a link between nutrition, mitochondrial functioning and cognition, and pave new ways to counteract cognitive decline in late adulthood through diet.
Collapse
Affiliation(s)
- Aleksandra Kaliszewska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
| | - Joseph Allison
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
| | - Matteo Martini
- Department of Psychology, University of East London, London E154LZ, UK;
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33005 Oviedo, Spain
- Correspondence:
| |
Collapse
|
5
|
Eyolfson E, Carr T, Khan A, Wright DK, Mychasiuk R, Lohman AW. Repetitive Mild Traumatic Brain Injuries in Mice during Adolescence Cause Sexually Dimorphic Behavioral Deficits and Neuroinflammatory Dynamics. J Neurotrauma 2020; 37:2718-2732. [DOI: 10.1089/neu.2020.7195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
| | - Thomas Carr
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| | - Asher Khan
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Alexander W. Lohman
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Davis CK, Vemuganti R. DNA damage and repair following traumatic brain injury. Neurobiol Dis 2020; 147:105143. [PMID: 33127471 DOI: 10.1016/j.nbd.2020.105143] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Traumatic brain injury (TBI) is known to promote significant DNA damage irrespective of age, sex, and species. Chemical as well as structural DNA modification start within minutes and persist for days after TBI. Although several DNA repair pathways are induced following TBI, the simultaneous downregulation of some of the genes and proteins of these pathways leads to an aberrant overall DNA repair process. In many instances, DNA damages escape even the most robust repair mechanisms, especially when the repair process becomes overwhelmed or becomes inefficient by severe or repeated injuries. The persisting DNA damage and/or lack of DNA repair contributes to long-term functional deficits. In this review, we discuss the mechanisms of TBI-induced DNA damage and repair. We further discussed the putative experimental therapies that target the members of the DNA repair process for improved outcome following TBI.
Collapse
Affiliation(s)
- Charles K Davis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| |
Collapse
|