1
|
Yang BSK, Savarraj JP, Chen H, Hinds SN, Torres GL, Ryan AS, Atem FD, Lorenzi PL, Ren XS, Badjatia N, Choi HA, Gusdon AM. Systemic Metabolic Alterations after Aneurysmal Subarachnoid Hemorrhage: A Plasma Metabolomics Approach. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.06.25320083. [PMID: 39830284 PMCID: PMC11741492 DOI: 10.1101/2025.01.06.25320083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Background Aneurysmal subarachnoid hemorrhage (aSAH) causes systemic changes that contribute to delayed cerebral ischemia (DCI) and morbidity. Circulating metabolites reflecting underlying pathophysiological mechanisms warrant investigation as biomarker candidates. Methods Blood samples, prospectively collected within 24 hours (T1) of admission and 7-days (T2) post ictus, from patients with acute aSAH from two tertiary care centers were retrospectively analyzed. Samples from healthy subjects and patients with non-neurologic critical illness served as controls. A validated external analysis platform was used to perform untargeted metabolomics. Bioinformatics analyses were conducted to identify metabolomic profiles defining each group and delineate metabolic pathways altered in each group. Machine learning (ML) models were developed incorporating key metabolites to improve DCI prediction. Results Among 70 aSAH, 30 healthy control, and 17 sick control subjects, a total of 1,117 metabolites were detected. Groups were matched among key clinical variables. DCI occurred in 36% of aSAH subjects, and poor functional outcome was observed in 70% at discharge. Metabolomic profiles readily discriminated the groups. aSAH subjects demonstrated a robust mobilization of lipid metabolites, with increased levels of free fatty acids (FFAs), mono- and diacylglycerols (MAG, DAG) compared with both control groups. aSAH subjects also had decreased circulating amino acid derived metabolites, consistent with increased catabolism. DCI was associated with increased sphingolipids (sphingosine and sphinganine) and decreased acylcarnitines and S-adenosylhomocysteine at T1. Decreased lysophospholipids and acylcarnitines were associated with poor outcomes. Incorporating metabolites into ML models improved prediction of DCI compared with clinical variables alone. Conclusions Profound metabolic shifts occur after aSAH with characteristic increases in lipid and decreases in amino acid metabolites. Key lipid metabolites associated with outcomes (sphingolipids, lysophospholipids, and acylcarnitines) provide insight into systemic changes driving secondary complications. These metabolites may also prove to be useful biomarkers to improve prognostication and personalize aSAH care.
Collapse
Affiliation(s)
- Bosco Seong Kyu Yang
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Jude P.J. Savarraj
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Hua Chen
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Sarah N. Hinds
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Glenda L. Torres
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Alice S. Ryan
- Department of Medicine, Division of Gerontology, Geriatric, and Palliative Medicine, Geriatric Research, Education, and Clinical Center (GRECC), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Folefac D. Atem
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center, Houston, TX, USA
| | - Philip L. Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computations Biology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
| | - Xuefang S. Ren
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Neeraj Badjatia
- Program in Trauma, Shock Trauma Neurocritical Care and Department of Neurology, University of Maryland School of Medicine, Baltimore, USA University of Maryland School of Medicine, Baltimore, MD, USA
| | - Huimahn A. Choi
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Aaron M. Gusdon
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
2
|
Yang BSK, Blackburn SL, Lorenzi PL, Choi HA, Gusdon AM. Metabolomic and lipidomic pathways in aneurysmal subarachnoid hemorrhage. Neurotherapeutics 2025; 22:e00504. [PMID: 39701893 PMCID: PMC11840353 DOI: 10.1016/j.neurot.2024.e00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) results in a complex systemic response that is critical to the pathophysiology of late complications and has important effects on outcomes. Omics techniques have expanded our investigational scope and depth into this phenomenon. In particular, metabolomics-the study of small molecules, such as blood products, carbohydrates, amino acids, and lipids-can provide a snapshot of dynamic subcellular processes and thus broaden our understanding of molecular-level pathologic changes that lead to the systemic response after aSAH. Lipids are especially important due to their abundance in the circulating blood and numerous physiological roles. They are comprised of a wide variety of subspecies and are critical for cellular energy metabolism, the integrity of the blood-brain barrier, the formation of cell membranes, and intercellular signaling including neuroinflammation and ferroptosis. In this review, metabolomic and lipidomic pathways associated with aSAH are summarized, centering on key metabolites from each metabolomic domain.
Collapse
Affiliation(s)
- Bosco Seong Kyu Yang
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States
| | - Spiros L Blackburn
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center (MDACC), United States
| | - Huimahn A Choi
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States
| | - Aaron M Gusdon
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States.
| |
Collapse
|
3
|
Li Z, Zhang T, Feng Y, Ma Y, Chen H, Wu X, Chen J, Dai X, Chen J, Li X, Wei W, Zhao W. Study the local metabolic changes of aneurysms through microcatheter sampling. Sci Rep 2024; 14:19552. [PMID: 39174658 PMCID: PMC11341698 DOI: 10.1038/s41598-024-70309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Intracranial aneurysm is the primary cause of nontraumatic subarachnoid hemorrhage. To assess aneurysm metabolism, we present a method of intra-operatively collecting blood samples from the aneurysm neck, as well as the proximal and distal responsible vessels, using microcatheters. Through these paired comparisons, we can eliminate the interpatient variation usually observed in plasma samples taken from the peripheral vein. We utilized 39 plasma samples from 13 intracranial patients to characterize the metabolite profiles using untargeted liquid chromatography-mass spectrometry. Our findings revealed that L-tyrosine is upregulated at relatively high levels at the aneurysm neck than the proximal and distal aneurysm, whereas phenylpyruvic acid, L-cystine, and L-ornithine are downregulated. Based on this, there was also a significant decrease in arginine within small aneurysm of the internal carotid artery. The 6-month follow-up indicated that patients who experienced good recovery had lower levels of biliverdin, bilirubin, and metabolites of coenzyme Q within the aneurysm. In conclusion, our investigation provides a comprehensive overview of plasma metabolites in patients with intracranial aneurysms, shedding light on potential pathogenetic mechanisms in unruptured intracranial aneurysms. Moreover, the study proposes innovative ideas for establishing postoperative follow-up timelines for flow diverter devices.
Collapse
Affiliation(s)
- Zejin Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tingbao Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu Feng
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yihui Ma
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaolin Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiayi Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuan Dai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Wenyuan Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Duan M, Xu Y, Li Y, Feng H, Chen Y. Targeting brain-peripheral immune responses for secondary brain injury after ischemic and hemorrhagic stroke. J Neuroinflammation 2024; 21:102. [PMID: 38637850 PMCID: PMC11025216 DOI: 10.1186/s12974-024-03101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
The notion that the central nervous system is an immunologically immune-exempt organ has changed over the past two decades, with increasing evidence of strong links and interactions between the central nervous system and the peripheral immune system, both in the healthy state and after ischemic and hemorrhagic stroke. Although primary injury after stroke is certainly important, the limited therapeutic efficacy, poor neurological prognosis and high mortality have led researchers to realize that secondary injury and damage may also play important roles in influencing long-term neurological prognosis and mortality and that the neuroinflammatory process in secondary injury is one of the most important influences on disease progression. Here, we summarize the interactions of the central nervous system with the peripheral immune system after ischemic and hemorrhagic stroke, in particular, how the central nervous system activates and recruits peripheral immune components, and we review recent advances in corresponding therapeutic approaches and clinical studies, emphasizing the importance of the role of the peripheral immune system in ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Mingxu Duan
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ya Xu
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanshu Li
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yujie Chen
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
5
|
Ho WM, Schmidt FA, Thomé C, Petr O. CSF metabolomics alterations after aneurysmal subarachnoid hemorrhage: what do we know? Acta Neurol Belg 2023; 123:2111-2114. [PMID: 37121932 PMCID: PMC10682053 DOI: 10.1007/s13760-023-02266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/05/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE The purpose of this mini review is to describe metabolomics in cerebrospinal fluid (CSF) and its potential in aneurysmal subarachnoid hemorrhage (aSAH). In brain injury, patients' micro dialysis enables detecting biochemical change in brain tissue. Indicators for ischemia were detected such as lactate, pyruvate, glucose, and glutamate. In aSAH patients, the pathophysiology and the factor for poor outcome are not completely understood yet. Routine use of biomarkers in CSF, particularly in aSAH patients, is still lacking. METHODS This mini review was performed on the role of metabolomics alterations after aneurysmal subarachnoid hemorrhage. RESULTS We identified five clinical studies that addressed metabolomics in patients with aneurysmal subarachnoid hemorrhage. CONCLUSION There is increasing evidence suggesting that biomarkers can give insight in the pathogenesis and can serve as an outcome predictor. In this mini review, we present a brief overview of metabolomics profiling in neuroscience and wish to discuss the predictive and therapeutic value in aSAH patients.
Collapse
Affiliation(s)
- Wing Mann Ho
- Department of Neurosurgery, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Franziska A Schmidt
- Department of Neurosurgery, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Ondra Petr
- Department of Neurosurgery, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
6
|
Cutler CB, Lucke-Wold B. Commentary: Serum Levels of Myo-inositol Predicts Clinical Outcome 1 Year After Aneurysmal Subarachnoid Hemorrhage. Neurosurgery 2022; 91:e170-e171. [PMID: 36269571 DOI: 10.1227/neu.0000000000002195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Christopher B Cutler
- Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, Illinois, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Liu C, He P, Guo Y, Tian Q, Wang J, Wang G, Zhang Z, Li M. Taurine attenuates neuronal ferroptosis by regulating GABA B/AKT/GSK3β/β-catenin pathway after subarachnoid hemorrhage. Free Radic Biol Med 2022; 193:795-807. [PMID: 36402441 DOI: 10.1016/j.freeradbiomed.2022.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Ferroptosis, characterized by lipid peroxidation and intracellular iron accumulation, has been reported to be involving in the pathophysiological of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Although taurine reportedly yields neuroprotective effects in multiple central neurological diseases and can attenuated neuron damage after stroke, its role in EBI after SAH remains unclear. The present study indicated that taurine levels in cerebrospinal fluid were significantly reduced in SAH patients, which suggested that taurine treatment after SAH could improve neurological impairment, oxidative stress, iron accumulation, BBB integrity and neuronal ferroptosis in the SAH model in vivo. Taurine could attenuate MDA levels and ROS accumulation and regulate the expression of SLC7A11 and GPX4 and the AKT/GSK3β pathway in vitro. GABAB receptor inhibition and Ly294002 could reverse the therapeutic effects of taurine and significantly downregulate the levels of p-AKT, p-GSK3β, β-catenin, SLC7A11 and GPX4. The protective effects of taurine on SLC7A11 and GPX4 expression were reversed by ICG001 treatment in vitro. Taken together, our findings revealed that taurine could improve neurological function and alleviate cerebral edema, oxidative stress and BBB disruption after SAH, which reduced neuronal ferroptosis by regulating the GABAB/AKT/GSK3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Peibang He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Jianfeng Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Zhan Zhang
- Department of Rehabilitation, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China.
| |
Collapse
|
8
|
Chen Y, Galea I, Macdonald RL, Wong GKC, Zhang JH. Rethinking the initial changes in subarachnoid haemorrhage: Focusing on real-time metabolism during early brain injury. EBioMedicine 2022; 83:104223. [PMID: 35973388 PMCID: PMC9396538 DOI: 10.1016/j.ebiom.2022.104223] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/17/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Over the last two decades, neurological researchers have uncovered many pathophysiological mechanisms associated with subarachnoid haemorrhage (SAH), with early brain injury and delayed cerebral ischaemia both contributing to morbidity and mortality. The current dilemma in SAH management inspired us to rethink the nature of the insult in SAH: sudden bleeding into the subarachnoid space and hypoxia due to disturbed cerebral circulation and increased intracranial pressure, generating exogenous stimuli and subsequent pathophysiological processes. Exogenous stimuli are defined as factors which the brain tissue is not normally exposed to when in the healthy state. Intersections of these initial pathogenic factors lead to secondary brain injury with related metabolic changes after SAH. Herein, we summarized the current understanding of efforts to monitor and analyse SAH-related metabolic changes to identify those precise pathophysiological processes and potential therapeutic strategies; in particular, we highlight the restoration of normal cerebrospinal fluid circulation and the normalization of brain-blood interface physiology to alleviate early brain injury and delayed neurological deterioration after SAH.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ian Galea
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - R Loch Macdonald
- Community Neurosciences Institutes, Community Regional Medical Center, Fresno, CA 93701, USA
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - John H Zhang
- Neuroscience Research Center, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
9
|
Sun G, Jiang F, Hu S, Cheng H, Qu L, Tao Y, Ma B. Metabolomic analysis reveals potential biomarkers and serum metabolomic profiling in spontaneous intracerebral hemorrhage patients using UPLC/quadrupole time-of-flight MS. Biomed Chromatogr 2021; 36:e5241. [PMID: 34505712 DOI: 10.1002/bmc.5241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/08/2022]
Abstract
Spontaneous intracerebral hemorrhage (ICH) accounts for 10-20% of all strokes and contributes to higher mortalities and severe disabilities. The aims of this study were, therefore, to characterize novel biomarkers, metabolic disruptions, and mechanisms involving ICH. A total 30 ICH patients and 30 controls were enrolled in the study, and their clinical characteristics were analyzed. Nontargeted metabolomic analysis was conducted using ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF). Multivariate statistical analysis and receiver operating characteristic curve analysis were used for screening and evaluating the predictive ability of biomarkers. ICH patients showed significantly higher systolic blood pressure, diastolic blood pressure, blood glucose levels, white blood cell counts, neutrophil count, percentage of neutrophils and globulin and a lower albumin/globin ratio when compared with controls. In sum, 11 important metabolites were identified, which were associated with disruption of fatty acid oxidation and sphingolipid and phospholipid metabolism, as well as increased inflammation, oxidative stress, and vascular pathologies. Further multiple logistic regression analyses of these metabolites showed that l-carnitine and phosphatidylcholine (20:3/22:6) have potential as biomarkers of ICH, and the area under the curve, sensitivity, specificity were 0.974, 90%, and 93%, respectively. These findings provide insights into the pathogenesis, early prevention, and diagnosis of ICH.
Collapse
Affiliation(s)
- Guozhang Sun
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Fengling Jiang
- Department of Internal Neurology, Harbin Xiangfang District People's Hospital, Harbin, China
| | - Shaoshan Hu
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huakun Cheng
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Lianlong Qu
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Yu Tao
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Bowen Ma
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin, China
| |
Collapse
|
10
|
Zhou J, Guo P, Guo Z, Sun X, Chen Y, Feng H. Fluid metabolic pathways after subarachnoid hemorrhage. J Neurochem 2021; 160:13-33. [PMID: 34160835 DOI: 10.1111/jnc.15458] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 06/20/2021] [Indexed: 01/05/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating cerebrovascular disease with high mortality and morbidity. In recent years, a large number of studies have focused on the mechanism of early brain injury (EBI) and delayed cerebral ischemia (DCI), including vasospasm, neurotoxicity of hematoma and neuroinflammatory storm, after aSAH. Despite considerable efforts, no novel drugs have significantly improved the prognosis of patients in phase III clinical trials, indicating the need to further re-examine the multifactorial pathophysiological process that occurs after aSAH. The complex pathogenesis is reflected by the destruction of the dynamic balance of the energy metabolism in the nervous system after aSAH, which prevents the maintenance of normal neural function. This review focuses on the fluid metabolic pathways of the central nervous system (CNS), starting with ruptured aneurysms, and discusses the dysfunction of blood circulation, cerebrospinal fluid (CSF) circulation and the glymphatic system during disease progression. It also proposes a hypothesis on the metabolic disorder mechanism and potential therapeutic targets for aSAH patients.
Collapse
Affiliation(s)
- Jiru Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peiwen Guo
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zongduo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
11
|
Wipplinger C, Griessenauer CJ. Commentary: Machine Learning-Driven Metabolomic Evaluation of Cerebrospinal Fluid: Insights Into Poor Outcomes After Aneurysmal Subarachnoid Hemorrhage. Neurosurgery 2021; 88:E412-E414. [PMID: 33582769 DOI: 10.1093/neuros/nyab033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Christoph J Griessenauer
- Department of Neurosurgery, Geisinger Neuroscience Institute, Danville, Pennsylvania, USA.,Research Institute of Neurointervention, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|