1
|
Wichmann TO, Babaee A, Duch K, Rasmussen MM, Lesbo M, Brink O, Borris LC, Hviid CVB. A head-to-head comparison of S100B and GFAP/UCH-L1 for detection of traumatic intracranial lesions in a Scandinavian trauma cohort. Scand J Trauma Resusc Emerg Med 2025; 33:52. [PMID: 40133945 PMCID: PMC11938562 DOI: 10.1186/s13049-025-01364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Few countries recommend glial fibrillary protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) as a substitute for S100 astroglial calcium-binding protein B (S100B) in early detection of traumatic intracranial lesions in mild TBI (mTBI). This study aims to evaluate the classification agreement between S100B and GFAP/UCH-L1 in a Scandinavian trauma cohort, to evaluate the performance characteristics of S100B and GFAP/UCH-L1 for detection of traumatic intracranial lesions, and lastly to evaluate the laboratory performance of the GFAP/UCH-L1 assay. METHODS Prospectively collected data from an unselected cohort of 379 adult trauma patients admitted to a level I trauma center at Aarhus University Hospital, Denmark, were retrospectively analyzed. Analyses were performed in the unselected cohort, in sub-cohort 1 (n = 218) i.e. patients with any evidence of TBI in their chart as well as in sub-cohort 2 (n = 105) i.e. patients with mTBI defined as Glasgow Coma Scale score ≥ 14, an injury severity score ≤ 15, and blood sampling within 6 h or 12 h after trauma. Plasma-samples were used for GFAP/UCH-L1 measurement and serum-samples were used for S100B measurement. Data analysis involved agreement analysis using Cohens kappa and sensitivity, specificity, positive predictive value and negative predictive value for each biomarker in each of the three cohorts. Lastly, levels of GFAP/UCH-L1 measured by the Alinity-I platform and the Simoa platform were compared. RESULTS Classification agreement between GFAP/UCH-L1 and S100B was high in all three cohorts, but Cohens kappa improved with increasing proximity to clinical biomarker use and reached an almost perfect identity in sub-cohort 2 (0.70, 95% CI 0.62-0.92). S100b had a sensitivity and negative predictive value of 100% in sub-cohort 2, while GFAP/UCH-L1 reached 100% across all three cohorts. The specificities for both S100B and GFAP/UCH-L1 were relatively low. Comparing GFAP/UCH-L1 levels between platforms revealed a low concordance with the Alinity-I platform measuring GFAP levels on average 65% lower and UCH-L1 levels 84% higher than the Simoa platform. CONCLUSIONS In this study, S100B and GFAP/UCH-L1 had an almost perfect agreement for classification of mTBI patients and comparable diagnostic performances for detecting traumatic intracranial lesions. Our results therefore support GFAP/UCH-L1 as a feasible alternative to S100B for detecting traumatic intracranial lesions in mTBI.
Collapse
Affiliation(s)
- Thea Overgaard Wichmann
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark.
- Department of Surgery and Intensive Care, Viborg Regional Hospital, Viborg, Denmark.
| | - Ayad Babaee
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Kirsten Duch
- Research Data and Biostatistics, Aalborg University Hospital, Aalborg, Denmark
| | - Mikkel Mylius Rasmussen
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maj Lesbo
- Department of Orthopaedic Surgery, Viborg Regional Hospital, Viborg, Denmark
| | - Ole Brink
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Lars C Borris
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Claus V B Hviid
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
2
|
Haste P, de Almeida e Bueno L, Jérusalem A, Bergmann J. Performance of current tools used for on-the-day assessment and diagnosis of mild traumatic brain injury in sport: a systematic review. BMJ Open Sport Exerc Med 2025; 11:e001904. [PMID: 39931638 PMCID: PMC11808887 DOI: 10.1136/bmjsem-2024-001904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Objective The monitoring and diagnosis of sports-related mild traumatic brain injury (SR-mTBI) remains a challenge. This systematic review summarises the current monitoring tools used for on-the-day assessment and diagnosis of SR-mTBI and their performance. Design Systematic review, using Quality Assessment of Diagnostic Accuracy Studies assessment. Data sources Embase via Ovid, IEEEXplore, Medline via Ovid, Scopus and Web of Science were searched up to June 2024. Eligibility criteria Peer-reviewed English-language journal articles which measured athletes using the index test within a day of injury and provided a performance measure for the method used. Studies of all designs were accepted, and no reference methods were required. Results 2534 unique records were retrieved, with 52 reports included in the review. Participants were 76% male, when reported, and the mean injury-to-measurement time was reported in 10% of reports. 46 different methods were investigated. 38 different reference methods were used, highlighting the lack of gold standard within the field. Area under the curve (AUC), sensitivity and specificity were the most frequent outcome metrics provided. The most frequent index test was the King-Devick (KD) test. However, there were large variations in accuracy metrics between reports for the KD test, for instance, the range of AUC: 0.51-0.92. Conclusion Combinations of existing methods and the KD test were most accurate in assessing SR-mTBI, despite the inconsistent accuracy values related to the KD test. The absence of a gold-standard measurement hampers our ability to diagnose or monitor SR-mTBI. Further exploration of the mechanisms and time-dependent pathophysiology of SR-mTBI could result in more targeted diagnostic and monitoring techniques. The Podium Institute for Sports Medicine and Technology funded this work. PROSPERO registration number CRD42022376560.
Collapse
Affiliation(s)
- Phoebe Haste
- The Podium Institute for Sports Medicine and Technology, University of Oxford, Oxford, UK
| | | | - Antoine Jérusalem
- The Podium Institute for Sports Medicine and Technology, University of Oxford, Oxford, UK
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Jeroen Bergmann
- Department of Engineering Science, University of Oxford, Oxford, UK
- Department of Technology and Innovation, University of Southern Denmark, Odense, Syddanmark, Denmark
| |
Collapse
|
3
|
Karamian A, Farzaneh H, Khoshnoodi M, Maleki N, Karamian A, Stufflebeam S, Lucke-Wold B. Diagnostic Accuracy of S100B in Predicting Intracranial Abnormalities on CT Imaging Following Mild Traumatic Brain Injury: A Systematic Review and Meta-analysis. Neurocrit Care 2025:10.1007/s12028-024-02189-7. [PMID: 39776345 DOI: 10.1007/s12028-024-02189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
Traumatic brain injury (TBI) is a major cause of health loss and disabilities globally, burdening health care systems. Mild TBI is a common cause of emergency department visits. Computed tomography (CT) scans are the mainstay for acute TBI imaging. S100 calcium-binding protein B (S100B) biomarker is promising for predicting intracranial lesions on CTs in mild TBI. A comprehensive search of the literature was conducted on PubMed, Google Scholar, and Cochrane electronic databases to find eligible studies reporting the diagnostic performance of S100B. A meta-analysis was conducted to evaluate the predictive ability of S100B for CT imaging abnormalities. Of 1545 articles, 32 were included in our meta-analysis. At the threshold of 0.1 μg/L, a bivariate model showed a sensitivity of 89% (95% confidence interval [CI] 83-92) with a specificity of 32% (95% CI 26-39). The aggregate analysis containing all cutoffs showed the optimal cutoff of 0.751 μg/L with a sensitivity of 64% (95% CI 32-87) and a specificity of 85% (95% CI 76-92). The optimal diagnostic performance of S100B in patients with Glasgow Coma Scale 14-15 was estimated to be 0.05 μg/L, with a sensitivity of 98% (95% CI 92-99) and a negative predictive value of 99%. These findings indicate that S100B analysis could minimize the need for unnecessary CT scans in individuals with mild TBI. The test's diagnostic accuracy improves when the S100B analysis is done within 3 h of the injury. However, further research is warranted to validate its superiority to other biomarkers before considering it the standard routine for managing mild TBI.
Collapse
Affiliation(s)
- Armin Karamian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hana Farzaneh
- Department of Radiology (Neuroradiology) at Massachusetts General Hospital, Boston, MA, USA
| | - Masoud Khoshnoodi
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Maleki
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amin Karamian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Steven Stufflebeam
- Athinoula Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Calluy E, Beaudart C, Alokail MS, Al-Daghri NM, Bruyère O, Reginster JY, Cavalier E, Ladang A. Confounding factors of the expression of mTBI biomarkers, S100B, GFAP and UCH-L1 in an aging population. Clin Chem Lab Med 2024; 62:2062-2069. [PMID: 38643415 DOI: 10.1515/cclm-2024-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVES To evaluate some confounding factors that influence the concentrations of S100 calcium binding protein B (S100B), glial fibrillary acidic protein (GFAP), and ubiquitin carboxyl-terminal hydrolase L-1 (UCH-L1) in older individuals. Indeed, recent guidelines have proposed the combined use of S100B and the "GFAP-UCH-L1" mTBI test to rule out mild traumatic brain injuries (mTBI). As older adults are the most at risk of mTBI, it is particularly important to understand the confounding factors of those mTBI rule-out biomarkers in aging population. METHODS The protein S100B and the "GFAP and UCH-L1" mTBI test were measured using Liaison XL (Diasorin) and Alinity I (Abbott), respectively, in 330 and 341 individuals with non-suspected mTBI from the SarcoPhAge cohort. RESULTS S100B, GFAP and UCH-L1 were all significantly correlated with renal function whereas alcohol consumption, Geriatric Depression Score (GDS), smoking habits and anticoagulant intake were not associated with any of these three biomarkers. Body mass index (BMI) and age were associated with GFAP and UCH-L1 expression while sex and mini-mental state examination (MMSE) were only associated with GFAP. According to the manufacturer's cut-offs for mTBI rule-out, only 5.5 % of participants were positive for S100B whereas 66.9 % were positive for the "GFAP-UCH-L1" mTBI test. All positive "GFAP-UCH-L1" mTBI tests were GFAP+/UCH-L1-. Among individuals with cystatin C>1.55 mg/L, 25 % were positive for S100B while 90 % were positive for the mTBI test. CONCLUSIONS Our data show that confounding factors have different impacts on the positivity rate of the "GFAP-UCH-L1" mTBI test compared to S100B.
Collapse
Affiliation(s)
- Emma Calluy
- Clinical Chemistry Department, CHU de Liège, University of Liège, Liège, Belgium
| | - Charlotte Beaudart
- WHO Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
- Clinical Pharmacology and Toxicology Research Unit (URPC), NARILIS, Department of Biomedical Sciences, Faculty of Medicine, University of Namur, Namur, Belgium
| | - Majed S Alokail
- Protein Research Chair, Biochemistry Department, 37850 College of Science, KSU , Riyadh, Kingdom of Saudi Arabia
| | - Nasser M Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, 37850 College of Science, KSU , Riyadh, Kingdom of Saudi Arabia
| | - Olivier Bruyère
- WHO Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
- Department of Sport and Rehabilitation Sciences, University of Liège, Liège, Belgium
| | - Jean-Yves Reginster
- WHO Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
- Protein Research Chair, Biochemistry Department, 37850 College of Science, KSU , Riyadh, Kingdom of Saudi Arabia
| | - Etienne Cavalier
- Clinical Chemistry Department, CHU de Liège, University of Liège, Liège, Belgium
| | - Aurélie Ladang
- Clinical Chemistry Department, CHU de Liège, University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Oris C, Bouillon-Minois JB, Kahouadji S, Pereira B, Dhaiby G, Defrance VB, Durif J, Schmidt J, Moustafa F, Bouvier D, Sapin V. S100B vs. "GFAP and UCH-L1" assays in the management of mTBI patients. Clin Chem Lab Med 2024; 62:891-899. [PMID: 38033294 DOI: 10.1515/cclm-2023-1238] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVES To compare for the first time the performance of "GFAP and UCH-L1" vs. S100B in a cohort of patients managed for mild traumatic brain injury (mTBI) according to actualized French guidelines. METHODS A prospective study was recently carried at the Emergency Department of Clermont-Ferrand University Hospital in France. Patients with mTBI presenting a medium risk of complications were enrolled. Blood S100B and "GFAP and UCHL-1" were sampled and measured according to French guidelines. S100B was measured in patients with samples within 3 h of trauma (Cobas®, Roche Diagnostics), while GFAP and UCHL-1 were measured in all patients (samples <3 h and 3-12 h) using another automated assay (i-STAT® Alinity, Abbott). RESULTS For sampling <3 h, serum S100B correctly identifies intracranial lesions with a specificity of 25.7 % (95 % CI; 19.5-32.6 %), a sensitivity of 100 % (95 % CI; 66.4-100 %), and a negative predictive value of 100 % (95 % CI; 92.5-100 %). For sampling <12 h, plasma "GFAP and UCH-L1" levels correctly identify intracranial lesions with a specificity of 31.7 % (95 % CI; 25.7-38.2 %), a sensitivity of 100 % (95 % CI; 73.5-100 %), and a negative predictive value of 100 % (95 % CI; 95-100 %). Comparison of specificities (25.7 vs. 31.7 %) did not reveal a statistically significant difference (p=0.16). CONCLUSIONS We highlight the usefulness of measuring plasma "GFAP and UCH-L1" levels to target mTBI patients (sampling within 12 h post-injury) and optimize the reduction of CT scans.
Collapse
Affiliation(s)
- Charlotte Oris
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | | | - Samy Kahouadji
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Gabriel Dhaiby
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Julie Durif
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Jeannot Schmidt
- Adult Emergency Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Farès Moustafa
- Adult Emergency Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Damien Bouvier
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| |
Collapse
|
6
|
Trivedi D, Forssten MP, Cao Y, Ismail AM, Czeiter E, Amrein K, Kobeissy F, Wang KKW, DeSoucy E, Buki A, Mohseni S. Screening Performance of S100 Calcium-Binding Protein B, Glial Fibrillary Acidic Protein, and Ubiquitin C-Terminal Hydrolase L1 for Intracranial Injury Within Six Hours of Injury and Beyond. J Neurotrauma 2024; 41:349-358. [PMID: 38115670 DOI: 10.1089/neu.2023.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
The Scandinavian NeuroTrauma Committee (SNC) guidelines recommend S100 calcium-binding protein B (S100B) as a screening tool for early detection of Traumatic brain injury (TBI) in patients presenting with an initial Glasgow Coma Scale (GCS) of 14-15. The objective of the current study was to compare S100B's diagnostic performance within the recommended 6-h window after injury, compared with glial fibrillary acidic protein (GFAP) and UCH-L1. The secondary outcome of interest was the ability of these biomarkers in detecting traumatic intracranial pathology beyond the 6-h mark. The Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) core database (2014-2017) was queried for data pertaining to all TBI patients with an initial GCS of 14-15 who had a blood sample taken within 6 h of injury in which the levels of S100B, GFAP, and UCH-L1 were measured. As a subgroup analysis, data involving patients with blood samples taken within 6-9 h and 9-12 h were analyzed separately for diagnostic ability. The diagnostic ability of these biomarkers for detecting any intracranial injury was evaluated based on the area under the receiver operating characteristic curve (AUC). Each biomarker's sensitivity, specificity, and accuracy were also reported at the cutoff that maximized Youden's index. A total of 531 TBI patients with GCS 14-15 on admission had a blood sample taken within 6 h, of whom 24.9% (n = 132) had radiologically confirmed intracranial injury. The AUCs of GFAP (0.86, 95% confidence interval [CI]: 0.82-0.90) and UCH-L1 (0.81, 95% CI: 0.76-0.85) were statistically significantly higher than that of S100B (0.74, 95% CI: 0.69-0.79) during this time. There was no statistically significant difference in the predictive ability of S100B when sampled within 6 h, 6-9 h, and 9-12 h of injury, as the p values were >0.05 when comparing the AUCs. Overlapping AUC 95% CI suggests no benefit of a combined GFAP and UCH-L1 screening tool over GFAP during the time periods studied [0.87 (0.83-0.90) vs. 0.86 (0.82-0.90) when sampled within 6 h of injury, 0.83 (0.78-0.88) vs. 0.83 (0.78-0.89) within 6 to 9 h and 0.81 (0.73-0.88) vs. 0.79 (0.72-0.87) within 9-12 h]. Targeted analysis of the CENTER-TBI core database, with focus on the patient category for which biomarker testing is recommended by the SNC guidelines, revealed that GFAP and UCH-L1 perform superior to S100B in predicting CT-positive intracranial lesions within 6 h of injury. GFAP continued to exhibit superior predictive ability to S100B during the time periods studied. S100B displayed relatively unaltered screening performance beyond the diagnostic timeline provided by SNC guidelines. These findings suggest the need for a reevaluation of the current SNC TBI guidelines.
Collapse
Affiliation(s)
- Dhanisha Trivedi
- Department of Neurosurgery, Orebro University Hospital, Orebro, Sweden
- School of Medical Sciences , Orebro University Hospital, Orebro, Sweden
| | | | - Yang Cao
- Clinical Epidemiology and Biostatistics, Orebro University Hospital, Orebro, Sweden
| | | | - Endre Czeiter
- Department of Neurosurgery, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentágothai Research Center, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Krisztina Amrein
- Department of Neurosurgery, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentágothai Research Center, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Firas Kobeissy
- Center for Neurotrauma, Multiomics, and Biomarkers, Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Kevin K W Wang
- Center for Neurotrauma, Multiomics, and Biomarkers, Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Erik DeSoucy
- Division of Trauma, Critical Care, and Acute Care Surgery, Department of Surgery, Sheikh Shakhbout Medical City-Mayo Clinic, Abu Dhabi, United Arab Emirates
| | - Andras Buki
- Department of Neurosurgery, Orebro University Hospital, Orebro, Sweden
- School of Medical Sciences , Orebro University Hospital, Orebro, Sweden
| | - Shahin Mohseni
- School of Medical Sciences , Orebro University Hospital, Orebro, Sweden
| |
Collapse
|
7
|
Bielanin JP, Metwally SAH, Paruchuri SS, Sun D. An overview of mild traumatic brain injuries and emerging therapeutic targets. Neurochem Int 2024; 172:105655. [PMID: 38072207 DOI: 10.1016/j.neuint.2023.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/01/2024]
Abstract
The majority of traumatic brain injuries (TBIs), approximately 90%, are classified as mild (mTBIs). Globally, an estimated 4 million injuries occur each year from concussions or mTBIs, highlighting their significance as a public health crisis. TBIs can lead to substantial long-term health consequences, including an increased risk of developing Alzheimer's Disease, Parkinson's Disease (PD), chronic traumatic encephalopathy (CTE), and nearly doubling one's risk of suicide. However, the current management of mTBIs in clinical practice and the available treatment options are limited. There exists an unmet need for effective therapy. This review addresses various aspects of mTBIs based on the most up-to-date literature review, with the goal of stimulating translational research to identify new therapeutic targets and improve our understanding of pathogenic mechanisms. First, we provide a summary of mTBI symptomatology and current diagnostic parameters such as the Glasgow Coma Scale (GCS) for classifying mTBIs or concussions, as well as the utility of alternative diagnostic parameters, including imaging techniques like MRI with diffusion tensor imaging (DTI) and serum biomarkers such as S100B, NSE, GFAP, UCH-L1, NFL, and t-tau. Our review highlights several pre-clinical concussion models employed in the study of mTBIs and the underlying cellular mechanisms involved in mTBI-related pathogenesis, including axonal damage, demyelination, inflammation, and oxidative stress. Finally, we examine a selection of new therapeutic targets currently under investigation in pre-clinical models. These targets may hold promise for clinical translation and address the pressing need for more effective treatments for mTBIs.
Collapse
Affiliation(s)
- John P Bielanin
- University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Shamseldin A H Metwally
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Satya S Paruchuri
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dandan Sun
- University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
8
|
Rauchman SH, Pinkhasov A, Gulkarov S, Placantonakis DG, De Leon J, Reiss AB. Maximizing the Clinical Value of Blood-Based Biomarkers for Mild Traumatic Brain Injury. Diagnostics (Basel) 2023; 13:3330. [PMID: 37958226 PMCID: PMC10650880 DOI: 10.3390/diagnostics13213330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Mild traumatic brain injury (TBI) and concussion can have serious consequences that develop over time with unpredictable levels of recovery. Millions of concussions occur yearly, and a substantial number result in lingering symptoms, loss of productivity, and lower quality of life. The diagnosis may not be made for multiple reasons, including due to patient hesitancy to undergo neuroimaging and inability of imaging to detect minimal damage. Biomarkers could fill this gap, but the time needed to send blood to a laboratory for analysis made this impractical until point-of-care measurement became available. A handheld blood test is now on the market for diagnosis of concussion based on the specific blood biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl terminal hydrolase L1 (UCH-L1). This paper discusses rapid blood biomarker assessment for mild TBI and its implications in improving prediction of TBI course, avoiding repeated head trauma, and its potential role in assessing new therapeutic options. Although we focus on the Abbott i-STAT TBI plasma test because it is the first to be FDA-cleared, our discussion applies to any comparable test systems that may become available in the future. The difficulties in changing emergency department protocols to include new technology are addressed.
Collapse
Affiliation(s)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| | - Shelly Gulkarov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| | | | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| |
Collapse
|
9
|
Diagnostic performance of biomarker S100B and guideline adherence in routine care of mild head trauma. Scand J Trauma Resusc Emerg Med 2023; 31:3. [PMID: 36624501 PMCID: PMC9830818 DOI: 10.1186/s13049-022-01062-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/11/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The Scandinavian Neurotrauma Committee (SNC) has recommended the use of serum S100B as a biomarker for mild low-risk Traumatic brain injuries (TBI). This study aimed to assess the adherence to the SNC guidelines in clinical practice and the diagnostic performance of S100B in patients with TBI. The aims of this study were to examine adherence to the SNC guideline and the diagnostic accuracy of serum protein S100B. METHODS Data of consecutive patients of 18 years and above who presented to the emergency department (ED) at Helsingborg Hospital with isolated head injuries, were retrieved from hospital records. Patients with multitrauma, follow-up visits, and visits managed by a nurse without physician involvement were excluded. RESULTS A total of 1671 patients were included of which 93 (5.6%) had intracranial hemorrhage. CT scans were performed in 62% of patients. S100B was measured in 26% of patients and 30% of all measurements targeted the low-risk mild head injuries indicated by the guideline. S100B's recommended cut-off value (≥ 0.10 µg/L) had a 100% sensitivity, 47% specificity, 10.1% positive predictive value, and 100% negative predictive value-if applied to the target SNC category (SNC 4). If applied to all patients tested, the sensitivity was 93% for traumatic intracranial hemorrhage (TICH). Current ED practices were adherent to the SNC guideline in 55% of patients. Non-adherent practices occurred in 64% of patients with low-risk mild head injuries (SNC4) including overtesting or undertesting of S100B and CT scans. CONCLUSION Adherence to guidelines was low and associated with a higher admission rate than non-adherence practice but no significant increase in missed TICH or death associated with non-adherence to guideline was found. In routine care, we found that the sensitivity and NPV of serum protein S100B was excellent and safely ruled out TICH when measured in the patient category recommended by the guideline. However, measuring serum protein S100B in patients not recommended by the guideline rendered unacceptably low sensitivity with possible missed TICHs as a consequence. To further delineate the magnitude and impact of non-adherence, more studies are needed.
Collapse
|
10
|
Harris G, Rickard JJS, Butt G, Kelleher L, Blanch RJ, Cooper J, Oppenheimer PG. Review: Emerging Eye-Based Diagnostic Technologies for Traumatic Brain Injury. IEEE Rev Biomed Eng 2023; 16:530-559. [PMID: 35320105 PMCID: PMC9888755 DOI: 10.1109/rbme.2022.3161352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022]
Abstract
The study of ocular manifestations of neurodegenerative disorders, Oculomics, is a growing field of investigation for early diagnostics, enabling structural and chemical biomarkers to be monitored overtime to predict prognosis. Traumatic brain injury (TBI) triggers a cascade of events harmful to the brain, which can lead to neurodegeneration. TBI, termed the "silent epidemic" is becoming a leading cause of death and disability worldwide. There is currently no effective diagnostic tool for TBI, and yet, early-intervention is known to considerably shorten hospital stays, improve outcomes, fasten neurological recovery and lower mortality rates, highlighting the unmet need for techniques capable of rapid and accurate point-of-care diagnostics, implemented in the earliest stages. This review focuses on the latest advances in the main neuropathophysiological responses and the achievements and shortfalls of TBI diagnostic methods. Validated and emerging TBI-indicative biomarkers are outlined and linked to ocular neuro-disorders. Methods detecting structural and chemical ocular responses to TBI are categorised along with prospective chemical and physical sensing techniques. Particular attention is drawn to the potential of Raman spectroscopy as a non-invasive sensing of neurological molecular signatures in the ocular projections of the brain, laying the platform for the first tangible path towards alternative point-of-care diagnostic technologies for TBI.
Collapse
Affiliation(s)
- Georgia Harris
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Jonathan James Stanley Rickard
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Department of Physics, Cavendish LaboratoryUniversity of CambridgeCB3 0HECambridgeU.K.
| | - Gibran Butt
- Ophthalmology DepartmentUniversity Hospitals Birmingham NHS Foundation TrustB15 2THBirminghamU.K.
| | - Liam Kelleher
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Richard James Blanch
- Department of Military Surgery and TraumaRoyal Centre for Defence MedicineB15 2THBirminghamU.K.
- Neuroscience and Ophthalmology, Department of Ophthalmology, University Hospitals Birmingham NHS Foundation TrustcBirminghamU.K.
| | - Jonathan Cooper
- School of Biomedical EngineeringUniversity of GlasgowG12 8LTGlasgowU.K.
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Healthcare Technologies Institute, Institute of Translational MedicineB15 2THBirminghamU.K.
| |
Collapse
|
11
|
Swaney EEK, Cai T, Seal ML, Ignjatovic V. Blood biomarkers of secondary outcomes following concussion: A systematic review. Front Neurol 2023; 14:989974. [PMID: 36925940 PMCID: PMC10011122 DOI: 10.3389/fneur.2023.989974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/31/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Blood biomarkers have been identified as an alternative tool for predicting secondary outcomes following concussion. This systematic review aimed to summarize the literature on blood biomarkers of secondary outcomes following concussion in both pediatric and adult cohorts. Methods A literature search of Embase, Medline and PubMed was conducted. Two reviewers independently assessed retrieved studies to determine inclusion in systematic review synthesis. Results A total of 1771 unique studies were retrieved, 58 of which were included in the final synthesis. S100B, GFAP and tau were identified as being associated with secondary outcomes following concussion. Seventeen percent of studies were performed in a solely pediatric setting. Conclusions Validation of biomarkers associated with secondary outcomes following concussion have been largely limited by heterogeneous study cohorts and definitions of concussion and mTBI, presenting a hurdle for translation of these markers into clinical practice. Additionally, there was an underrepresentation of studies which investigated pediatric cohorts. Adult markers are not appropriate for children, therefore pediatric specific markers of secondary outcomes following concussion present the biggest gap in this field.
Collapse
Affiliation(s)
- Ella E K Swaney
- Department of Haematology, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Tengyi Cai
- Department of Haematology, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Marc L Seal
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Vera Ignjatovic
- Department of Haematology, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.,Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States.,Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
12
|
Rauchman SH, Zubair A, Jacob B, Rauchman D, Pinkhasov A, Placantonakis DG, Reiss AB. Traumatic brain injury: Mechanisms, manifestations, and visual sequelae. Front Neurosci 2023; 17:1090672. [PMID: 36908792 PMCID: PMC9995859 DOI: 10.3389/fnins.2023.1090672] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Traumatic brain injury (TBI) results when external physical forces impact the head with sufficient intensity to cause damage to the brain. TBI can be mild, moderate, or severe and may have long-term consequences including visual difficulties, cognitive deficits, headache, pain, sleep disturbances, and post-traumatic epilepsy. Disruption of the normal functioning of the brain leads to a cascade of effects with molecular and anatomical changes, persistent neuronal hyperexcitation, neuroinflammation, and neuronal loss. Destructive processes that occur at the cellular and molecular level lead to inflammation, oxidative stress, calcium dysregulation, and apoptosis. Vascular damage, ischemia and loss of blood brain barrier integrity contribute to destruction of brain tissue. This review focuses on the cellular damage incited during TBI and the frequently life-altering lasting effects of this destruction on vision, cognition, balance, and sleep. The wide range of visual complaints associated with TBI are addressed and repair processes where there is potential for intervention and neuronal preservation are highlighted.
Collapse
Affiliation(s)
| | - Aarij Zubair
- NYU Long Island School of Medicine, Mineola, NY, United States
| | - Benna Jacob
- NYU Long Island School of Medicine, Mineola, NY, United States
| | - Danielle Rauchman
- Department of Neuroscience, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Aaron Pinkhasov
- NYU Long Island School of Medicine, Mineola, NY, United States
| | | | - Allison B Reiss
- NYU Long Island School of Medicine, Mineola, NY, United States
| |
Collapse
|
13
|
Mafuika SN, Naicker T, Harrichandparsad R, Lazarus L. The potential of serum S100 calcium-binding protein B and glial fibrillary acidic protein as biomarkers for traumatic brain injury. TRANSLATIONAL RESEARCH IN ANATOMY 2022. [DOI: 10.1016/j.tria.2022.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Siahaan AMP, Fernando ET. The Potential of S100 Calcium-Binding Protein B and Glial Fibrillary Acid Protein in Predicting the Intracranial Lesions in Mild Traumatic Brain Injury: A Systematic Review of Literature. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
ABSTRACT
AIM: To summarize the current evidence of S100B and GFAP in predicting intracranial lesions after mTBI.
MATERIAL AND METHODS: We searched publications on biomarkers in mTBI from Web of Science, PubMed, and Scopus between January 1990 and July 2021. We included RCTs, cohort, case control, and cross-sectional studies that involved patients with acute closed mTBI in all age group in which head CT scan and blood-based biomarkers (GFAP and S100B) examination were conducted under 24 hours. This study was registered in Open Science Framework.
RESULTS: The initial search identified 4.937 article, in which 127 were included for full-text assessment. A total of 16 articles were finally included. No RCT was found in literature searching. Thirteen studies were studying S100B and three studies were studying GFAP. Nine out of 13 S100B studies shows a promising result with ≥ 95% sensitivity for detecting intracranial lesions. Majorities (11 /13) studies of S100B confirmed that S100B reduced the unnecessary usage of CT scan. GFAP concentration significantly increased in CT+ patient than CT- patient. No specific GFAP cut off value between the studies was found.
CONCLUSION: The result showed that S100B and GFAP had potential to predict the occurrence of intracranial lesions. Variance between methodologies and cut off value hindered the quality of evidence, especially in GFAP.
KEYWORDS: mild traumatic brain injury, S100B, GFAP.
Collapse
|
15
|
Kahouadji S, Bouillon-Minois JB, Oris C, Durif J, Pereira B, Pinguet J, Rozand A, Schmidt J, Sapin V, Bouvier D. Evaluation of serum neurofilament light in the early management of mTBI patients. Clin Chem Lab Med 2022; 60:1234-1241. [PMID: 35511901 DOI: 10.1515/cclm-2022-0173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/20/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Serum S100B allows a one-third reduction of computed tomography (CT) scans performed for mild traumatic brain injury (mTBI) patients. In this study, we evaluated the diagnostic performance of serum NF-L in the detection of intracranial lesions induced by mTBI. METHODS One hundred seventy-nine adult mTBI patients presenting to the emergency department of Clermont-Ferrand University Hospital with a Glasgow Coma Scale (GCS) score of 14-15 were included. S100B assays were performed for clinical routine while NF-L samples were stored at -80 °C until analysis. CT scans were performed for patients with S100B levels above the decision threshold of 0.10 μg/L. Later, NF-L and S100B levels were compared to CT scan findings to evaluate the biomarkers' performances. RESULTS The area under the ROC curve (AUC) evaluating the diagnostic ability in the prediction of intracranial lesions was 0.72 (95% CI; 0.58-0.87) for S100B and 0.58 (95% CI; 0.45-0.71) for NF-L, the specificities (at a threshold allowing a 100% sensitivity) were 35.7% for S100B, and 28% for NF-L (p=0.096). AUCs of NF-L and S100B for the identification of patients with neurological disorders were statistically different (p<0.001). The AUCs were 0.87 (95% CI; 0.82-0.93) for NF-L and 0.57 (95% CI; 0.48-0.66) for S100B. There was a poor correlation between NF-L and S100B, and NF-L levels were correlated to patients' age (Spearman coefficient of 0.79). CONCLUSIONS NF-L showed poor performances in the early management of mTBI patients. NF-L levels are strongly correlated to neurodegeneration, whether physiological, age-related, or pathological.
Collapse
Affiliation(s)
- Samy Kahouadji
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Charlotte Oris
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Julie Durif
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Jérémy Pinguet
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Agathe Rozand
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Jeannot Schmidt
- Adult Emergency Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Damien Bouvier
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| |
Collapse
|
16
|
Jović M, Prim D, Saini E, Pfeifer ME. Towards a Point-of-Care (POC) Diagnostic Platform for the Multiplex Electrochemiluminescent (ECL) Sensing of Mild Traumatic Brain Injury (mTBI) Biomarkers. BIOSENSORS 2022; 12:172. [PMID: 35323442 PMCID: PMC8946848 DOI: 10.3390/bios12030172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Globally, 70 million people are annually affected by TBI. A significant proportion of all TBI cases are actually mild TBI (concussion, 70-85%), which is considerably more difficult to diagnose due to the absence of apparent symptoms. Current clinical practice of diagnosing mTBI largely resides on the patients' history, clinical aspects, and CT and MRI neuroimaging observations. The latter methods are costly, time-consuming, and not amenable for decentralized or accident site measurements. As an alternative (and/or complementary), mTBI diagnostics can be performed by detection of mTBI biomarkers from patients' blood. Herein, we proposed two strategies for the detection of three mTBI-relevant biomarkers (GFAP, h-FABP, and S100β), in standard solutions and in human serum samples by using an electrochemiluminescence (ECL) immunoassay on (i) a commercial ECL platform in 96-well plate format, and (ii) a "POC-friendly" platform with disposable screen-printed carbon electrodes (SPCE) and a portable ECL reader. We further demonstrated a proof-of-concept for integrating three individually developed mTBI assays ("singleplex") into a three-plex ("multiplex") assay on a single SPCE using a spatially resolved ECL approach. The presented methodology demonstrates feasibility and a first step towards the development of a rapid POC multiplex diagnostic system for the detection of a mTBI biomarker panel on a single SPCE.
Collapse
Affiliation(s)
| | | | | | - Marc Emil Pfeifer
- Diagnostic Systems Research Group, Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), 1950 Sion, Switzerland; (M.J.); (D.P.); (E.S.)
| |
Collapse
|
17
|
Wang KK, Munoz Pareja JC, Mondello S, Diaz-Arrastia R, Wellington C, Kenney K, Puccio AM, Hutchison J, McKinnon N, Okonkwo DO, Yang Z, Kobeissy F, Tyndall JA, Büki A, Czeiter E, Pareja Zabala MC, Gandham N, Berman R. Blood-based traumatic brain injury biomarkers - Clinical utilities and regulatory pathways in the United States, Europe and Canada. Expert Rev Mol Diagn 2021; 21:1303-1321. [PMID: 34783274 DOI: 10.1080/14737159.2021.2005583] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major global health issue, resulting in debilitating consequences to families, communities, and health-care systems. Prior research has found that biomarkers aid in the pathophysiological characterization and diagnosis of TBI. Significantly, the FDA has recently cleared both a bench-top assay and a rapid point-of-care assays of tandem biomarker (UCH-L1/GFAP)-based blood test to aid in the diagnosis mTBI patients. With the global necessity of TBI biomarkers research, several major consortium multicenter observational studies with biosample collection and biomarker analysis have been created in the USA, Europe, and Canada. As each geographical region regulates its data and findings, the International Initiative for Traumatic Brain Injury Research (InTBIR) was formed to facilitate data integration and dissemination across these consortia. AREAS COVERED This paper covers heavily investigated TBI biomarkers and emerging non-protein markers. Finally, we analyze the regulatory pathways for converting promising TBI biomarkers into approved in-vitro diagnostic tests in the United States, European Union, and Canada. EXPERT OPINION TBI biomarker research has significantly advanced in the last decade. The recent approval of an iSTAT point of care test to detect mild TBI has paved the way for future biomarker clearance and appropriate clinical use across the globe.
Collapse
Affiliation(s)
- Kevin K Wang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Jennifer C Munoz Pareja
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cheryl Wellington
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Kimbra Kenney
- Department of Neurology, Uniformed Service University, Bethesda, Maryland, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jamie Hutchison
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nicole McKinnon
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - J Adrian Tyndall
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Endre Czeiter
- Department of Neurosurgery, Pecs University, Pecs, Hungary
| | | | - Nithya Gandham
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rebecca Berman
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| | | |
Collapse
|
18
|
Amoo M, Henry J, O'Halloran PJ, Brennan P, Husien MB, Campbell M, Caird J, Javadpour M, Curley GF. S100B, GFAP, UCH-L1 and NSE as predictors of abnormalities on CT imaging following mild traumatic brain injury: a systematic review and meta-analysis of diagnostic test accuracy. Neurosurg Rev 2021; 45:1171-1193. [PMID: 34709508 DOI: 10.1007/s10143-021-01678-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022]
Abstract
Biomarkers such as calcium channel binding protein S100 subunit beta (S100B), glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase L1 (UCH-L1) and neuron-specific enolase (NSE) have been proposed to aid in screening patients presenting with mild traumatic brain injury (mTBI). As such, we aimed to characterise their accuracy at various thresholds. MEDLINE, SCOPUS and EMBASE were searched, and articles reporting the diagnostic performance of included biomarkers were eligible for inclusion. Risk of bias was assessed using the QUADAS-II criteria. A meta-analysis was performed to assess the predictive value of biomarkers for imaging abnormalities on CT. A total of 2939 citations were identified, and 38 studies were included. Thirty-two studies reported data for S100B. At its conventional threshold of 0.1 μg/L, S100B had a pooled sensitivity of 91% (95%CI 87-94) and a specificity of 30% (95%CI 26-34). The optimal threshold for S100B was 0.72 μg/L, with a sensitivity of 61% (95% CI 50-72) and a specificity of 69% (95% CI 64-74). Nine studies reported data for GFAP. The optimal threshold for GFAP was 626 pg/mL, at which the sensitivity was 71% (95%CI 41-91) and specificity was 71% (95%CI 43-90). Sensitivity of GFAP was maximised at a threshold of 22 pg/mL, which had a sensitivity of 93% (95%CI 73-99) and a specificity of 36% (95%CI 12-68%). Three studies reported data for NSE and two studies for UCH-L1, which precluded meta-analysis. There is evidence to support the use of S100B as a screening tool in mild TBI, and potential advantages to the use of GFAP, which requires further investigation.
Collapse
Affiliation(s)
- Michael Amoo
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland. .,National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland. .,Beacon Academy, Beacon Hospital, Sandyford, Dublin 18, Ireland.
| | - Jack Henry
- National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - Philip J O'Halloran
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul Brennan
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Radiology, Beaumont Hospital, Dublin 9, Ireland
| | - Mohammed Ben Husien
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Matthew Campbell
- Department of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - John Caird
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Mohsen Javadpour
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland.,Department of Academic Neurology, Trinity College Dublin, Dublin 2, Ireland
| | - Gerard F Curley
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
19
|
Tomasiuk R, Dzierzęcki S, Zaczyński A, Ząbek M. Usability of the Level of the S100B Protein, the Gosling Pulsatility Index, and the Jugular Venous Oxygen Saturation for the Prediction of Mortality and Morbidity in Patients with Severe Traumatic Brain Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2398488. [PMID: 34734081 PMCID: PMC8560266 DOI: 10.1155/2021/2398488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
The high frequency of traumatic brain injury imposes severe economic stress on health and insurance services. The objective of this study was to analyze the association between the serum S100B protein, the Gosling pulsatility index (PI), and the level of oxygen saturation at the tip of the internal jugular vein (SjVO2%) in patients diagnosed with severe TBI. The severity of TBI was assessed by a GCS score ≤ 8 stratified by Glasgow outcome scale (GOS) measured on the day of discharge from the hospital. Two groups were included: GOS < 4 (unfavorable group (UG)) and GOS ≥ 4 (favorable group (UG)). S100B levels were higher in the UG than in the FG. PI levels in the UG were also substantially higher than in the FG. There were similar levels of SjVO2 in the two groups. This study confirmed that serum S100B levels were higher in patients with unfavorable outcomes than in those with favorable outcomes. Moreover, a clear demarcation in PI between unfavorable and FGs was observed. This report shows that mortality and morbidity rates in patients with traumatic brain injury can be assessed within the first 4 days of hospitalization using the S100B protein, PI values, and SjVO2.
Collapse
Affiliation(s)
- Ryszard Tomasiuk
- Kazimierz Pulaski University of Technology and Humanities Radom, Faculty of Medical Sciences and Health Sciences, Radom, Poland
| | - Sebastian Dzierzęcki
- Department of Neurosurgery, Postgraduate Medical Centre, Warsaw, Poland
- Gamma Knife Centre, Brodno Masovian Hospital, Warsaw, Poland
| | - Artur Zaczyński
- Clinical Department of Neurosurgery, Central Clinical Hospital of the Ministry of the Interior and Administration, Warsaw, Poland
| | - Mirosław Ząbek
- Department of Neurosurgery, Postgraduate Medical Centre, Warsaw, Poland
- Gamma Knife Centre, Brodno Masovian Hospital, Warsaw, Poland
| |
Collapse
|
20
|
Krausz AD, Korley FK, Burns MA. The Current State of Traumatic Brain Injury Biomarker Measurement Methods. BIOSENSORS 2021; 11:319. [PMID: 34562909 PMCID: PMC8469272 DOI: 10.3390/bios11090319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is associated with high rates of morbidity and mortality partially due to the limited tools available for diagnosis and classification. Measuring panels of protein biomarkers released into the bloodstream after injury has been proposed to diagnose TBI, inform treatment decisions, and monitor the progression of the injury. Being able to measure these protein biomarkers at the point-of-care would enable assessment of TBIs from the point-of-injury to the patient's hospital bedside. In this review, we provide a detailed discussion of devices reported in the academic literature and available on the market that have been designed to measure TBI protein biomarkers in various biofluids and contexts. We also assess the challenges associated with TBI biomarker measurement devices and suggest future research directions to encourage translation of these devices to clinical use.
Collapse
Affiliation(s)
- Alyse D. Krausz
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederick K. Korley
- Emergency Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mark A. Burns
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Oris C, Bouillon-Minois JB, Pinguet J, Kahouadji S, Durif J, Meslé V, Pereira B, Schmidt J, Sapin V, Bouvier D. Predictive Performance of Blood S100B in the Management of Patients Over 65 Years Old With Mild Traumatic Brain Injury. J Gerontol A Biol Sci Med Sci 2021; 76:1471-1479. [PMID: 33647933 DOI: 10.1093/gerona/glab055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We previously assessed the inclusion of S100B blood determination into clinical decision rules for mild traumatic brain injury (mTBI) management in the Emergency Department (ED) of Clermont-Ferrand Hospital. At the 0.10 µg/L threshold, S100B reduced the use of cranial computed tomography (CCT) scan in adults by at least 30% with a ~100% sensitivity. Older patients had higher serum S100B values, resulting in lower specificity (18.7%) and decreased CCT reduction. We conducted this study to confirm the age effect on S100B concentrations, and to propose new decisional thresholds for older patients. METHODS A total of 1172 mTBI patients aged 65 and over were included. They were divided into 3 age groups: 65-79, 80-89, and ≥ 90 years old. S100B's performance to identify intracranial lesions (sensitivity [SE] and specificity [SP]) was assessed using the routine 0.10 µg/L threshold and also other more efficient thresholds established for each age group. RESULTS S100B concentration medians were 0.18, 0.26, and 0.32 µg/L for the 65-79, 80-89, and ≥ 90 years old age groups, respectively (p < .001). The most efficient thresholds were 0.11 µg/L for the 65-79 age group and 0.15 µg/L for the other groups. At these new thresholds, SP was respectively 28.4%, 34.3%, and 20.5% for each age group versus 24.9%, 18.2%, and 10.5% at the 0.10 µg/L threshold. CONCLUSIONS Adjustment of the S100B threshold is necessary in older patients' management. An increased threshold of 0.15 µg/L is particularly interesting for patients ≥ 80 years old, allowing a significant increase of CCT scan reduction (29.3%).
Collapse
Affiliation(s)
- Charlotte Oris
- University Hospital, Biochemistry and Molecular Genetic Department, Clermont-Ferrand, France.,Clermont Auvergne University, CNRS 6293, INSERM 1103, GReD, Clermont-Ferrand, France
| | | | - Jérémy Pinguet
- University Hospital, Biochemistry and Molecular Genetic Department, Clermont-Ferrand, France
| | - Samy Kahouadji
- University Hospital, Biochemistry and Molecular Genetic Department, Clermont-Ferrand, France
| | - Julie Durif
- University Hospital, Biochemistry and Molecular Genetic Department, Clermont-Ferrand, France
| | - Vallauris Meslé
- Clermont Auvergne University, CNRS 6293, INSERM 1103, GReD, Clermont-Ferrand, France
| | - Bruno Pereira
- University Hospital, Biostatistics unit (DRCI) Department, Clermont-Ferrand, France
| | - Jeannot Schmidt
- University Hospital, Adult Emergency Department, Clermont-Ferrand, France
| | - Vincent Sapin
- University Hospital, Biochemistry and Molecular Genetic Department, Clermont-Ferrand, France.,Clermont Auvergne University, CNRS 6293, INSERM 1103, GReD, Clermont-Ferrand, France
| | - Damien Bouvier
- University Hospital, Biochemistry and Molecular Genetic Department, Clermont-Ferrand, France.,Clermont Auvergne University, CNRS 6293, INSERM 1103, GReD, Clermont-Ferrand, France
| |
Collapse
|