1
|
Lippa SM. A review of long-term outcomes of repetitive concussive and subconcussive blast exposures in the military and limitations of the literature. Clin Neuropsychol 2024:1-36. [PMID: 39718244 DOI: 10.1080/13854046.2024.2441395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
Objective: The purpose of this review is to summarize the long-term cognitive, psychological, fluid biomarker, and neuroimaging outcomes following repetitive concussive and subconcussive blast exposures sustained through a military career. Method/Results: A review of the literature was conducted, with 450 manuscripts originally identified and 44 manuscripts ultimately included in the review. The most robust studies investigating how repetitive concussive and subconcussive exposures related to cognitive performance suggest there is no meaningful impact. Although there are minimal studies that suggest some small impacts on neuroimaging and fluid biomarkers, most findings have been in very small samples and fail to replicate. Both repetitive blast mTBI and subconcussive blasts appeared to be associated with increased self-reported symptoms. Many of the studies suffered from small sample size, failure to correct for multiple comparisons, and inappropriate control groups. Conclusions: Overall, there is little evidence to support that repetitive blast mTBIs or subconcussive blast exposures have a lasting impact on cognition, neuroimaging, or fluid biomarkers. In contrast, there does appear to be a relationship between these exposures and self-reported psychological functioning, though it is unclear what mechanism drives this relationship. Small sample size, lack of correction for multiple comparisons, limited control groups, lack of consideration of important covariates, limited diversity of samples, and lack of reliable and valid measures for assessment of blast exposure are major limitations restricting this research. Patients should be encouraged that while research is ongoing, there is little to currently suggest long-term cognitive or neurological damage following repetitive blast exposure.
Collapse
Affiliation(s)
- Sara M Lippa
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Neuroscience Program, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
2
|
Bhatt IS, Garay JAR, Torkamani A, Dias R. DNA Methylation Patterns Associated with Tinnitus in Young Adults-A Pilot Study. J Assoc Res Otolaryngol 2024; 25:507-523. [PMID: 39147981 PMCID: PMC11528087 DOI: 10.1007/s10162-024-00961-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
PURPOSE Tinnitus, the perception of sound without any external sound source, is a prevalent hearing health concern. Mounting evidence suggests that a confluence of genetic, environmental, and lifestyle factors can influence the pathogenesis of tinnitus. We hypothesized that alteration in DNA methylation, an epigenetic modification that occurs at cytosines of cytosine-phosphate-guanine (CpG) dinucleotide sites, where a methyl group from S-adenyl methionine gets transferred to the fifth carbon of the cytosine, could contribute to tinnitus. DNA methylation patterns are tissue-specific, but the tissues involved in tinnitus are not easily accessible in humans. This pilot study used saliva as a surrogate tissue to identify differentially methylated CpG regions (DMRs) associated with tinnitus. The study was conducted on healthy young adults reporting bilateral continuous chronic tinnitus to limit the influence of age-related confounding factors and health-related comorbidities. METHODS The present study evaluated the genome-wide methylation levels from saliva-derived DNA samples from 24 healthy young adults with bilateral continuous chronic tinnitus (> 1 year) and 24 age, sex, and ethnicity-matched controls with no tinnitus. Genome-wide DNA methylation was evaluated for > 850,000 CpG sites using the Infinium Human Methylation EPIC BeadChip. The association analysis used the Bumphunter algorithm on 23 cases and 20 controls meeting the quality control standards. The methylation level was expressed as the area under the curve of CpG sites within DMRs.The FDR-adjusted p-value threshold of 0.05 was used to identify statistically significant DMRs associated with tinnitus. RESULTS We obtained 25 differentially methylated regions (DMRs) associated with tinnitus. Genes within or in the proximity of the hypermethylated DMRs related to tinnitus included LCLAT1, RUNX1, RUFY1, NUDT12, TTC23, SLC43A2, C4orf27 (STPG2), and EFCAB4B. Genes within or in the proximity of hypomethylated DMRs associated with tinnitus included HLA-DPB2, PM20D1, TMEM18, SNTG2, MUC4, MIR886, MIR596, TXNRD1, EID3, SDHAP3, HLA-DPB2, LASS3 (CERS3), C10orf11 (LRMDA), HLA-DQB1, NADK, SZRD1, MFAP2, NUP210L, TPM3, INTS9, and SLC2A14. The burden of genetic variation could explain the differences in the methylation levels for DMRs involving HLA-DPB2, HLA-DQB1, and MUC4, indicating the need for replication in large independent cohorts. CONCLUSION Consistent with the literature on comorbidities associated with tinnitus, we identified genes within or close to DMRs involved in auditory functions, chemical dependency, cardiovascular diseases, psychiatric conditions, immune disorders, and metabolic syndromes. These results indicate that epigenetic mechanisms could influence tinnitus, and saliva can be a good surrogate for identifying the epigenetic underpinnings of tinnitus in humans. Further research with a larger sample size is needed to identify epigenetic biomarkers and investigate their influence on the phenotypic expression of tinnitus.
Collapse
Affiliation(s)
- Ishan Sunilkumar Bhatt
- Department of Communication Sciences & Disorders, University of Iowa, Iowa City, IA, 52242, USA.
| | - Juan Antonio Raygoza Garay
- Department of Communication Sciences & Disorders, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, Scripps Science Institute, La Jolla, CA, 92037, USA
| | - Raquel Dias
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32608, USA
| |
Collapse
|
3
|
Sullan MJ, Stearns-Yoder KA, Wang Z, Hoisington AJ, Bramoweth AD, Carr W, Ge Y, Galfalvy H, Haghighi F, Brenner LA. Study protocol: Identifying transcriptional regulatory alterations of chronic effects of blast and disturbed sleep in United States Veterans. PLoS One 2024; 19:e0301026. [PMID: 38536869 PMCID: PMC10971577 DOI: 10.1371/journal.pone.0301026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/07/2024] [Indexed: 11/12/2024] Open
Abstract
Injury related to blast exposure dramatically rose during post-911 era military conflicts in Iraq and Afghanistan. Mild traumatic brain injury (mTBI) is among the most common injuries following blast, an exposure that may not result in a definitive physiologic marker (e.g., loss of consciousness). Recent research suggests that exposure to low level blasts and, more specifically repetitive blast exposure (RBE), which may be subconcussive in nature, may also impact long term physiologic and psychological outcomes, though findings have been mixed. For military personnel, blast-related injuries often occur in chaotic settings (e.g., combat), which create challenges in the immediate assessment of related-injuries, as well as acute and post-acute sequelae. As such, alternate means of identifying blast-related injuries are needed. Results from previous work suggest that epigenetic markers, such as DNA methylation, may provide a potential stable biomarker of cumulative blast exposure that can persist over time. However, more research regarding blast exposure and associations with short- and long-term sequelae is needed. Here we present the protocol for an observational study that will be completed in two phases: Phase 1 will address blast exposure among Active Duty Personnel and Phase 2 will focus on long term sequelae and biological signatures among Veterans who served in the recent conflicts and were exposed to repeated blast events as part of their military occupation. Phase 2 will be the focus of this paper. We hypothesize that Veterans will exhibit similar differentially methylated regions (DMRs) associated with changes in sleep and other psychological and physical metrics, as observed with Active Duty Personnel. Additional analyses will be conducted to compare DMRs between Phase 1 and 2 cohorts, as well as self-reported psychological and physical symptoms. This comparison between Service Members and Veterans will allow for exploration regarding the natural history of blast exposure in a quasi-longitudinal manner. Findings from this study are expected to provide additional evidence for repetitive blast-related physiologic changes associated with long-term neurobehavioral symptoms. It is expected that findings will provide foundational data for the development of effective interventions following RBE that could lead to improved long-term physical and psychological health.
Collapse
Affiliation(s)
- Molly J. Sullan
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, CO, United States of America
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Kelly A. Stearns-Yoder
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, CO, United States of America
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Zhaoyu Wang
- James J. Peters VA Medical Center, Medical Epigenetics, Bronx, NY, United States of America
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Andrew J. Hoisington
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, CO, United States of America
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Department of Systems Engineering & Management, Air Force Institute of Technology, Wright Patterson AFB, OH, United States of America
| | - Adam D. Bramoweth
- Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA, United States of America
- Center for Health Equity Research and Promotion (CHERP), VA Pittsburgh Healthcare System, Pittsburgh, PA, United States of America
| | - Walter Carr
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Hanga Galfalvy
- Departments of Psychiatry and Biostatistics, Columbia University, New York, NY, United States of America
| | - Fatemah Haghighi
- James J. Peters VA Medical Center, Medical Epigenetics, Bronx, NY, United States of America
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Lisa A. Brenner
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, CO, United States of America
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Departments of Psychiatry and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
4
|
Lai H, Gao M, Yang H. The potassium channels: Neurobiology and pharmacology of tinnitus. J Neurosci Res 2024; 102:e25281. [PMID: 38284861 DOI: 10.1002/jnr.25281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024]
Abstract
Tinnitus is a widespread public health issue that imposes a significant social burden. The occurrence and maintenance of tinnitus have been shown to be associated with abnormal neuronal activity in the auditory pathway. Based on this view, neurobiological and pharmacological developments in tinnitus focus on ion channels and synaptic neurotransmitter receptors in neurons in the auditory pathway. With major breakthroughs in the pathophysiology and research methodology of tinnitus in recent years, the role of the largest family of ion channels, potassium ion channels, in modulating the excitability of neurons involved in tinnitus has been increasingly demonstrated. More and more potassium channels involved in the neural mechanism of tinnitus have been discovered, and corresponding drugs have been developed. In this article, we review animal (mouse, rat, hamster, and guinea-pig), human, and genetic studies on the different potassium channels involved in tinnitus, analyze the limitations of current clinical research on potassium channels, and propose future prospects. The aim of this review is to promote the understanding of the role of potassium ion channels in tinnitus and to advance the development of drugs targeting potassium ion channels for tinnitus.
Collapse
Affiliation(s)
- Haohong Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minqian Gao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| |
Collapse
|
5
|
Tuminello S, Nguyen E, Durmus N, Alptekin R, Yilmaz M, Crisanti MC, Snuderl M, Chen Y, Shao Y, Reibman J, Taioli E, Arslan AA. World Trade Center Exposure, DNA Methylation Changes, and Cancer: A Review of Current Evidence. EPIGENOMES 2023; 7:31. [PMID: 38131903 PMCID: PMC10742700 DOI: 10.3390/epigenomes7040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction: Known carcinogens in the dust and fumes from the destruction of the World Trade Center (WTC) towers on 9 November 2001 included metals, asbestos, and organic pollutants, which have been shown to modify epigenetic status. Epigenome-wide association analyses (EWAS) using uniform (Illumina) methodology have identified novel epigenetic profiles of WTC exposure. Methods: We reviewed all published data, comparing differentially methylated gene profiles identified in the prior EWAS studies of WTC exposure. This included DNA methylation changes in blood-derived DNA from cases of cancer-free "Survivors" and those with breast cancer, as well as tissue-derived DNA from "Responders" with prostate cancer. Emerging molecular pathways related to the observed DNA methylation changes in WTC-exposed groups were explored and summarized. Results: WTC dust exposure appears to be associated with DNA methylation changes across the genome. Notably, WTC dust exposure appears to be associated with increased global DNA methylation; direct dysregulation of cancer genes and pathways, including inflammation and immune system dysregulation; and endocrine system disruption, as well as disruption of cholesterol homeostasis and lipid metabolism. Conclusion: WTC dust exposure appears to be associated with biologically meaningful DNA methylation changes, with implications for carcinogenesis and development of other chronic diseases.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
| | - Emelie Nguyen
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10016, USA
| | - Nedim Durmus
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ramazan Alptekin
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Muhammed Yilmaz
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Matija Snuderl
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Yu Chen
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10016, USA
| | - Alan A. Arslan
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
6
|
Raza Z, Hussain SF, Foster VS, Wall J, Coffey PJ, Martin JF, Gomes RSM. Exposure to war and conflict: The individual and inherited epigenetic effects on health, with a focus on post-traumatic stress disorder. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1066158. [PMID: 38455905 PMCID: PMC10910933 DOI: 10.3389/fepid.2023.1066158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/03/2023] [Indexed: 03/09/2024]
Abstract
War and conflict are global phenomena, identified as stress-inducing triggers for epigenetic modifications. In this state-of-the-science narrative review based on systematic principles, we summarise existing data to explore the outcomes of these exposures especially in veterans and show that they may result in an increased likelihood of developing gastrointestinal, auditory, metabolic and circadian issues, as well as post-traumatic stress disorder (PTSD). We also note that, despite a potential "healthy soldier effect", both veterans and civilians with PTSD exhibit the altered DNA methylation status in hypothalamic-pituitary-adrenal (HPA) axis regulatory genes such as NR3C1. Genes associated with sleep (PAX8; LHX1) are seen to be differentially methylated in veterans. A limited number of studies also revealed hereditary effects of war exposure across groups: decreased cortisol levels and a heightened (sex-linked) mortality risk in offspring. Future large-scale studies further identifying the heritable risks of war, as well as any potential differences between military and civilian populations, would be valuable to inform future healthcare directives.
Collapse
Affiliation(s)
- Zara Raza
- Research & Innovation, Blind Veterans UK, London, United Kingdom
- BRAVO VICTOR, Research & Innovation, London, United Kingdom
- Hull York Medical School, University of York, York, United Kingdom
| | - Syeda F Hussain
- Research & Innovation, Blind Veterans UK, London, United Kingdom
- BRAVO VICTOR, Research & Innovation, London, United Kingdom
| | - Victoria S Foster
- Research & Innovation, Blind Veterans UK, London, United Kingdom
- BRAVO VICTOR, Research & Innovation, London, United Kingdom
- St George's Hospital Medical School, London, United Kingdom
| | - Joseph Wall
- Hull York Medical School, University of York, York, United Kingdom
- Haxby Group Hull, General Practice Surgery, Hull, United Kingdom
| | - Peter J Coffey
- Development, Ageing and Disease, UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - John F Martin
- Centre for Cardiovascular Biology and Medicine, University College London, London, United Kingdom
| | - Renata S M Gomes
- Research & Innovation, Blind Veterans UK, London, United Kingdom
- BRAVO VICTOR, Research & Innovation, London, United Kingdom
- Northern Hub for Veterans and Military Families Research, Department of Nursing, Midwifery and Health, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|