1
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Dissecting the immune response of CD4 + T cells in Alzheimer's disease. Rev Neurosci 2025; 36:139-168. [PMID: 39238424 DOI: 10.1515/revneuro-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ana Cvetanovic
- Department of Oncology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Jelena Basic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| |
Collapse
|
2
|
Jang E, Hoxha K, Mozier D, Insana A, Farber E, Changolkar L, Zhang B, Chio TI, Crowe A, Chen R, Mercken M, Lee EB, Luk KC, Brunden KR, Lee VMY, Xu H. Targeting Endogenous Tau in Seeded Tauopathy Models Inhibits Tau Spread. J Neurosci 2024; 44:e0877242024. [PMID: 39500576 PMCID: PMC11604146 DOI: 10.1523/jneurosci.0877-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 11/29/2024] Open
Abstract
The transmission of tau pathology has been proposed as one of the major mechanisms for the spatiotemporal spreading of tau pathology in neurodegenerative diseases. Over the last decade, studies have demonstrated that targeting total or pathological tau using tau antibodies can mitigate the development of tau pathology in tauopathy or Alzheimer's disease (AD) mouse models, and multiple tau immunotherapy agents have progressed to clinical trials. Tau antibodies are believed to inhibit the internalization of pathologic seeds and/or block seed elongation after seed internalization. To further address the mechanism of tau antibody inhibition of pathological spread, we conducted immunotherapy studies in mouse primary neurons and wild-type mice (females) seeded with AD patient-derived tau to induce the formation and spreading of tau pathology. Notably, we evaluated the effect of a mouse tau-specific antibody (mTau8) which does not interact with AD-tau seeds in these models. Our results show that mTau8 crosses the blood-brain barrier at levels similar to other antibodies and effectively decreases AD-tau-seeded tau pathology in vitro and in vivo. Importantly, our data suggest that mTau8 binds to endogenous intraneuronal mouse tau, thereby inhibiting the elongation of internalized tau seeds. These findings provide valuable insights into the possible mechanism underlying antibody-based therapies for treating tauopathies.
Collapse
Affiliation(s)
- Elliot Jang
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kevt'her Hoxha
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Damian Mozier
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Abigail Insana
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ethan Farber
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Lakshmi Changolkar
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tak-Ian Chio
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Alex Crowe
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Richard Chen
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Marc Mercken
- Janssen Pharmaceutica NV, Neuroscience Discovery, Beerse 23403, Belgium
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kurt R Brunden
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hong Xu
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
3
|
Sigurdsson EM. Tau Immunotherapies for Alzheimer's Disease and Related Tauopathies: Status of Trials and Insights from Preclinical Studies. J Alzheimers Dis 2024; 101:S129-S140. [PMID: 38427486 PMCID: PMC11587787 DOI: 10.3233/jad-231238] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The tau protein undergoes pathological changes in Alzheimer's disease and other tauopathies that eventually lead to functional impairments. Over the years, several therapeutic approaches have been examined to slow or halt the progression of tau pathology but have yet to lead to an approved disease-modifying treatment. Of the drugs in clinical trials that directly target tau, immunotherapies are the largest category and mostly consist of antibodies in different stages of development. There is a reasonable optimism that at least some of these compounds will have a clinically meaningful efficacy. This view is based on the significant although modest efficacy of some antibodies targeting amyloid-β in Alzheimer's disease and the fact that tau pathology correlates much better with the degree of dementia than amyloid-β lesions. In Alzheimer's disease, clearing pathological tau may therefore improve function later in the disease process than when removing amyloid-β. This review provides a brief update on the active and passive clinical tau immunization trials with insight from preclinical studies. Various epitopes are being targeted and some of the antibodies are said to target extracellular tau but because almost all of pathological tau is found intracellularly, the most efficacious antibodies should be able to enter the cell.
Collapse
Affiliation(s)
- Einar M Sigurdsson
- Departments of Neuroscience and Physiology, and Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: current status and future directions. Nat Rev Neurol 2023; 19:715-736. [PMID: 37875627 PMCID: PMC10965012 DOI: 10.1038/s41582-023-00883-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in older individuals. AD is characterized pathologically by amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain, with associated loss of synapses and neurons, which eventually results in dementia. Many of the early attempts to develop treatments for AD focused on Aβ, but a lack of efficacy of these treatments in terms of slowing disease progression led to a change of strategy towards targeting of tau pathology. Given that tau shows a stronger correlation with symptom severity than does Aβ, targeting of tau is more likely to be efficacious once cognitive decline begins. Anti-tau therapies initially focused on post-translational modifications, inhibition of tau aggregation and stabilization of microtubules. However, trials of many potential drugs were discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting agents in clinical trials are immunotherapies. In this Review, we provide an update on the results from the initial immunotherapy trials and an overview of new therapeutic candidates that are in clinical development, as well as considering future directions for tau-targeting therapies.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Geerts H, Bergeler S, Walker M, van der Graaf PH, Courade JP. Analysis of clinical failure of anti-tau and anti-synuclein antibodies in neurodegeneration using a quantitative systems pharmacology model. Sci Rep 2023; 13:14342. [PMID: 37658103 PMCID: PMC10474108 DOI: 10.1038/s41598-023-41382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023] Open
Abstract
Misfolded proteins in Alzheimer's disease and Parkinson's disease follow a well-defined connectomics-based spatial progression. Several anti-tau and anti-alpha synuclein (aSyn) antibodies have failed to provide clinical benefit in clinical trials despite substantial target engagement in the experimentally accessible cerebrospinal fluid (CSF). The proposed mechanism of action is reducing neuronal uptake of oligomeric protein from the synaptic cleft. We built a quantitative systems pharmacology (QSP) model to quantitatively simulate intrasynaptic secretion, diffusion and antibody capture in the synaptic cleft, postsynaptic membrane binding and internalization of monomeric and oligomeric tau and aSyn proteins. Integration with a physiologically based pharmacokinetic (PBPK) model allowed us to simulate clinical trials of anti-tau antibodies gosuranemab, tilavonemab, semorinemab, and anti-aSyn antibodies cinpanemab and prasineuzumab. Maximal target engagement for monomeric tau was simulated as 45% (semorinemab) to 99% (gosuranemab) in CSF, 30% to 99% in ISF but only 1% to 3% in the synaptic cleft, leading to a reduction of less than 1% in uptake of oligomeric tau. Simulations for prasineuzumab and cinpanemab suggest target engagement of free monomeric aSyn of only 6-8% in CSF, 4-6% and 1-2% in the ISF and synaptic cleft, while maximal target engagement of aggregated aSyn was predicted to reach 99% and 80% in the synaptic cleft with similar effects on neuronal uptake. The study generates optimal values of selectivity, sensitivity and PK profiles for antibodies. The study identifies a gradient of decreasing target engagement from CSF to the synaptic cleft as a key driver of efficacy, quantitatively identifies various improvements for drug design and emphasizes the need for QSP modelling to support the development of tau and aSyn antibodies.
Collapse
Affiliation(s)
- Hugo Geerts
- Certara US, 100 Overlook Centre, Suite 101, Princeton, NJ, 08540, USA.
| | - Silke Bergeler
- Certara US, 100 Overlook Centre, Suite 101, Princeton, NJ, 08540, USA
- Bristol-Meyers-Squibb, Lawrenceville, NJ, 08648, USA
| | - Mike Walker
- Certara UK, Canterbury Innovation Centre, University Road, Canterbury, CT2 7FG, Kent, UK
| | - Piet H van der Graaf
- Certara UK, Canterbury Innovation Centre, University Road, Canterbury, CT2 7FG, Kent, UK
| | | |
Collapse
|
6
|
Hromadkova L, Siddiqi MK, Liu H, Safar JG. Populations of Tau Conformers Drive Prion-like Strain Effects in Alzheimer's Disease and Related Dementias. Cells 2022; 11:2997. [PMID: 36230957 PMCID: PMC9562632 DOI: 10.3390/cells11192997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Recent findings of diverse populations of prion-like conformers of misfolded tau protein expand the prion concept to Alzheimer's disease (AD) and monogenic frontotemporal lobar degeneration (FTLD)-MAPT P301L, and suggest that distinct strains of misfolded proteins drive the phenotypes and progression rates in many neurodegenerative diseases. Notable progress in the previous decades has generated many lines of proof arguing that yeast, fungal, and mammalian prions determine heritable as well as infectious traits. The extraordinary phenotypic diversity of human prion diseases arises from structurally distinct prion strains that target, at different progression speeds, variable brain structures and cells. Although human prion research presents beneficial lessons and methods to study the mechanism of strain diversity of protein-only pathogens, the fundamental molecular mechanism by which tau conformers are formed and replicate in diverse tauopathies is still poorly understood. In this review, we summarize up to date advances in identification of diverse tau conformers through biophysical and cellular experimental paradigms, and the impact of heterogeneity of pathological tau strains on personalized structure- and strain-specific therapeutic approaches in major tauopathies.
Collapse
Affiliation(s)
- Lenka Hromadkova
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - He Liu
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jiri G. Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Bajracharya R, Cruz E, Götz J, Nisbet RM. Ultrasound-mediated delivery of novel tau-specific monoclonal antibody enhances brain uptake but not therapeutic efficacy. J Control Release 2022; 349:634-648. [PMID: 35901857 DOI: 10.1016/j.jconrel.2022.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
Abstract
Tau-specific immunotherapy is an attractive strategy for the treatment of Alzheimer's disease and other tauopathies. However, effectively targeting tau in the brain remains a considerable challenge due to the restrictive nature of the blood-brain barrier (BBB), which excludes an estimated >99% of peripherally administered antibodies. However, their transport across the BBB can be facilitated by a novel modality, low-intensity scanning ultrasound used in combination with intravenously injected microbubbles (SUS+MB). We have previously shown that SUS+MB-mediated delivery of a tau-specific antibody in a single-chain (scFv) format to tau transgenic mice enhanced brain and neuronal uptake and subsequently, reduced tau pathology and improved behavioural outcomes to a larger extent than either scFv or SUS+MB on its own. Here we generated a novel tau-specific monoclonal antibody, RNF5, and validated it in its IgG format in the presence or absence of SUS+MB by treating K369I tau transgenic K3 mice once weekly for 12 weeks. We found that both RNF5 and SUS+MB treatments on their own significantly reduced tau pathology. In the combination group (RNF5 + SUS+MB), however, despite increased antibody localization in the brain, there were no further reductions in tau pathology when compared to RNF5 treatment alone. Furthermore, following SUS+MB, RNF5 accumulated heavily within cells across the pyramidal cell layer of the hippocampus, that were negative for MAP2 and p-tau, suggesting that SUS+MB may not facilitate enhanced RNF5 engagement of intraneuronal tau. Overall, our new findings reveal the complexities of combining tau immunotherapy with SUS+MB and challenge the view that this is a straight-forward approach.
Collapse
Affiliation(s)
- Rinie Bajracharya
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Queensland 4072, Australia
| | - Esteban Cruz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Queensland 4072, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Queensland 4072, Australia.
| | - Rebecca M Nisbet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Queensland 4072, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3052, Australia.
| |
Collapse
|
8
|
Congdon EE, Jiang Y, Sigurdsson EM. Targeting tau only extracellularly is likely to be less efficacious than targeting it both intra- and extracellularly. Semin Cell Dev Biol 2022; 126:125-137. [PMID: 34896021 PMCID: PMC9680670 DOI: 10.1016/j.semcdb.2021.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Aggregation of the tau protein is thought to be responsible for the neurodegeneration and subsequent functional impairments in diseases that are collectively named tauopathies. Alzheimer's disease is the most common tauopathy, but the group consists of over 20 different diseases, many of which have tau pathology as their primary feature. The development of tau therapies has mainly focused on preventing the formation of and/or clearing these aggregates. Of these, immunotherapies that aim to either elicit endogenous tau antibodies or deliver exogenous ones are the most common approach in clinical trials. While their mechanism of action can involve several pathways, both extra- and intracellular, pharmaceutical companies have primarily focused on antibody-mediated clearance of extracellular tau. As we have pointed out over the years, this is rather surprising because it is well known that most of pathological tau protein is found intracellularly. It has been repeatedly shown by several groups over the past decades that antibodies can enter neurons and that their cellular uptake can be enhanced by various means, particularly by altering their charge. Here, we will briefly describe the potential extra- and intracellular mechanisms involved in antibody-mediated clearance of tau pathology, discuss these in the context of recent failures of some of the tau antibody trials, and finally provide a brief overview of how the intracellular efficacy of tau antibodies can potentially be further improved by certain modifications that aim to enhance tau clearance via specific intracellular degradation pathways.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, United States.
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, United States; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
9
|
Genetically encoded intrabodies as high-precision tools to visualize and manipulate neuronal function. Semin Cell Dev Biol 2021; 126:117-124. [PMID: 34782184 DOI: 10.1016/j.semcdb.2021.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022]
Abstract
Basic neuroscience research employs numerous forms of antibodies as key reagents in diverse applications. While the predominant use of antibodies is as immunolabeling reagents, neuroscientists are making increased use of intracellular antibodies or intrabodies. Intrabodies are recombinant antibodies genetically encoded for expression within neurons. These can be used to target various cargo (fluorescent proteins, reporters, enzymes, etc.) to specific molecules and subcellular domains to report on and manipulate neuronal function with high precision. Intrabodies have the advantages inherent in all genetically encoded recombinant antibodies but represent a distinct subclass in that their structure allows for their expression and function within cells. The high precision afforded by the ability to direct their expression to specific cell types, and the selective binding of intrabodies to targets within these allows intrabodies to offer unique advantages for neuroscience research, given the tremendous molecular, cellular and morphological complexity of brain neurons. Intrabodies expressed within neurons have been used for a variety of purposes in basic neuroscience research. Here I provide a general background to intrabodies and their development, and examples of their emerging utility as valuable basic neuroscience research tools.
Collapse
|
10
|
Abstract
Tau immunotherapies have advanced from proof-of-concept studies to over a dozen clinical trials for Alzheimer's disease (AD) and other tauopathies. Mechanistic studies in animal and culture models have provided valuable insight into how these therapies may work but multiple pathways are likely involved. Different groups have emphasized the importance of intracellular vs extracellular antibody-mediated clearance of the tau protein and there is no consensus on which pool of tau should ideally be targeted. Likewise, various normal and disease-selective epitopes are being targeted, and the antibody isotypes either favor phagocytosis of the tau-antibody complex or are neutral in that aspect. Most of the clinical trials are in early stages, thus their efficacy is not yet known, but all have been without any major adverse effects and some have reported target engagement. A few have been discontinued. One in phase I, presumably because of a poor pharmacokinetic profile, and three in phase II for a lack of efficacy although this trial stage is not well powered for efficacy measures. In these phase II studies, trials with two antibodies in patients with progressive supranuclear palsy or other primary tauopathies were halted but are continuing in patients with AD, and one antibody trial was stopped in early-stage AD but is continuing in moderate AD. These three antibodies have been reported to only work extracellularly and tau is not increased in the cerebrospinal fluid of primary tauopathies, which may explain the failures of two of them. In the discontinued AD trial, there are some concerns about how much of extracellular tau contains the N-terminal epitope that is being targeted. In addition, extracellular tau is only a small part of total tau, compared to intracellular tau. Targeting only the former may not be sufficient for functional benefits. Given these outcomes, decision makers within the pharmaceutical companies who green light these trials should attempt to target tau not only extracellularly but also intracellularly to increase their chances of success. Hopefully, some of the ongoing trials will provide some functional benefits to the large number of patients with tauopathies.
Collapse
Affiliation(s)
- Changyi Ji
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, Science Building, 11th floor, 435 East 30th Street, New York, NY, 10016, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, Science Building, 11th floor, 435 East 30th Street, New York, NY, 10016, USA.
- Department of Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|