1
|
Galushkin A, Gozes I. Intranasal NAP (Davunetide): Neuroprotection and circadian rhythmicity. Adv Drug Deliv Rev 2025; 220:115573. [PMID: 40185278 DOI: 10.1016/j.addr.2025.115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/05/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
In this review we examine the neuroprotective potential of NAP (davunetide), a small peptide derived from Activity-Dependent Neuroprotective Protein (ADNP), in the context of neurodevelopmental and neurodegenerative disorders. ADNP, a protein essential for brain development and function, is associated with tauopathy-related diseases, such as Alzheimer's Disease (AD), and circadian rhythm regulation. NAP enhances microtubule stability and prevents tauopathy. In preclinical studies, NAP shows promise in improving cognitive performance and correcting behavioral deficits in different models. Clinical studies on NAP (davunetide) administered via intranasal delivery have demonstrated its safety, favorable bioavailability, and potential efficacy in improving cognitive function, making it a viable therapeutic option. In the pure tauopathy, progressive supranuclear palsy, NAP (davunetide) significantly slowed disease progression in women in a phase II-III clinical trial. Additionally, the complex interactions between ADNP, associated pathways, and circadian regulation and the extensive NAP compensation upon ADNP deficiency attest to further clinical development. Thus, NAP is an example of a reductionist approach in drug delivery, replacing/enhancing the critical large ADNP-related pathways including dysregulated microtubules and tauopathy with a small brain bioavailable investigational drug, davunetide.
Collapse
Affiliation(s)
- Artur Galushkin
- Dr. Diana and Zelman Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical & Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Illana Gozes
- Dr. Diana and Zelman Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical & Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
2
|
Kınacı‐Biber E, Gys L, Jansen A, Schoonjans A, Van Dijck A, Kooy R, Van de Walle P, Hallemans A. Investigation of Gait Characteristics and Kinematic Deviations in Rare Genetic Disorders with Instrumented Gait Analysis. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2025; 69:383-392. [PMID: 39948735 PMCID: PMC11966358 DOI: 10.1111/jir.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/05/2024] [Accepted: 01/28/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Dravet Syndrome (DS), Helsmoortel-Van Der Aa Syndrome (HVDAS) and Tuberous Sclerosis Complex (TSC) are rare genetic syndromes, sharing intellectual disability (ID) and motor delay. In DS, two distinct gait patterns, crouch and non-crouch, have been described using instrumented 3D gait analysis (i3DGA). This cross-sectional study measures gait in participants with TSC and HVDAS. The findings are compared to the known crouch and non-crouch gait patterns observed in DS and to typical gait. METHODS Participants (6-22 years) with DS (n = 37; 19 crouch and 18 non-crouch), HVDAS (n = 12) or TSC (n = 8) were compared with typically developing (TD) peers (n = 33). All participants underwent i3DGA (Plugin Gait model processed with Vicon Nexus and MATLAB®) to investigate spatiotemporal and lower-limb kinematics. RESULTS All three genetic syndromes showed increased step width. Participants with HVDAS and DS, but not participants with TSC walked with decreased step length and velocity compared to TD. HVDAS demonstrated increased knee flexion during the stance phase, lack of hip extension during pre-swing, and increased ankle dorsiflexion during some phases of the gait cycle (p < 0.001). Additionally, HVDAS showed similar kinematic deviations to DS-NonCrouch. No significant differences were found in terms of kinematics between TSC and TD peers (p > 0.05). CONCLUSION The current study reveals differences in gait characteristics from typical functional gait in rare genetic disorders. DS-Crouch, DS-NonCrouch and HVDAS display a more impaired gait from a biomechanical perspective than TSC. The variability of clinical and genetic features might explain heterogeneity in gait deviations and should be further explored.
Collapse
Affiliation(s)
- Esra Kınacı‐Biber
- Graduate School of Health Sciences, Physical Therapy and Rehabilitation DivisionHacettepe UniversityAnkaraTürkiye
- Faculty of Health Sciences, Department of Physiotherapy and RehabilitationDüzce UniversityDüzceTürkiye
| | - Lis Gys
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI)University of AntwerpWilrijkBelgium
| | - Anna C. Jansen
- Pediatric Neurology Unit, Department of PediatricsAntwerp University HospitalAntwerpBelgium
- Translational NeurosciencesUniversity of AntwerpAntwerpBelgium
| | - An‐Sofie Schoonjans
- Pediatric Neurology Unit, Department of PediatricsAntwerp University HospitalAntwerpBelgium
- Translational NeurosciencesUniversity of AntwerpAntwerpBelgium
| | - Anke Van Dijck
- Department of Medical GeneticsUniversity of AntwerpAntwerpBelgium
- Family Medicine and Population HealthUniversity of AntwerpAntwerpBelgium
| | - R. Frank Kooy
- Department of Medical GeneticsUniversity of AntwerpAntwerpBelgium
| | - Patricia Van de Walle
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI)University of AntwerpWilrijkBelgium
- Clinical Gait LaboratoryHeder VZWAntwerpBelgium
| | - Ann Hallemans
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI)University of AntwerpWilrijkBelgium
| |
Collapse
|
3
|
Shields S, Gregory E, Wilkes O, Gozes II, Sanchez-Soriano N. Oxidative Stress Promotes Axonal Atrophy through Alterations in Microtubules and EB1 Function. Aging Dis 2025:AD.2024.0839. [PMID: 39908272 DOI: 10.14336/ad.2024.0839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/03/2024] [Indexed: 02/07/2025] Open
Abstract
Axons are crucial for transmitting neurochemical signals. As organisms age, the ability of neurons to maintain their axons declines; hence, aged axons are more susceptible to damage or dysfunction. Understanding how aging causes axonal vulnerability is crucial for developing strategies to enhance overall resilience of neurons and prevent neuronal deterioration during aging and in age-related neurodegenerative diseases. Increasing levels of reactive oxygen species (ROS) causes oxidative stress - a hallmark of aging and age-related diseases. Despite this association, a causal relationship between oxidative stress and neuronal aging remains unclear, particularly in how subcellular physiology may be affected by ROS. By using Drosophila-derived primary neuronal cultures and a recently developed in vivo neuronal model of aging, which involves the visualisation of Drosophila medulla neurons, we investigated the interplay between oxidative stress, neuronal aging and the microtubule cytoskeleton. Our results showed that oxidative stress is a key driver of axonal and synaptic decay, as shown by an enhanced appearance of axonal swellings, microtubule alterations (in both axons and synapses) and morphological transformation of axonal terminals during aging. We demonstrated that increasing the levels of ROS sensitises microtubule plus end-binding protein 1 (EB1), leading to microtubule defects that effect neuronal integrity. Furthermore, manipulating EB1 proved to be a valuable therapeutic strategy to prevent aging hallmarks enhanced in conditions of elevated ROS. In summary, we demonstrate a mechanistic pathway linking cellular oxidative stress with changes in the microtubule cytoskeleton leading to axonal deterioration during aging and provide evidence of the therapeutic potential of enhancing microtubule plus-end physiology to improve the resilience of axons.
Collapse
Affiliation(s)
- Samuel Shields
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Emilia Gregory
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Oliver Wilkes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - IIlana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical & Health Sciences, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel
| | | |
Collapse
|
4
|
Pappalardo XG, Jansen G, Amaradio M, Costanza J, Umeton R, Guarino F, De Pinto V, Oliver SG, Messina A, Nicosia G. Inferring gene regulatory networks of ALS from blood transcriptome profiles. Heliyon 2024; 10:e40696. [PMID: 39687198 PMCID: PMC11648123 DOI: 10.1016/j.heliyon.2024.e40696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
One of the most robust approaches to the prediction of causal driver genes of complex diseases is to apply reverse engineering methods to infer a gene regulatory network (GRN) from gene expression profiles (GEPs). In this work, we analysed 794 GEPs of 1117 human whole-blood samples from Amyotrophic Lateral Sclerosis (ALS) patients and healthy subjects reported in the GSE112681 dataset. GRNs for ALS and healthy individuals were reconstructed by ARACNe-AP (Algorithm for the Reconstruction of Accurate Cellular Networks - Adaptive Partitioning). In order to examine phenotypic differences in the ALS population surveyed, several datasets were built by arranging GEPs according to sex, spinal or bulbar onset, and survival time. The designed reverse engineering methodology identified a significant number of potential ALS-promoting mechanisms and putative transcriptional biomarkers that were previously unknown. In particular, the characterization of ALS phenotypic networks by pathway enrichment analysis has identified a gender-specific disease signature, namely network activation related to the radiation damage response, reported in the networks of bulbar and female ALS patients. Also, focusing on a smaller interaction network, we selected some hub genes to investigate their inferred pathological and healthy subnetworks. The inferred GRNs revealed the interconnection of the four selected hub genes (TP53, SOD1, ALS2, VDAC3) with p53-mediated pathways, suggesting the potential neurovascular response to ALS neuroinflammation. In addition to being well consistent with literature data, our results provide a novel integrated view of ALS transcriptional regulators, expanding information on the possible mechanisms underlying ALS and also offering important insights for diagnostic purposes and for developing possible therapies for a disease yet incurable.
Collapse
Affiliation(s)
- Xena G. Pappalardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giorgio Jansen
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Matteo Amaradio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Jole Costanza
- The National Institute of Molecular Genetics “Romeo and Enrica Invernizzi”, Milano, Italy
| | - Renato Umeton
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Francesca Guarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- National Institute of Biostructures and Biosystems, Section of Catania, Catania, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- National Institute of Biostructures and Biosystems, Section of Catania, Catania, Italy
| | | | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
- National Institute of Biostructures and Biosystems, Section of Catania, Catania, Italy
| | - Giuseppe Nicosia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Buxbaum Grice AS, Sloofman L, Levy T, Walker H, Ganesh G, Rodriguez de Los Santos M, Amini P, Buxbaum JD, Kolevzon A, Kostic A, Breen MS. Transient peripheral blood transcriptomic response to ketamine treatment in children with ADNP syndrome. Transl Psychiatry 2024; 14:307. [PMID: 39054328 PMCID: PMC11272924 DOI: 10.1038/s41398-024-03005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
Activity-dependent neuroprotective protein (ADNP) syndrome is a rare neurodevelopmental disorder resulting in intellectual disability, developmental delay and autism spectrum disorder (ASD) and is due to mutations in the ADNP gene. Ketamine treatment has emerged as a promising therapeutic option for ADNP syndrome, showing safety and apparent behavioral improvements in a first open label study. However, the molecular perturbations induced by ketamine remain poorly understood. Here, we investigated the longitudinal effect of ketamine on the blood transcriptome of 10 individuals with ADNP syndrome. Transcriptomic profiling was performed before and at multiple time points after a single low-dose intravenous ketamine infusion (0.5 mg/kg). We show that ketamine triggers immediate and profound gene expression alterations, with specific enrichment of monocyte-related expression patterns. These acute alterations encompass diverse signaling pathways and co-expression networks, implicating upregulation of immune and inflammatory-related processes and down-regulation of RNA processing mechanisms and metabolism. Notably, these changes exhibit a transient nature, returning to baseline levels 24 hours to 1 week after treatment. These findings enhance our understanding of ketamine's molecular effects and lay the groundwork for further research elucidating its specific cellular and molecular targets. Moreover, they contribute to the development of therapeutic strategies for ADNP syndrome and potentially, ASD more broadly.
Collapse
Affiliation(s)
- Ariela S Buxbaum Grice
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Sloofman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hannah Walker
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gauri Ganesh
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Rodriguez de Los Santos
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pardis Amini
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Kostic
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael S Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Ralston M, Osman A, Suryadevara P, Cleland E. Effect of Ketamine Treatment on Social Withdrawal in Autism and Autism-Like Conditions. Clin Neuropharmacol 2024; 47:97-100. [PMID: 38743603 DOI: 10.1097/wnf.0000000000000591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
OBJECTIVE Ketamine and esketamine have been used in the field of psychiatry to alleviate conditions such as major depressive disorder. Our objective was to evaluate the current literature on the use of ketamine for symptoms of social withdrawal in autism spectrum disorder (ASD) and autism-like conditions. METHODS A comprehensive search of PubMed and Web of Science was conducted to identify literature involving the use of ketamine to treat symptoms of autism and social withdrawal. Patients with comorbid disorders were also included. RESULTS Two original studies were found, showing mixed results on the use of ketamine for ASD. The use of esketamine found no statistically significant results, whereas the use of intravenous ketamine was shown to alleviate symptoms of social withdrawal especially in the short term. Neither study reported a significant amount of serious adverse events. Five case reports were also included, showing decreased depressive symptoms and evidence of increased social condition. CONCLUSIONS Research on the use of ketamine for ASD and ASD-related conditions is limited. Evidence of improved social condition exists, but further studies should be conducted to increase sample power and test various doses and methods of administration.
Collapse
|
7
|
Pascolini G, Di Zenzo G, Panebianco A, Didona B, Gozes I. Extended phenotypic characterization of a novel Helsmoortel-van der Aa syndrome case series. Am J Med Genet A 2024; 194:e63539. [PMID: 38204290 DOI: 10.1002/ajmg.a.63539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
The neurodevelopmental disorder known as Helsmoortel-van der Aa syndrome (HVDAS, MIM#616580) or ADNP syndrome (Orphanet, ORPHA:404448) is a multiple congenital anomaly (MCA) condition, reported as a syndrome in 2014, associated with deleterious variants in the ADNP gene (activity-dependent neuroprotective protein; MIM*611386) in several children. First reported in the turn of the century, ADNP is a protein with crucial functions for the normal development of the central nervous system and with pleiotropic effects, explaining the multisystemic character of the syndrome. Affected individuals present with striking facial dysmorphic features and variable congenital defects. Herein, we describe a novel case series of HVDAS Italian patients, illustrating their clinical findings and the related genotype-phenotype correlations. Interestingly, the cutaneous manifestations are also extensively expanded, giving an important contribution to the clinical characterization of the condition, and highlighting the relation between skin abnormalities and ADNP defects.
Collapse
Affiliation(s)
- Giulia Pascolini
- Rare Diseases Center, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Giovanni Di Zenzo
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Annarita Panebianco
- Medical Direction, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Biagio Didona
- Rare Diseases Center, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroscience, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Grice ASB, Sloofman L, Levy T, Walker H, Ganesh G, de Los Santos MR, Armini P, Buxbaum JD, Kolevzon A, Kostic A, Breen MS. Transient peripheral blood transcriptomic response to ketamine treatment in children with ADNP syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.29.24301949. [PMID: 38352457 PMCID: PMC10863029 DOI: 10.1101/2024.01.29.24301949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Activity-dependent neuroprotective protein (ADNP) syndrome is a rare neurodevelopmental disorder resulting in intellectual disability, developmental delay and autism spectrum disorder (ASD) and is due to mutations in the ADNP gene. Ketamine treatment has emerged as a promising therapeutic option for ADNP syndrome, showing safety and apparent behavioral improvements in a first open label study. However, the molecular perturbations induced by ketamine remain poorly understood. Here, we investigated the longitudinal effect of ketamine on the blood transcriptome of 10 individuals with ADNP syndrome. Transcriptomic profiling was performed before and at multiple time points after a single low-dose intravenous ketamine infusion (0.5mg/kg). We show that ketamine triggers immediate and profound gene expression alterations, with specific enrichment of monocyte-related expression patterns. These acute alterations encompass diverse signaling pathways and co-expression networks, implicating up-regulation of immune and inflammatory-related processes and down-regulation of RNA processing mechanisms and metabolism. Notably, these changes exhibit a transient nature, returning to baseline levels 24 hours to 1 week after treatment. These findings enhance our understanding of ketamine's molecular effects and lay the groundwork for further research elucidating its specific cellular and molecular targets. Moreover, they contribute to the development of therapeutic strategies for ADNP syndrome and potentially, ASD more broadly.
Collapse
Affiliation(s)
- Ariela S Buxbaum Grice
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Sloofman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hannah Walker
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gauri Ganesh
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Rodriguez de Los Santos
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pardis Armini
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Kostic
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael S Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Gozes I. Tau, ADNP, and sex. Cytoskeleton (Hoboken) 2024; 81:16-23. [PMID: 37572043 DOI: 10.1002/cm.21776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
With 50 years to the original discovery of Tau, I gave here my perspective, looking through the prism of activity-dependent neuroprotective protein (ADNP), and the influence of sex. My starting point was vasoactive intestinal peptide (VIP), a regulator of ADNP. I then moved to the original discovery of ADNP and its active neuroprotective site, NAP, drug candidate, davunetide. Tau-ADNP-NAP interactions were then explained with emphasis on sex and future translational medicine.
Collapse
Affiliation(s)
- Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Gozes I, Shapira G, Lobyntseva A, Shomron N. Unexpected gender differences in progressive supranuclear palsy reveal efficacy for davunetide in women. Transl Psychiatry 2023; 13:319. [PMID: 37845254 PMCID: PMC10579238 DOI: 10.1038/s41398-023-02618-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Progressive supranuclear palsy (PSP) is a pure tauopathy, implicating davunetide, enhancing Tau-microtubule interaction, as an ideal drug candidate. However, pooling patient data irrespective of sex concluded no efficacy. Here, analyzing sex-dependency in a 52 week-long- PSP clinical trial (involving over 200 patients) demonstrated clear baseline differences in brain ventricular volumes, a secondary endpoint. Dramatic baseline ventricular volume-dependent/volume increase correlations were observed in 52-week-placebo-treated females (r = 0.74, P = 2.36-9), whereas davunetide-treated females (like males) revealed no such effects. Assessment of primary endpoints, by the PSP Rating Scale (PSPRS) and markedly more so by the Schwab and England Activities of Daily Living (SEADL) scale, showed significantly faster deterioration in females, starting at trial week 13 (P = 0.01, and correlating with most other endpoints by week 52). Twice daily davunetide treatments slowed female disease progression and revealed significant protection according to the SEADL scale as early as at 39 weeks (P = 0.008), as well as protection of the bulbar and limb motor domains considered by the PSPRS, including speaking and swallowing difficulties caused by brain damage, and deterioration of fine motor skills, respectably (P = 0.01), at 52 weeks. Furthermore, at 52 weeks of trial, the exploratory Geriatric Depression Scale (GDS) significantly correlated with the SEADL scale deterioration in the female placebo group and demonstrated davunetide-mediated protection of females. Female-specific davunetide-mediated protection of ventricular volume corresponded to clinical efficacy. Together with the significantly slower disease progression seen in men, the results reveal sex-based drug efficacy differences, demonstrating the neuroprotective and disease-modifying impact of davunetide treatment for female PSP patients.
Collapse
Affiliation(s)
- Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Guy Shapira
- Department of Cell and Developmental Biology, Faculty of Medicine, Sagol School of Neuroscience, Edmond J Safra Center for Bioinformatics, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Alexandra Lobyntseva
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Medicine, Sagol School of Neuroscience, Edmond J Safra Center for Bioinformatics, Tel Aviv University, 69978, Tel Aviv, Israel
| |
Collapse
|
11
|
Ganaiem M, Gildor ND, Shazman S, Karmon G, Ivashko-Pachima Y, Gozes I. NAP (Davunetide): The Neuroprotective ADNP Drug Candidate Penetrates Cell Nuclei Explaining Pleiotropic Mechanisms. Cells 2023; 12:2251. [PMID: 37759476 PMCID: PMC10527813 DOI: 10.3390/cells12182251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Recently, we showed aberrant nuclear/cytoplasmic boundaries/activity-dependent neuroprotective protein (ADNP) distribution in ADNP-mutated cells. This malformation was corrected upon neuronal differentiation by the ADNP-derived fragment drug candidate NAP (davunetide). Here, we investigated the mechanism of NAP nuclear protection. (2) Methods: CRISPR/Cas9 DNA-editing established N1E-115 neuroblastoma cell lines that express two different green fluorescent proteins (GFPs)-labeled mutated ADNP variants (p.Tyr718* and p.Ser403*). Cells were exposed to NAP conjugated to Cy5, followed by live imaging. Cells were further characterized using quantitative morphology/immunocytochemistry/RNA and protein quantifications. (3) Results: NAP rapidly distributed in the cytoplasm and was also seen in the nucleus. Furthermore, reduced microtubule content was observed in the ADNP-mutated cell lines. In parallel, disrupting microtubules by zinc or nocodazole intoxication mimicked ADNP mutation phenotypes and resulted in aberrant nuclear-cytoplasmic boundaries, which were rapidly corrected by NAP treatment. No NAP effects were noted on ADNP levels. Ketamine, used as a control, was ineffective, but both NAP and ketamine exhibited direct interactions with ADNP, as observed via in silico docking. (4) Conclusions: Through a microtubule-linked mechanism, NAP rapidly localized to the cytoplasmic and nuclear compartments, ameliorating mutated ADNP-related deficiencies. These novel findings explain previously published gene expression results and broaden NAP (davunetide) utilization in research and clinical development.
Collapse
Affiliation(s)
- Maram Ganaiem
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Nina D. Gildor
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Shula Shazman
- Department of Mathematics and Computer Science, The Open University of Israel, Raanana 4353107, Israel;
- Department of Information Systems, The Max Stern Yezreel Valley College, Yezreel Valley, Afula 1930600, Israel
| | - Gidon Karmon
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Yanina Ivashko-Pachima
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| |
Collapse
|
12
|
Cho H, Yoo T, Moon H, Kang H, Yang Y, Kang M, Yang E, Lee D, Hwang D, Kim H, Kim D, Kim JY, Kim E. Adnp-mutant mice with cognitive inflexibility, CaMKIIα hyperactivity, and synaptic plasticity deficits. Mol Psychiatry 2023; 28:3548-3562. [PMID: 37365244 PMCID: PMC10618100 DOI: 10.1038/s41380-023-02129-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
ADNP syndrome, involving the ADNP transcription factor of the SWI/SNF chromatin-remodeling complex, is characterized by developmental delay, intellectual disability, and autism spectrum disorders (ASD). Although Adnp-haploinsufficient (Adnp-HT) mice display various phenotypic deficits, whether these mice display abnormal synaptic functions remain poorly understood. Here, we report synaptic plasticity deficits associated with cognitive inflexibility and CaMKIIα hyperactivity in Adnp-HT mice. These mice show impaired and inflexible contextual learning and memory, additional to social deficits, long after the juvenile-stage decrease of ADNP protein levels to ~10% of the newborn level. The adult Adnp-HT hippocampus shows hyperphosphorylated CaMKIIα and its substrates, including SynGAP1, and excessive long-term potentiation that is normalized by CaMKIIα inhibition. Therefore, Adnp haploinsufficiency in mice leads to cognitive inflexibility involving CaMKIIα hyperphosphorylation and excessive LTP in adults long after its marked expressional decrease in juveniles.
Collapse
Affiliation(s)
- Heejin Cho
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Heera Moon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Korea
| | - Yeji Yang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - MinSoung Kang
- Therapeutics & Biotechnology Division, Drug discovery platform research center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Esther Yang
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Dowoon Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hyun Kim
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Doyoun Kim
- Therapeutics & Biotechnology Division, Drug discovery platform research center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology (UST), Daejeon, 34113, Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
13
|
Jaljuli I, Kafkafi N, Giladi E, Golani I, Gozes I, Chesler EJ, Bogue MA, Benjamini Y. A multi-lab experimental assessment reveals that replicability can be improved by using empirical estimates of genotype-by-lab interaction. PLoS Biol 2023; 21:e3002082. [PMID: 37126512 PMCID: PMC10174519 DOI: 10.1371/journal.pbio.3002082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/11/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
The utility of mouse and rat studies critically depends on their replicability in other laboratories. A widely advocated approach to improving replicability is through the rigorous control of predefined animal or experimental conditions, known as standardization. However, this approach limits the generalizability of the findings to only to the standardized conditions and is a potential cause rather than solution to what has been called a replicability crisis. Alternative strategies include estimating the heterogeneity of effects across laboratories, either through designs that vary testing conditions, or by direct statistical analysis of laboratory variation. We previously evaluated our statistical approach for estimating the interlaboratory replicability of a single laboratory discovery. Those results, however, were from a well-coordinated, multi-lab phenotyping study and did not extend to the more realistic setting in which laboratories are operating independently of each other. Here, we sought to test our statistical approach as a realistic prospective experiment, in mice, using 152 results from 5 independent published studies deposited in the Mouse Phenome Database (MPD). In independent replication experiments at 3 laboratories, we found that 53 of the results were replicable, so the other 99 were considered non-replicable. Of the 99 non-replicable results, 59 were statistically significant (at 0.05) in their original single-lab analysis, putting the probability that a single-lab statistical discovery was made even though it is non-replicable, at 59.6%. We then introduced the dimensionless "Genotype-by-Laboratory" (GxL) factor-the ratio between the standard deviations of the GxL interaction and the standard deviation within groups. Using the GxL factor reduced the number of single-lab statistical discoveries and alongside reduced the probability of a non-replicable result to be discovered in the single lab to 12.1%. Such reduction naturally leads to reduced power to make replicable discoveries, but this reduction was small (from 87% to 66%), indicating the small price paid for the large improvement in replicability. Tools and data needed for the above GxL adjustment are publicly available at the MPD and will become increasingly useful as the range of assays and testing conditions in this resource increases.
Collapse
Affiliation(s)
- Iman Jaljuli
- Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Neri Kafkafi
- Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eliezer Giladi
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Golani
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Elissa J Chesler
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Molly A Bogue
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Yoav Benjamini
- Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Bennison SA, Blazejewski SM, Liu X, Hacohen-Kleiman G, Sragovich S, Zoidou S, Touloumi O, Grigoriadis N, Gozes I, Toyo-Oka K. The cytoplasmic localization of ADNP through 14-3-3 promotes sex-dependent neuronal morphogenesis, cortical connectivity, and calcium signaling. Mol Psychiatry 2023; 28:1946-1959. [PMID: 36631597 DOI: 10.1038/s41380-022-01939-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023]
Abstract
Defective neuritogenesis is a contributing pathogenic mechanism underlying a variety of neurodevelopmental disorders. Single gene mutations in activity-dependent neuroprotective protein (ADNP) are the most frequent among autism spectrum disorders (ASDs) leading to the ADNP syndrome. Previous studies showed that during neuritogenesis, Adnp localizes to the cytoplasm/neurites, and Adnp knockdown inhibits neuritogenesis in culture. Here, we hypothesized that Adnp is localized in the cytoplasm during neurite formation and that this process is mediated by 14-3-3. Indeed, applying the 14-3-3 inhibitor, difopein, blocked Adnp cytoplasmic localization. Furthermore, co-immunoprecipitations showed that Adnp bound 14-3-3 proteins and proteomic analysis identified several potential phosphorylation-dependent Adnp/14-3-3 binding sites. We further discovered that knockdown of Adnp using in utero electroporation of mouse layer 2/3 pyramidal neurons in the somatosensory cortex led to previously unreported changes in neurite formation beginning at P0. Defects were sustained throughout development, the most notable included increased basal dendrite number and axon length. Paralleling the observed morphological aberrations, ex vivo calcium imaging revealed that Adnp deficient neurons had greater and more frequent spontaneous calcium influx in female mice. GRAPHIC, a novel synaptic tracing technology substantiated this finding, revealing increased interhemispheric connectivity between female Adnp deficient layer 2/3 pyramidal neurons. We conclude that Adnp is localized to the cytoplasm by 14-3-3 proteins, where it regulates neurite formation, maturation, and functional cortical connectivity significantly building on our current understanding of Adnp function and the etiology of ADNP syndrome.
Collapse
Affiliation(s)
- Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Xiaonan Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Gal Hacohen-Kleiman
- The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shlomo Sragovich
- The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Sofia Zoidou
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Olga Touloumi
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Illana Gozes
- The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
15
|
D'Incal CP, Van Rossem KE, De Man K, Konings A, Van Dijck A, Rizzuti L, Vitriolo A, Testa G, Gozes I, Vanden Berghe W, Kooy RF. Chromatin remodeler Activity-Dependent Neuroprotective Protein (ADNP) contributes to syndromic autism. Clin Epigenetics 2023; 15:45. [PMID: 36945042 PMCID: PMC10031977 DOI: 10.1186/s13148-023-01450-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Individuals affected with autism often suffer additional co-morbidities such as intellectual disability. The genes contributing to autism cluster on a relatively limited number of cellular pathways, including chromatin remodeling. However, limited information is available on how mutations in single genes can result in such pleiotropic clinical features in affected individuals. In this review, we summarize available information on one of the most frequently mutated genes in syndromic autism the Activity-Dependent Neuroprotective Protein (ADNP). RESULTS Heterozygous and predicted loss-of-function ADNP mutations in individuals inevitably result in the clinical presentation with the Helsmoortel-Van der Aa syndrome, a frequent form of syndromic autism. ADNP, a zinc finger DNA-binding protein has a role in chromatin remodeling: The protein is associated with the pericentromeric protein HP1, the SWI/SNF core complex protein BRG1, and other members of this chromatin remodeling complex and, in murine stem cells, with the chromodomain helicase CHD4 in a ChAHP complex. ADNP has recently been shown to possess R-loop processing activity. In addition, many additional functions, for instance, in association with cytoskeletal proteins have been linked to ADNP. CONCLUSIONS We here present an integrated evaluation of all current aspects of gene function and evaluate how abnormalities in chromatin remodeling might relate to the pleiotropic clinical presentation in individual"s" with Helsmoortel-Van der Aa syndrome.
Collapse
Affiliation(s)
- Claudio Peter D'Incal
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Kirsten Esther Van Rossem
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Kevin De Man
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anthony Konings
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Ludovico Rizzuti
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Alessandro Vitriolo
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Giuseppe Testa
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Sackler School of Medicine, 727, 69978, Tel Aviv, Israel
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium.
| |
Collapse
|
16
|
Fastman J, Kolevzon A. ADNP Syndrome: A Qualitative Assessment of Symptoms, Therapies, and Challenges. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10030593. [PMID: 36980151 PMCID: PMC10047312 DOI: 10.3390/children10030593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
ADNP syndrome is a neurodevelopmental disorder characterized by autism spectrum disorder (ASD), intellectual disability, sensory reactivity symptoms, facial dysmorphisms, and a wide variety of other physical and behavioral health manifestations. Research on ADNP syndrome has been limited, and there are currently no validated tools for assessing clinical outcomes in ADNP syndrome specifically. The goal of this qualitative study was to ascertain the symptoms of ADNP syndrome based on caregiver interviews, with the primary aim of identifying areas for clinical improvement that may inform the development of outcome measures specific to ADNP syndrome. Data collection consisted of loosely structured interviews with 10 caregivers of children with ADNP syndrome, representing 6 males and 4 females of ages 4 to 17 (M = 10.1; SD = 4.2). Interviews were conducted via phone between November 2020 and April 2021. The analysis of coded interview data identified three overarching themes: symptoms, therapies, and challenges. Each theme encompasses several distinct codes, which were individually addressed. Our results could ultimately be useful in educating clinicians about ADNP syndrome, selecting or designing refined outcome measures for clinical trials, and informing efforts to increase support for caregivers.
Collapse
Affiliation(s)
- Jarrett Fastman
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P.O. Box 1230, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
17
|
Genome-Wide Sequencing Modalities for Children with Unexplained Global Developmental Delay and Intellectual Disabilities—A Narrative Review. CHILDREN 2023; 10:children10030501. [PMID: 36980059 PMCID: PMC10047410 DOI: 10.3390/children10030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Unexplained global developmental delay (GDD) and intellectual disabilities (ID) together affect nearly 2% of the pediatric population. Establishing an etiologic diagnosis is crucial for disease management, prognostic evaluation, and provision of physical and psychological support for both the patient and the family. Advancements in genome sequencing have allowed rapid accumulation of gene–disorder associations and have accelerated the search for an etiologic diagnosis for unexplained GDD/ID. We reviewed recent studies that utilized genome-wide analysis technologies, and we discussed their diagnostic yield, strengths, and limitations. Overall, exome sequencing (ES) and genome sequencing (GS) outperformed chromosomal microarrays and targeted panel sequencing. GS provides coverage for both ES and chromosomal microarray regions, providing the maximal diagnostic potential, and the cost of ES and reanalysis of ES-negative results is currently still lower than that of GS alone. Therefore, singleton or trio ES is the more cost-effective option for the initial investigation of individuals with GDD/ID in clinical practice compared to a staged approach or GS alone. Based on these updated evidence, we proposed an evaluation algorithm with ES as the first-tier evaluation for unexplained GDD/ID.
Collapse
|
18
|
Gozes I, Shazman S. A novel davunetide (NAPVSIPQQ to NAPVSIPQE) point mutation in activity-dependent neuroprotective protein (ADNP) causes a mild developmental syndrome. Eur J Neurosci 2023. [PMID: 36669790 DOI: 10.1111/ejn.15920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
NAP (NAPVSIPQ, drug candidate name, davunetide) is the neuroprotective fragment of activity-dependent neuroprotective protein (ADNP). Recent studies identified NAPVSIP as a Src homology 3 (SH3) domain-ligand association site, responsible for controlling signalling pathways regulating the cytoskeleton. Furthermore, the SIP motif in NAP/ADNP was identified as crucial for direct microtubule end-binding protein interaction facilitating microtubule dynamics and Tau microtubule interaction, at the microtubule end-binding protein site EB1 and EB3. Most de novo ADNP mutations reveal heterozygous STOP or frameshift STOP aberrations, driving the autistic/intellectual disability-related ADNP syndrome. Here, we report for the first time on a de novo missense mutation, resulting in ADNP containing NAPVISPQE instead of NAPVSIPQQ, in a child presenting developmental hypotonia, possibly associated with inflammation affecting food intake in early life coupled with fear of peer interactions and suggestive of a novel case of the ADNP syndrome. In silico modelling showed that the mutation Q (polar side chain) to E (negative side chain) affected the electrostatic characteristics of ADNP (reducing, while scattering the electrostatic positive patch). Comparison with the most prevalent pathogenic ADNP mutation, p.Tyr719*, indicated a further reduction in the electrostatic patch. Previously, exogenous NAP partially ameliorated deficits associated with ADNP p.Tyr719* mutations in transfected cells and in CRISPR/Cas9 genome edited cell and mouse models. These findings stress the importance of the NAP sequence in ADNP and as a future putative therapy for the ADNP syndrome.
Collapse
Affiliation(s)
- Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shula Shazman
- Department of Mathematics and Computer Science, The Open University of Israel, Ra'anana, Israel.,Department of Information Systems, The Max Stern Yezreel Valley College, Afula, Israel
| |
Collapse
|
19
|
Helsmoortel-Van der Aa Syndrome-Cardiothoracic and Ectodermal Manifestations in Two Patients as Further Support of a Previous Observation on Phenotypic Overlap with RASopathies. Genes (Basel) 2022; 13:genes13122367. [PMID: 36553633 PMCID: PMC9778517 DOI: 10.3390/genes13122367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The ADNP-gene-related neurodevelopmental disorder Helsmoortel-Van der Aa syndrome is a rare syndromic-intellectual disability-an autism spectrum disorder first described by Helsmoortel and Van der Aa in 2014. Recently, a large cohort including 78 patients and their detailed phenotypes were presented by Van Dijck et al., 2019, who reported developmental delay, speech delay and autism spectrum disorder as nearly constant findings with or without variable cardiological, gastroenterological, urogenital, endocrine and neurological manifestations. Among cardiac malformations, atrial septal defect, patent ductus arteriosus, patent foramen ovale and mitral valve prolapse were the most common findings, but other unspecified defects, such as mild pulmonary valve stenosis, were also described. We present two patients with pathogenic ADNP variants and unusual cardiothoracic manifestations-Bland-White-Garland syndrome, pectus carinatum superiorly along the costochondral junctions and pectus excavatum inferiorly in one patient, and Kawasaki syndrome with pericardiac effusion, coronary artery dilatation and aneurysm in the other-who were successfully treated with intravenous immunoglobulin, corticosteroid and aspirin. Both patients had ectodermal and/or skeletal features overlapping those seen in RASopathies, supporting the observations of Alkhunaizi et al. 2018. on the clinical overlap between Helsmoortel-Van der Aa syndrome and Noonan syndrome. We observed a morphological overlap with the Noonan-like disorder with anagen hair in our patients.
Collapse
|
20
|
Bastos GC, Tolezano GC, Krepischi ACV. Rare CNVs and Known Genes Linked to Macrocephaly: Review of Genomic Loci and Promising Candidate Genes. Genes (Basel) 2022; 13:genes13122285. [PMID: 36553552 PMCID: PMC9778424 DOI: 10.3390/genes13122285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Macrocephaly frequently occurs in single-gene disorders affecting the PI3K-AKT-MTOR pathway; however, epigenetic mutations, mosaicism, and copy number variations (CNVs) are emerging relevant causative factors, revealing a higher genetic heterogeneity than previously expected. The aim of this study was to investigate the role of rare CNVs in patients with macrocephaly and review genomic loci and known genes. We retrieved from the DECIPHER database de novo <500 kb CNVs reported on patients with macrocephaly; in four cases, a candidate gene for macrocephaly could be pinpointed: a known microcephaly gene-TRAPPC9, and three genes based on their functional roles-RALGAPB, RBMS3, and ZDHHC14. From the literature review, 28 pathogenic CNV genomic loci and over 300 known genes linked to macrocephaly were gathered. Among the genomic regions, 17 CNV loci (~61%) exhibited mirror phenotypes, that is, deletions and duplications having opposite effects on head size. Identifying structural variants affecting head size can be a preeminent source of information about pathways underlying brain development. In this study, we reviewed these genes and recurrent CNV loci associated with macrocephaly, as well as suggested novel potential candidate genes deserving further studies to endorse their involvement with this phenotype.
Collapse
|
21
|
Activity-Dependent Neuroprotective Protein (ADNP): An Overview of Its Role in the Eye. Int J Mol Sci 2022; 23:ijms232113654. [PMID: 36362439 PMCID: PMC9658893 DOI: 10.3390/ijms232113654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Vision is one of the dominant senses in humans and eye health is essential to ensure a good quality of life. Therefore, there is an urgent necessity to identify effective therapeutic candidates to reverse the progression of different ocular pathologies. Activity-dependent neuroprotective protein (ADNP) is a protein involved in the physio-pathological processes of the eye. Noteworthy, is the small peptide derived from ADNP, known as NAP, which shows protective, antioxidant, and anti-apoptotic properties. Herein, we review the current state of knowledge concerning the role of ADNP in ocular pathologies, while providing an overview of eye anatomy.
Collapse
|
22
|
Distinct Impairments Characterizing Different ADNP Mutants Reveal Aberrant Cytoplasmic-Nuclear Crosstalk. Cells 2022; 11:cells11192994. [PMID: 36230962 PMCID: PMC9563912 DOI: 10.3390/cells11192994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Activity-dependent neuroprotective protein (ADNP) is essential for neuronal structure and function. Multiple de novo pathological mutations in ADNP cause the autistic ADNP syndrome, and they have been further suggested to affect Alzheimer’s disease progression in a somatic form. Here, we asked if different ADNP mutations produce specific neuronal-like phenotypes toward better understanding and personalized medicine. (2) Methods: We employed CRISPR/Cas9 genome editing in N1E-115 neuroblastoma cells to form neuron-like cell lines expressing ADNP mutant proteins conjugated to GFP. These new cell lines were characterized by quantitative morphology, immunocytochemistry and live cell imaging. (3) Results: Our novel cell lines, constitutively expressing GFP-ADNP p.Pro403 (p.Ser404* human orthologue) and GFP-ADNP p.Tyr718* (p.Tyr719* human orthologue), revealed new and distinct phenotypes. Increased neurite numbers (day 1, in culture) and increased neurite lengths upon differentiation (day 7, in culture) were linked with p.Pro403*. In contrast, p.Tyr718* decreased cell numbers (day 1). These discrete phenotypes were associated with an increased expression of both mutant proteins in the cytoplasm. Reduced nuclear/cytoplasmic boundaries were observed in the p.Tyr718* ADNP-mutant line, with this malformation being corrected by the ADNP-derived fragment drug candidate NAP. (4) Conclusions: Distinct impairments characterize different ADNP mutants and reveal aberrant cytoplasmic-nuclear crosstalk.
Collapse
|
23
|
Levine J, Hakim F, Kooy RF, Gozes I. Vineland Adaptive Behavior Scale in a Cohort of Four ADNP Syndrome Patients Implicates Age-Dependent Developmental Delays with Increased Impact of Activities of Daily Living. J Mol Neurosci 2022; 72:1531-1546. [PMID: 35920977 DOI: 10.1007/s12031-022-02048-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023]
Abstract
Activity-dependent neuroprotective protein (ADNP) is one of the lead genes in autism spectrum disorder/intellectual disability. Heterozygous, de novo ADNP mutations cause the ADNP syndrome. Here, to evaluate natural history of the syndrome, mothers of two ADNP syndrome boys aged 6 and a half and two adults aged 27 years (man and woman) were subjected to Vineland III questionnaire assessing adaptive behavior. The boys were assessed again about 2 years after the first measurements. The skill measures, presented as standard scores (SS) included domains of communication, daily living, socialization, motor skills and a sum of adaptive behavior composite. The age equivalent (AE) and growth scale values (GSV) encompassing 11 subdomains assess the age level at which the subject's raw score is found at a norm sample median and the individual temporal progression, respectively. The norm referenced standard scores age-matched, mean 100 ± 15 of the two children showed the lowest outcome in communication (SS: 20-30). Daily living skills presented SS of 50-60, with a possible potential loss of some activities as the child ages, especially in interpersonal relationships with people outside of the immediate family (boy A). In contrast, in socialization, both children were at the SS of 38, with some positive increase to SS of ~ 45 (interpersonal relations with family members and coping skills, depending on the particular individual), 2 years later. Interestingly, there was an apparent large difference in motor skills (gross and fine) at the young age, with subject B showing a relatively higher level of skills (SS: 70), decreasing to subject A level (SS: 40) 2 years later. Together, the adaptive behavior composite suggested a level of SS: 39-48 with B showing a potential increase (SS: 41-44) and A, a substantial decrease (SS: 48-39), suggesting a strong impact of daily living skills. Adults were at SS: 20, which is the lowest possible score. AE showed minor improvements for subject A and B, with all AE values being below 3 years. GSVs for subject A showed some improvement with age, especially in interpersonal, play and leisure, and gross motor subdomains. GSV for subject B showed minor improvements in the various subdomains. Notably, all subjects showed a percentile rank < 1 compared with age-matched norms except for subject B as to motor domain (2nd percentile) at the age of 6 years. In summary, the results, especially comparing SS and AEs between childhood and adulthood, implied a continuous deterioration of activities compared to the general population, encompassing a slower developmental process coupled to possible neurodegeneration, strongly supporting a great need for disease modifying medicinal procedures.
Collapse
Affiliation(s)
- Joseph Levine
- The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 6997801, Tel Aviv, Israel.,Psychiatric Division, Ben Gurion University, Beersheba, Israel
| | | | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Illana Gozes
- The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
24
|
From the Desk of the Editor‑in‑Chief: Excerpts from the Society for Neurochemistry (ESN) Future Perspectives for European Neurochemistry Highlighting the Symposium Asking "Autism, Epilepsy, Intellectual Disability Where Do These All Meet?". J Mol Neurosci 2022; 72:1527-1529. [PMID: 35796943 DOI: 10.1007/s12031-022-02045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Amal H. Sex and the Brain: Novel ADNP Syndrome Mice Are Protected by NAP. Biol Psychiatry 2022; 92:8-9. [PMID: 35710162 DOI: 10.1016/j.biopsych.2022.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
26
|
Karmon G, Sragovich S, Hacohen-Kleiman G, Ben-Horin-Hazak I, Kasparek P, Schuster B, Sedlacek R, Pasmanik-Chor M, Theotokis P, Touloumi O, Zoidou S, Huang L, Wu PY, Shi R, Kapitansky O, Lobyntseva A, Giladi E, Shapira G, Shomron N, Bereswill S, Heimesaat MM, Grigoriadis N, McKinney RA, Rubinstein M, Gozes I. Novel ADNP Syndrome Mice Reveal Dramatic Sex-Specific Peripheral Gene Expression With Brain Synaptic and Tau Pathologies. Biol Psychiatry 2022; 92:81-95. [PMID: 34865853 DOI: 10.1016/j.biopsych.2021.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/19/2021] [Accepted: 09/17/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND ADNP is essential for embryonic development. As such, de novo ADNP mutations lead to an intractable autism/intellectual disability syndrome requiring investigation. METHODS Mimicking humans, CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 editing produced mice carrying heterozygous Adnp p.Tyr718∗ (Tyr), a paralog of the most common ADNP syndrome mutation. Phenotypic rescue was validated by treatment with the microtubule/autophagy-protective ADNP fragment NAPVSIPQ (NAP). RESULTS RNA sequencing of spleens, representing a peripheral biomarker source, revealed Tyr-specific sex differences (e.g., cell cycle), accentuated in females (with significant effects on antigen processing and cellular senescence) and corrected by NAP. Differentially expressed, NAP-correctable transcripts, including the autophagy and microbiome resilience-linked FOXO3, were also deregulated in human patient-derived ADNP-mutated lymphoblastoid cells. There were also Tyr sex-specific microbiota signatures. Phenotypically, Tyr mice, similar to patients with ADNP syndrome, exhibited delayed development coupled with sex-dependent gait defects. Speech acquisition delays paralleled sex-specific mouse syntax abnormalities. Anatomically, dendritic spine densities/morphologies were decreased with NAP amelioration. These findings were replicated in the Adnp+/- mouse, including Foxo3 deregulation, required for dendritic spine formation. Grooming duration and nociception threshold (autistic traits) were significantly affected only in males. Early-onset tauopathy was accentuated in males (hippocampus and visual cortex), mimicking humans, and was paralleled by impaired visual evoked potentials and correction by acute NAP treatment. CONCLUSIONS Tyr mice model ADNP syndrome pathology. The newly discovered ADNP/NAP target FOXO3 controls the autophagy initiator LC3 (microtubule-associated protein 1 light chain 3), with known ADNP binding to LC3 augmented by NAP, protecting against tauopathy. NAP amelioration attests to specificity, with potential for drug development targeting accessible biomarkers.
Collapse
Affiliation(s)
- Gidon Karmon
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Shlomo Sragovich
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Gal Hacohen-Kleiman
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Ben-Horin-Hazak
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Petr Kasparek
- Department of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Björn Schuster
- Department of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Radislav Sedlacek
- Department of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Paschalis Theotokis
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Olga Touloumi
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Zoidou
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Linxuan Huang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Pei You Wu
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Roy Shi
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Oxana Kapitansky
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Alexandra Lobyntseva
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Eliezer Giladi
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Guy Shapira
- Department of Cell and Developmental Biology and Edmond J. Safra Center for Bioinformatics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology and Edmond J. Safra Center for Bioinformatics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute for Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, Berlin, Germany
| | - Markus M Heimesaat
- Gastrointestinal Microbiology Research Group, Institute for Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, Berlin, Germany
| | - Nikolaos Grigoriadis
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Moran Rubinstein
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel; Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
27
|
Osorio C, Sfera A, Anton JJ, Thomas KG, Andronescu CV, Li E, Yahia RW, Avalos AG, Kozlakidis Z. Virus-Induced Membrane Fusion in Neurodegenerative Disorders. Front Cell Infect Microbiol 2022; 12:845580. [PMID: 35531328 PMCID: PMC9070112 DOI: 10.3389/fcimb.2022.845580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
A growing body of epidemiological and research data has associated neurotropic viruses with accelerated brain aging and increased risk of neurodegenerative disorders. Many viruses replicate optimally in senescent cells, as they offer a hospitable microenvironment with persistently elevated cytosolic calcium, abundant intracellular iron, and low interferon type I. As cell-cell fusion is a major driver of cellular senescence, many viruses have developed the ability to promote this phenotype by forming syncytia. Cell-cell fusion is associated with immunosuppression mediated by phosphatidylserine externalization that enable viruses to evade host defenses. In hosts, virus-induced immune dysfunction and premature cellular senescence may predispose to neurodegenerative disorders. This concept is supported by novel studies that found postinfectious cognitive dysfunction in several viral illnesses, including human immunodeficiency virus-1, herpes simplex virus-1, and SARS-CoV-2. Virus-induced pathological syncytia may provide a unified framework for conceptualizing neuronal cell cycle reentry, aneuploidy, somatic mosaicism, viral spreading of pathological Tau and elimination of viable synapses and neurons by neurotoxic astrocytes and microglia. In this narrative review, we take a closer look at cell-cell fusion and vesicular merger in the pathogenesis of neurodegenerative disorders. We present a "decentralized" information processing model that conceptualizes neurodegeneration as a systemic illness, triggered by cytoskeletal pathology. We also discuss strategies for reversing cell-cell fusion, including, TMEM16F inhibitors, calcium channel blockers, senolytics, and tubulin stabilizing agents. Finally, going beyond neurodegeneration, we examine the potential benefit of harnessing fusion as a therapeutic strategy in regenerative medicine.
Collapse
Affiliation(s)
- Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Jonathan J. Anton
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Karina G. Thomas
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Christina V. Andronescu
- Medical Anthropology – Department of Anthropology, Stanford University, Stanford, CA, United States
| | - Erica Li
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Rayan W. Yahia
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Andrea García Avalos
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina Campus, Ciudad de Mexico, Mexico
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
28
|
Ivashko-Pachima Y, Seroogy KB, Sharabi Y, Gozes I. Parkinson Disease-Modification Encompassing Rotenone and 6-Hydroxydopamine Neurotoxicity by the Microtubule-Protecting Drug Candidate SKIP. J Mol Neurosci 2021; 71:1515-1524. [PMID: 34286456 DOI: 10.1007/s12031-021-01876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
Encompassing live cell imaging and morphometrics at the microscopical level, we showed here, for the first time, protection of neuronal-like cells by the novel drug candidate, SKIP, against the Parkinson's disease-related neurotoxin, rotenone. Mechanistically, rotenone disrupted microtubule dynamics, which SKIP partially repaired through microtubule end-binding proteins, coupled with increasing neurite branch length. Given the previous association of rotenone toxicity with increased dopaminergic cell death hallmarking Parkinson's disease, we chose an established rat model of 6-hydroxydopamine (6-OHDA) toxicity to initially evaluate SKIP in vivo. SKIP pretreatment showed protection against nigral dopaminergic cell degeneration and improved motor behavior in the forelimb asymmetry test. With Parkinson's disease being a major neurodegenerative disorder, afflicting millions of people globally, and with disease modification challenges, SKIP may hold promise for future therapeutic development.
Collapse
Affiliation(s)
- Yanina Ivashko-Pachima
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Kim B Seroogy
- Department of Neurology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Yehonatan Sharabi
- Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
29
|
D’Amico AG, Maugeri G, Musumeci G, Reglodi D, D’Agata V. PACAP and NAP: Effect of Two Functionally Related Peptides in Diabetic Retinopathy. J Mol Neurosci 2021; 71:1525-1535. [DOI: 10.1007/s12031-020-01769-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
|