1
|
Şandor S, Hıdıroğlu-Ongun C, Yıldırım E. Cognitive reserve and aging: Impacts on theory of mind and executive functions. APPLIED NEUROPSYCHOLOGY. ADULT 2025:1-11. [PMID: 40122060 DOI: 10.1080/23279095.2025.2480710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
AIM This study examines the effects of cognitive reserve (CR) on Executive Functions (EF) and Theory of Mind (ToM). While CR is suggested to mitigate age-related cognitive decline, its relationship with social cognition remains limited and inconsistent in the literature. It was hypothesized that the effect of CR on ToM might be indirect, mediated by EF and working memory. METHODS 225 cognitively healthy participants were included. CR was measured with the Cognitive Reserve Index Questionnaire, EF with verbal fluency and the Stroop Test, and WM using digit span tasks. Structural Equation Modeling was used to analyze the relationships among CR, EF, WM, and SC, controlling for age and gender. RESULTS CR was significantly associated with both RMET and FPRT performances. Mediation analysis revealed the direct effects of CR on RMET performance, while the effects on FPRT performance were mediated by executive functions. WM had a partial mediating effect on EF and ToM, but did not directly influence FPRT. Education was most strongly associated with RMET performance, while leisure activities were linked to FPRT performance. CONCLUSION These findings suggest that CR indirectly supports ToM by enhancing EF and highlight the importance of interventions aimed at strengthening executive control to support social cognition in aging.
Collapse
Affiliation(s)
- Serra Şandor
- Department of Psychology, Istanbul Medeniyet University, Istanbul, Türkiye
| | | | - Elif Yıldırım
- Department of Psychology, Işık University, Istanbul, Türkiye
| |
Collapse
|
2
|
Nagy B, Protzner AB, Czigler B, Gaál ZA. Resting-state neural dynamics changes in older adults with post-COVID syndrome and the modulatory effect of cognitive training and sex. GeroScience 2025; 47:1277-1301. [PMID: 39210163 PMCID: PMC11872858 DOI: 10.1007/s11357-024-01324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Post-COVID syndrome manifests with numerous neurological and cognitive symptoms, the precise origins of which are still not fully understood. As females and older adults are more susceptible to developing this condition, our study aimed to investigate how post-COVID syndrome alters intrinsic brain dynamics in older adults and whether biological sex and cognitive training might modulate these effects, with a specific focus on older females. The participants, aged between 60 and 75 years, were divided into three experimental groups: healthy old female, post-COVID old female and post-COVID old male. They underwent an adaptive task-switching training protocol. We analysed multiscale entropy and spectral power density of resting-state EEG data collected before and after the training to assess neural signal complexity and oscillatory power, respectively. We found no difference between post-COVID females and males before training, indicating that post-COVID similarly affected both sexes. However, cognitive training was effective only in post-COVID females and not in males, by modulating local neural processing capacity. This improvement was further evidenced by comparing healthy and post-COVID females, wherein the latter group showed increased finer timescale entropy (1-30 ms) and higher frequency band power (11-40 Hz) before training, but these differences disappeared following cognitive training. Our results suggest that in older adults with post-COVID syndrome, there is a pronounced shift from more global to local neural processing, potentially contributing to accelerated neural aging in this condition. However, cognitive training seems to offer a promising intervention method for modulating these changes in brain dynamics, especially among females.
Collapse
Affiliation(s)
- Boglárka Nagy
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | | | - Zsófia Anna Gaál
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
3
|
Mauti M, Monachesi B, Taccari G, Rumiati RI. Facing healthy and pathological aging: A systematic review of fMRI task-based studies to understand the neural mechanisms of cognitive reserve. Brain Cogn 2024; 182:106238. [PMID: 39522474 DOI: 10.1016/j.bandc.2024.106238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Cognitive reserve (CR) explains the varying trajectories of cognitive decline in healthy and pathological ageing. CR is often operationalized in terms of socio-behavioural proxies that modulate cognitive performance. Individuals with higher CR are known to maintain better cognitive functions, but evidence on the underlying brain activity remains scattered. Here we review CR studies using functional MRI in young, healthy and pathologically elderly individuals. We focus on the two potential neural mechanisms of CR, neural reserve (efficiency of brain networks) and neural compensation (recruitment of additional brain regions), and the effect of different proxies on them. The results suggest increased task-related activity in different cognitive domains with age and compensation in case of difficult task and pathology. The effects of proxies lead to increased neural reserve (reduced brain activity) in both older and younger individuals. Their relationship with compensation remains unclear, largely due to the lack of young adult samples, particularly in clinical studies. These findings underscore the critical role of lifelong engagement in mentally enriching activities for preserving cognitive function during aging. New studies are encouraged to refine the CR theoretical and empirical framework, particularly regarding the measurement of socio-behavioral proxies and their relationship with cognitive decline and neural underpinning.
Collapse
Affiliation(s)
- Marika Mauti
- Neuroscience and Society Laboratory, Neuroscience Area, SISSA, 34136 Trieste, Italy
| | - Bianca Monachesi
- Neuroscience and Society Laboratory, Neuroscience Area, SISSA, 34136 Trieste, Italy.
| | - Giovanni Taccari
- Neuroscience and Society Laboratory, Neuroscience Area, SISSA, 34136 Trieste, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma - Tor Vergata, Roma, Italy; School of Advanced Studies, Università di Camerino, Italy
| | - Raffaella I Rumiati
- Neuroscience and Society Laboratory, Neuroscience Area, SISSA, 34136 Trieste, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma - Tor Vergata, Roma, Italy
| |
Collapse
|
4
|
Dai W, Zhang H. AN INTEGRATIVE NETWORK-BASED MEDIATION MODEL (NMM) TO ESTIMATE MULTIPLE GENETIC EFFECTS ON OUTCOMES MEDIATED BY FUNCTIONAL CONNECTIVITY. Ann Appl Stat 2024; 18:2277-2294. [PMID: 39640845 PMCID: PMC11616023 DOI: 10.1214/24-aoas1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Functional connectivity of the brain, characterized by interconnected neural circuits across functional networks, is a cutting-edge feature in neuroimaging. It has the potential to mediate the effect of genetic variants on behavioral outcomes or diseases. Existing mediation analysis methods can evaluate the impact of genetics and brain structurefunction on cognitive behavior or disorders, but they tend to be limited to single genetic variants or univariate mediators, without considering cumulative genetic effects and the complex matrix and group and network structures of functional connectivity. To address this gap, the paper presents an integrative network-based mediation model (NMM) that estimates the effect of multiple genetic variants on behavioral outcomes or diseases mediated by functional connectivity. The model incorporates group information of inter-regions at broad network level and imposes low-rank and sparse assumptions to reflect the complex structures of functional connectivity and selecting network mediators simultaneously. We adopt block coordinate descent algorithm to implement a fast and efficient solution to our model. Simulation results indicate the efficacy of the model in selecting active mediators and reducing bias in effect estimation. With application to the Human Connectome Project Youth Adult (HCP-YA) study of 493 young adults, two genetic variants (rs769448 and rs769449) on the APOE4 gene are identified that lead to deficits in functional connectivity within visual networks and fluid intelligence.
Collapse
Affiliation(s)
- Wei Dai
- Department of Biostatistics, Yale University School of Public Health
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Public Health
| |
Collapse
|
5
|
Brito DVC, Esteves F, Rajado AT, Silva N, Araújo I, Bragança J, Castelo-Branco P, Nóbrega C. Assessing cognitive decline in the aging brain: lessons from rodent and human studies. NPJ AGING 2023; 9:23. [PMID: 37857723 PMCID: PMC10587123 DOI: 10.1038/s41514-023-00120-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
As life expectancy continues to increase worldwide, age-related dysfunction will largely impact our societies in the future. Aging is well established to promote the deterioration of cognitive function and is the primary risk factor for the development of prevalent neurological disorders. Even in the absence of dementia, age-related cognitive decline impacts specific types of memories and brain structures in humans and animal models. Despite this, preclinical and clinical studies that investigate age-related changes in brain physiology often use largely different methods, which hinders the translational potential of findings. This review seeks to integrate what is known about age-related changes in the brain with analogue cognitive tests used in humans and rodent studies, ranging from "pen and paper" tests to virtual-reality-based paradigms. Finally, we draw parallels between the behavior paradigms used in research compared to the enrollment into clinical trials that aim to study age-related cognitive decline.
Collapse
Affiliation(s)
- D V C Brito
- Algarve Biomedical Center-Research Institute (ABC-RI), Campus Gambelas, Bld.2, Faro, Portugal
- Algarve Biomedical Center- (ABC), Campus Gambelas, Bld.2, Faro, Portugal
| | - F Esteves
- Algarve Biomedical Center-Research Institute (ABC-RI), Campus Gambelas, Bld.2, Faro, Portugal
- Algarve Biomedical Center- (ABC), Campus Gambelas, Bld.2, Faro, Portugal
| | - A T Rajado
- Algarve Biomedical Center-Research Institute (ABC-RI), Campus Gambelas, Bld.2, Faro, Portugal
- Algarve Biomedical Center- (ABC), Campus Gambelas, Bld.2, Faro, Portugal
| | - N Silva
- Algarve Biomedical Center-Research Institute (ABC-RI), Campus Gambelas, Bld.2, Faro, Portugal
- Algarve Biomedical Center- (ABC), Campus Gambelas, Bld.2, Faro, Portugal
| | - I Araújo
- Algarve Biomedical Center-Research Institute (ABC-RI), Campus Gambelas, Bld.2, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld.2, Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - J Bragança
- Algarve Biomedical Center-Research Institute (ABC-RI), Campus Gambelas, Bld.2, Faro, Portugal
- Algarve Biomedical Center- (ABC), Campus Gambelas, Bld.2, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld.2, Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - P Castelo-Branco
- Algarve Biomedical Center-Research Institute (ABC-RI), Campus Gambelas, Bld.2, Faro, Portugal
- Algarve Biomedical Center- (ABC), Campus Gambelas, Bld.2, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld.2, Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - C Nóbrega
- Algarve Biomedical Center-Research Institute (ABC-RI), Campus Gambelas, Bld.2, Faro, Portugal.
- Algarve Biomedical Center- (ABC), Campus Gambelas, Bld.2, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld.2, Faro, Portugal.
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
6
|
Ma J, Tang L, Peng P, Wang T, Gui H, Ren X. Shifting as an executive function separate from updating and inhibition in old age: Behavioral and genetic evidence. Behav Brain Res 2023; 452:114604. [PMID: 37516210 DOI: 10.1016/j.bbr.2023.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/09/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
This study aimed to examine the organization of executive functions (EFs), specifically working memory updating, prepotent response inhibition, and mental-set shifting in old age, with a particular focus on determining whether the shifting function was behaviorally and genetically separated from the other functions. A total of 248 healthy older Chinese individuals participated, and multiple measures of executive functions were collected. Additionally, measures of fluid intelligence were included to explore the varying relationships between the three executive functions and this higher-order cognitive ability. Furthermore, genetic data were gathered and analyzed to investigate the associations between EFs and six candidate single-nucleotide polymorphisms (SNPs) mapped to dopaminergic, serotonergic, or glutamatergic genes. The results indicated that both the three-factor model and the two-factor model, which combined updating and inhibition, demonstrated a good fit. Furthermore, shifting was found to be behaviorally separated from the other two functions, and the correlation between shifting and fluid intelligence was smaller compared to the correlations between updating and inhibition with fluid intelligence. Moreover, the DRD2 SNPs showed significant associations with shifting, rather than with updating and inhibition. These findings provide evidence that shifting is distinct and separate from updating and inhibition, highlighting the diversity of EFs among older adults.
Collapse
Affiliation(s)
- Juanjuan Ma
- School of Education, Huazhong University of Science & Technology, Wuhan, China
| | - Lixu Tang
- School of Wushu, Wuhan Sports University, Wuhan 430079, China
| | - Peng Peng
- Department of Special Education, University of Texas at Austin, Austin, USA
| | - Tengfei Wang
- Department of Psychology, Zhejiang University, Hangzhou, China
| | - Hongsheng Gui
- Behavioral Health Services and Psychiatry Research, Henry Ford Health, USA; Department of Psychiatry, Michigan State University, USA
| | - Xuezhu Ren
- School of Education, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
7
|
Jin Y, Lin L, Xiong M, Sun S, Wu SC. Moderating effects of cognitive reserve on the relationship between brain structure and cognitive abilities in middle-aged and older adults. Neurobiol Aging 2023; 128:49-64. [PMID: 37163923 DOI: 10.1016/j.neurobiolaging.2023.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
The cognitive reserve (CR) hypothesis is reinforced by negative moderating effects, suggesting that those with higher CR are less reliant on brain structure for cognitive function. Previous research on CR's moderating effects yielded inconsistent results, motivating our 3 studies using UK Biobank data. Study I examined five CR proxies' moderating effects on global, lobar, and regional brain-cognition models; study II extended study I by using a larger sample size; and study III investigated age-related moderating effects on the hippocampal regions. In study I, most moderating effects were negative and none survived the multiple comparison correction, but study II identified 13 global-level models with significant negative moderating effects that survived correction. Study III showed age influenced CR proxies' moderating effects in hippocampal regions. Our findings suggest that the effects of CR proxies on brain integrity and cognition varied depending on the proxy used, brain integrity indicators, cognitive domain, and age group. This study offers significant insights regarding the importance of CR for brain integrity and cognitive outcomes.
Collapse
Affiliation(s)
- Yue Jin
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Lan Lin
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
| | - Min Xiong
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Shen Sun
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Shui-Cai Wu
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
8
|
Schulte M, Trujillo N, Rodríguez-Villagra OA, Salas N, Ibañez A, Carriedo N, Huepe D. The role of executive functions, social cognition and intelligence in predicting social adaptation of vulnerable populations. Sci Rep 2022; 12:18693. [PMID: 36333437 PMCID: PMC9636196 DOI: 10.1038/s41598-022-21985-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
This study sought to evaluate the roles of and interactions between cognitive processes that have been shown to exhibit impact from socioeconomic status (SES) and living conditions in predicting social adaptation (SA) in a population of adults living in socially vulnerable conditions. Participants included 226 people between the ages of 18 and 60 who have been living in vulnerable contexts throughout life in Santiago, Chile. Data was collected through a battery of psychological assessments. A structural equation model (SEM) was implemented to examine the interrelationships among cognitive and social variables. Results indicate a significant relationship between executive function (EF) and SA through both social cognition (SC) and intelligence. Theory of Mind (ToM), a component of SC, was shown to exhibit a significant relationship with affective empathy; interestingly, this was negatively related to SA. Moreover, fluid intelligence (FI) was found to exhibit a positive, indirect relationship with SA through crystallized intelligence (CI). Evaluation of these results in the context of research on the impacts of SES and vulnerable living conditions on psychological function may allow for the development of more effective clinical, political, and social interventions to support psychosocial health among socially vulnerable populations.
Collapse
Affiliation(s)
- M Schulte
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - N Trujillo
- Mental Health Group, National Department of Public Health, University of Antioquia, UDEA, calle 62#52-59, 050010, Medellín, Colombia
- Neuroscience Group, Universidad de Antioquia-UDEA, 050010, Medellín, Colombia
| | - O A Rodríguez-Villagra
- Institute for Psychological Research, University of Costa Rica, Sabanilla, San José, Costa Rica
- Neuroscience Research Center, University of Costa Rica, San Pedro, San José, Costa Rica
| | - N Salas
- Universidad Finis Terrae, Santiago de Chile, Chile
| | - A Ibañez
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Global Brain Health Institute (GBHI) UCSF, San Francisco, USA
- Trinity College Dublin (TCD), Dublin, Ireland
| | - N Carriedo
- National Distance Education University (UNED), Madrid, Spain
| | - D Huepe
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile.
| |
Collapse
|