1
|
Seicol BJ, Guo Z, Garrity K, Xie R. Potential uses of auditory nerve stimulation to modulate immune responses in the inner ear and auditory brainstem. Front Integr Neurosci 2023; 17:1294525. [PMID: 38162822 PMCID: PMC10755874 DOI: 10.3389/fnint.2023.1294525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Bioelectronic medicine uses electrical stimulation of the nervous system to improve health outcomes throughout the body primarily by regulating immune responses. This concept, however, has yet to be applied systematically to the auditory system. There is growing interest in how cochlear damage and associated neuroinflammation may contribute to hearing loss. In conjunction with recent findings, we propose here a new perspective, which could be applied alongside advancing technologies, to use auditory nerve (AN) stimulation to modulate immune responses in hearing health disorders and following surgeries for auditory implants. In this article we will: (1) review the mechanisms of inflammation in the auditory system in relation to various forms of hearing loss, (2) explore nerve stimulation to reduce inflammation throughout the body and how similar neural-immune circuits likely exist in the auditory system (3) summarize current methods for stimulating the auditory system, particularly the AN, and (4) propose future directions to use bioelectronic medicine to ameliorate harmful immune responses in the inner ear and auditory brainstem to treat refractory conditions. We will illustrate how current knowledge from bioelectronic medicine can be applied to AN stimulation to resolve inflammation associated with implantation and disease. Further, we suggest the necessary steps to get discoveries in this emerging field from bench to bedside. Our vision is a future for AN stimulation that includes additional protocols as well as advances in devices to target and engage neural-immune circuitry for therapeutic benefits.
Collapse
Affiliation(s)
- Benjamin J. Seicol
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Zixu Guo
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Katy Garrity
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Ruili Xie
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
2
|
Kumari R, Anand PK, Shin J. Improving the Accuracy of Continuous Blood Glucose Measurement Using Personalized Calibration and Machine Learning. Diagnostics (Basel) 2023; 13:2514. [PMID: 37568877 PMCID: PMC10416969 DOI: 10.3390/diagnostics13152514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Despite tremendous developments in continuous blood glucose measurement (CBGM) sensors, they are still not accurate for all patients with diabetes. As glucose concentration in the blood is <1% of the total blood volume, it is challenging to accurately measure glucose levels in the interstitial fluid using CBGM sensors due to within-patient and between-patient variations. To address this issue, we developed a novel data-driven approach to accurately predict CBGM values using personalized calibration and machine learning. First, we scientifically divided measured blood glucose into smaller groups, namely, hypoglycemia (<80 mg/dL), nondiabetic (81-115 mg/dL), prediabetes (116-150 mg/dL), diabetes (151-181 mg/dL), severe diabetes (181-250 mg/dL), and critical diabetes (>250 mg/dL). Second, we separately trained each group using different machine learning models based on patients' personalized parameters, such as physical activity, posture, heart rate, breath rate, skin temperature, and food intake. Lastly, we used multilayer perceptron (MLP) for the D1NAMO dataset (training to test ratio: 70:30) and grid search for hyperparameter optimization to predict accurate blood glucose concentrations. We successfully applied our proposed approach in nine patients with type 1 diabetes and observed that the mean absolute relative difference (MARD) decreased from 17.8% to 8.3%.
Collapse
Affiliation(s)
- Ranjita Kumari
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Gyeonggi, Suwon 16419, Republic of Korea;
| | - Pradeep Kumar Anand
- Clinical Research Group, Samsung Healthcare, Gangdong-gu, Seoul 05340, Republic of Korea;
| | - Jitae Shin
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Gyeonggi, Suwon 16419, Republic of Korea;
| |
Collapse
|
3
|
Szczepek AJ, Stankovic KM. Editorial: Emerging Ototoxic Medications and Their Role in Cochlear and Vestibular Disorders. Front Neurol 2021; 12:773714. [PMID: 34744994 PMCID: PMC8569918 DOI: 10.3389/fneur.2021.773714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Faculty of Medicine and Health Sciences, University of Zielona Gora, Zielona Gora, Poland
| | - Kostantina M Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
4
|
Varela-Nieto I, Murillo-Cuesta S, Rodríguez-de la Rosa L, Oset-Gasque MJ, Marco-Contelles J. Use of Radical Oxygen Species Scavenger Nitrones to Treat Oxidative Stress-Mediated Hearing Loss: State of the Art and Challenges. Front Cell Neurosci 2021; 15:711269. [PMID: 34539349 PMCID: PMC8440819 DOI: 10.3389/fncel.2021.711269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
Nitrones are potent antioxidant molecules able to reduce oxidative stress by trapping reactive oxygen and nitrogen species. The antioxidant potential of nitrones has been extensively tested in multiple models of human diseases. Sensorineural hearing loss has a heterogeneous etiology, genetic alterations, aging, toxins or exposure to noise can cause damage to hair cells at the organ of Corti, the hearing receptor. Noxious stimuli share a battery of common mechanisms by which they cause hair cell injury, including oxidative stress, the generation of free radicals and redox imbalance. Therefore, targeting oxidative stress-mediated hearing loss has been the subject of much attention. Here we review the chemistry of nitrones, the existing literature on their use as antioxidants and the general state of the art of antioxidant treatments for hearing loss.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols,” Spanish National Research Council (CSIC)-Autonomous University of Madrid, Madrid, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research, Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research “Alberto Sols,” Spanish National Research Council (CSIC)-Autonomous University of Madrid, Madrid, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research, Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research “Alberto Sols,” Spanish National Research Council (CSIC)-Autonomous University of Madrid, Madrid, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research, Madrid, Spain
| | - María Jesús Oset-Gasque
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Institute of Neurochemistry Research, Complutense University of Madrid, Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry, CSIC, Madrid, Spain
| |
Collapse
|
5
|
Celaya AM, Rodríguez-de la Rosa L, Bermúdez-Muñoz JM, Zubeldia JM, Romá-Mateo C, Avendaño C, Pallardó FV, Varela-Nieto I. IGF-1 Haploinsufficiency Causes Age-Related Chronic Cochlear Inflammation and Increases Noise-Induced Hearing Loss. Cells 2021; 10:cells10071686. [PMID: 34359856 PMCID: PMC8304185 DOI: 10.3390/cells10071686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) deficiency is an ultrarare syndromic human sensorineural deafness. Accordingly, IGF-1 is essential for the postnatal maturation of the cochlea and the correct wiring of hearing in mice. Less severe decreases in human IGF-1 levels have been associated with other hearing loss rare genetic syndromes, as well as with age-related hearing loss (ARHL). However, the underlying mechanisms linking IGF-1 haploinsufficiency with auditory pathology and ARHL have not been studied. Igf1-heterozygous mice express less Igf1 transcription and have 40% lower IGF-1 serum levels than wild-type mice. Along with ageing, IGF-1 levels decreased concomitantly with the increased expression of inflammatory cytokines, Tgfb1 and Il1b, but there was no associated hearing loss. However, noise exposure of these mice caused increased injury to sensory hair cells and irreversible hearing loss. Concomitantly, there was a significant alteration in the expression ratio of pro- and anti-inflammatory cytokines in Igf1+/- mice. Unbalanced inflammation led to the activation of the stress kinase JNK and the failure to activate AKT. Our data show that IGF-1 haploinsufficiency causes a chronic subclinical proinflammatory age-associated state and, consequently, greater susceptibility to stressors. This work provides the molecular bases to further understand hearing disorders linked to IGF-1 deficiency.
Collapse
Affiliation(s)
- Adelaida M. Celaya
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Hospital La Paz Institute for Health Research (IdiPAZ), 28029 Madrid, Spain;
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| | - Jose M. Bermúdez-Muñoz
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
| | - José M. Zubeldia
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Allergy Service, Gregorio Marañon General University Hospital, 28009 Madrid, Spain
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
| | - Carlos Romá-Mateo
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Spain and FIHCUV-INCLIVA, 46010 Valencia, Spain
| | - Carlos Avendaño
- Hospital La Paz Institute for Health Research (IdiPAZ), 28029 Madrid, Spain;
- Department of Anatomy, Histology & Neuroscience, Medical School, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Federico V. Pallardó
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Spain and FIHCUV-INCLIVA, 46010 Valencia, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Hospital La Paz Institute for Health Research (IdiPAZ), 28029 Madrid, Spain;
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| |
Collapse
|
6
|
Gheorghe DC, Niculescu AG, Bîrcă AC, Grumezescu AM. Nanoparticles for the Treatment of Inner Ear Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1311. [PMID: 34067544 PMCID: PMC8156593 DOI: 10.3390/nano11051311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
The inner ear is sensitive to various infections of viral, bacterial, or fungal origin, which, if left untreated, may lead to hearing loss or progress through the temporal bone and cause intracranial infectious complications. Due to its isolated location, the inner ear is difficult to treat, imposing an acute need for improving current therapeutic approaches. A solution for enhancing antimicrobial treatment performance is the use of nanoparticles. Different inorganic, lipidic, and polymeric-based such particles have been designed, tested, and proven successful in the controlled delivery of medication, improving drug internalization by the targeted cells while reducing the systemic side effects. This paper makes a general presentation of common inner ear infections and therapeutics administration routes, further focusing on newly developed nanoparticle-mediated treatments.
Collapse
Affiliation(s)
- Dan Cristian Gheorghe
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- “M.S. Curie” Clinical Emergency Hospital for Children, 050474 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Alexandra Cătălina Bîrcă
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|