1
|
Wang S, Du J, Shen Q, Haas C, Neubauer J. Interpretation of molecular autopsy findings in 45 sudden unexplained death cases: from coding region to untranslated region. Int J Legal Med 2025; 139:15-25. [PMID: 39266800 PMCID: PMC11732962 DOI: 10.1007/s00414-024-03329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Sudden unexplained death (SUD) can affect apparently healthy adolescents and young adults with no prior clinical symptoms and no clear diagnostic findings at autopsy. Although primary cardiac arrhythmias have been shown to be the direct cause of death in the majority of SUD cases, the genetic predisposition contributing to SUD remains incompletely understood. Currently, molecular autopsy is considered to be an effective diagnostic tool in the multidisciplinary management of SUD, but the analysis focuses mainly on the coding region and the significance of many identified variants remains unclear. Recent studies have demonstrated the strong association between human disease and genetic variants in untranslated regions (UTRs), highlighting the potential role of UTR variants in the genetic predisposition to SUD. In this study, we searched for UTR variants with likely functional effects in the exome data of 45 SUD cases. Among 244 genes associated with cardiac diseases, three candidate variants with high confidence of pathogenicity were identified in the UTRs of SCO2, CALM2 and TBX3 based on a rigorous filtering strategy. A functional assay further validated the effect of these candidate variants on gene transcriptional activity. In addition, the constraint metrics, intolerance indexes, and dosage sensitivity scores of genes affected by the candidate variants were considered when estimating the consequence of aberrant gene expression. In conclusion, our study presents a practical strategy for UTR variant prioritization and functional annotation, which could improve the interpretation of molecular autopsy findings in SUD cohorts.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianghua Du
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qi Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.
| | - Jacqueline Neubauer
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Taylor CE, Mendenhall LE, Sunshine MD, Wilson JN, Calulot CM, Sun RC, Johnson LA, Alilain WJ. Sex and APOE genotype influence respiratory function under hypoxic and hypoxic-hypercapnic conditions. J Neurophysiol 2024; 132:23-33. [PMID: 38748407 PMCID: PMC11918448 DOI: 10.1152/jn.00255.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
The apolipoprotein E (APOE) gene has been studied due to its influence on Alzheimer's disease (AD) development and work in an APOE mouse model recently demonstrated impaired respiratory motor plasticity following spinal cord injury (SCI). Individuals with AD often copresent with obstructive sleep apnea (OSA) characterized by cessations in breathing during sleep. Despite the prominence of APOE genotype and sex as factors in AD progression, little is known about the impact of these variables on respiratory control. Ventilation is tightly regulated across many systems, with respiratory rhythm formation occurring in the brainstem but modulated in response to chemoreception. Alterations within these modulatory systems may result in disruptions of appropriate respiratory control and ultimately, disease. Using mice expressing two different humanized APOE alleles, we characterized how sex and the presence of APOE3 or APOE4 influences ventilation during baseline breathing (normoxia) and during respiratory challenges. We show that sex and APOE genotype influence breathing during hypoxic challenge, which may have clinical implications in the context of AD and OSA. In addition, female mice, while responding robustly to hypoxia, were unable to recover to baseline respiratory levels, emphasizing sex differences in disordered breathing.NEW & NOTEWORTHY This study is the first to use whole body plethysmography (WBP) to measure the impact of APOE alleles on breathing under normoxia and during adverse respiratory challenges in a targeted replacement Alzheimer's model. Both sex and genotype were shown to affect breathing under normoxia, hypoxic challenge, and hypoxic-hypercapnic challenge. This work has important implications regarding the impact of genetics on respiratory control as well as applications pertaining to conditions of disordered breathing including sleep apnea and neurotrauma.
Collapse
Affiliation(s)
- Chase E Taylor
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Laura E Mendenhall
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Michael D Sunshine
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Jessica N Wilson
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Chris M Calulot
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Ramon C Sun
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry, University of Florida, Gainesville, Florida, United States
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, United States
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| | - Warren J Alilain
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
3
|
Wang S, Chen Y, Du J, Wang Z, Lin Z, Hong G, Qu D, Shen Y, Li L. Post-mortem genetic analysis of sudden unexplained death in a young cohort: a whole-exome sequencing study. Int J Legal Med 2023; 137:1661-1670. [PMID: 37624372 DOI: 10.1007/s00414-023-03075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Sudden unexplained death (SUD) constitutes a considerable portion of unexpected sudden death in the young. Molecular autopsy has proved to be an efficient diagnostic tool in the multidisciplinary management of SUD. Yet, many cases remain undiagnosed using the widely adopted targeted genetic screening strategies. Here, we investigated the genetic substrates of a young SUD cohort (18-40 years old) from China using whole-exome sequencing (WES), with the primary aim to identify novel SUD susceptibility genes. Within 255 previously acknowledged SUD-associated genes, 21 variants with likely functional effects (pathogenic/likely pathogenic) were identified in 51.9% of the SUD cases. More importantly, a set of 33 candidate genes associated with myopathy were identified to be novel susceptibility genes for SUD. Comparative analysis of the cumulative PHRED-scaled CADD score and polygenetic burden score showed that the amount and deleteriousness of variants in the 255 SUD-associated genes and the 33 candidate genes identified by this study were significantly higher compared with 289 randomly selected genes. A significantly higher genetic burden of rare variants (MAF < 0.1%) in the 33 candidate genes also highlighted putative roles of these genes in SUD. After incorporating these novel genes, the genetic testing yields of the current SUD cohort elevated from 51.9 to 66.7%. Our study expands understanding of the genetic variants underlying SUD and presents insights that improve the utility of genetic screenings.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Yongsheng Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Public Security Bureau, Shanghai, 200083, People's Republic of China
| | - Jianghua Du
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Zhimin Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Zijie Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Guanghui Hong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Dong Qu
- Institute of Legal Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Yiwen Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
4
|
Significance of Serum Oxidative and Antioxidative Status in Congenital Central Hypoventilation Syndrome (CCHS) Patients. Antioxidants (Basel) 2022; 11:antiox11081497. [PMID: 36009216 PMCID: PMC9404786 DOI: 10.3390/antiox11081497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Congenital central hypoventilation syndrome (CCHS) is a rare neurological genetic disorder that affects sleep-related respiratory control. Currently, no drug therapy is available. In light of this, there is a need for lifelong ventilation support, at least during sleep, for these patients. The pathogenesis of several chronic diseases is influenced by oxidative stress. Thus, determining oxidative stress in CCHS may indicate further disorders in the course of this rare genetic disease. Liquid biopsies are widely used to assess circulating biomarkers of oxidative stress. In this study, ferric reducing ability of plasma, thiobarbituric acid-reactive substances, advanced oxidation protein products (AOPPs), and advanced glycation end-products were measured in the serum of CCHS patients to investigate the relationship between oxidative stress and CCHS and the significance of this balance in CCHS. Here, AOPPs were found to be the most relevant serum biomarker to monitor oxidative stress in CCHS patients. According to this communication, CCHS patients may suffer from other chronic pathophysiological processes because of the persistent levels of AOPPs.
Collapse
|
5
|
Antonaci M, Wheeler GN. MicroRNAs in neural crest development and neurocristopathies. Biochem Soc Trans 2022; 50:965-974. [PMID: 35383827 PMCID: PMC9162459 DOI: 10.1042/bst20210828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Abstract
The neural crest (NC) is a vertebrate-specific migratory population of multipotent stem cells that originate during late gastrulation in the region between the neural and non-neural ectoderm. This population of cells give rise to a range of derivatives, such as melanocytes, neurons, chondrocytes, chromaffin cells, and osteoblasts. Because of this, failure of NC development can cause a variety of pathologies, often syndromic, that are globally called neurocristopathies. Many genes are known to be involved in NC development, but not all of them have been identified. In recent years, attention has moved from protein-coding genes to non-coding genes, such as microRNAs (miRNA). There is increasing evidence that these non-coding RNAs are playing roles during embryogenesis by regulating the expression of protein-coding genes. In this review, we give an introduction to miRNAs in general and then focus on some miRNAs that may be involved in NC development and neurocristopathies. This new direction of research will give geneticists, clinicians, and molecular biologists more tools to help patients affected by neurocristopathies, as well as broadening our understanding of NC biology.
Collapse
Affiliation(s)
- Marco Antonaci
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR7 7TJ, U.K
| | - Grant N. Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR7 7TJ, U.K
| |
Collapse
|
6
|
Ueda A, Osawa M, Naito H, Ochiai E, Kakimoto Y. Non-polyalanine repeat mutation in PHOX2B is detected in autopsy cases of sudden unexpected infant death. PLoS One 2022; 17:e0267751. [PMID: 35486589 PMCID: PMC9053812 DOI: 10.1371/journal.pone.0267751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background Congenital central hypoventilation syndrome (CCHS), which is caused by PHOX2B with phenotypic variations, has a point of controversy: CCHS is putatively involved in autopsy cases of sudden unexpected infant death (SUID) including sudden infant death syndrome. Objective The relation of CCHS to SUID cases was investigated by extensive genotyping of PHOX2B. Methods We analyzed 93 DNA samples of less than one-year-old SUID cases that were autopsied in our department. Unrelated adult volunteers (n = 942) were used as the control. Results No polyalanine tract expansion was detected in the SUID cases. The allelic frequencies of repeat contractions and SNP (rs28647582) in intron 2 were not significantly different from that in those control group. Further extensive sequencing revealed a non-polyalanine repeat mutation (NPARM) of c.905A>C in a sudden death case of a one-month-old male infant. This missense mutation (p.Asn302Thr), registered as rs779068107, was annotated to ‘Affected status is unknown’, but it might be associated with the sudden death. Conclusion NPARM was more plausibly related to sudden unexpected death than expansions because of severe clinical complications. This finding indicates possible CCHS involvement in forensic autopsy cases without ante-mortem diagnosis.
Collapse
Affiliation(s)
- Atsushi Ueda
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Motoki Osawa
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- * E-mail:
| | - Haruaki Naito
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Eriko Ochiai
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Department of Legal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
7
|
He X, Ding DN. Expression and clinical significance of miR-204 in patients with hypertensive disorder complicating pregnancy. BMC Pregnancy Childbirth 2022; 22:182. [PMID: 35255856 PMCID: PMC8903659 DOI: 10.1186/s12884-022-04501-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/18/2022] [Indexed: 11/10/2022] Open
Abstract
Objective Hypertensive disorder complicating pregnancy (HDCP) is a unique and common obstetrical complication in pregnancy. The current study sought to investigate the diagnostic value of serum miR-204 in HDCP patients. Methods A total of 196 HDCP patients were enrolled, with 54 healthy pregnant women as controls. The expression levels of miR-204 and inflammatory factors in the serum were determined. Receiver operating characteristic (ROC) curve was used to assess the diagnostic value of miR-204 in HDCP patients. Person coefficient was introduced to analyze the correlation between miR-204 and inflammatory indexes. Kaplan–Meier method was employed to analyze the effect of miR-204 expression on the incidence of adverse pregnancy outcomes. Logistic regression was adopted to assess the risk factors for adverse pregnancy outcomes. Results miR-204 expression was upregulated in the serum of HDCP patients. The serum miR-204 level > 1.432 could assist the diagnosis of HDCP. miR-204 level in the serum was positively correlated with TNF-α, IL-6, and hs-CRP concentrations in HDCP patients. The risk of adverse outcomes was higher in pregnant women with high miR-204 expression. High miR-204 expression was associated with an increased risk of adverse pregnancy outcomes after adjusting the family history of HDCP, systolic pressure, diastolic pressure, AST, ALT, LDH, 24-h urinary protein, TNF-α, IL-6, and hs-CRP. Conclusion The high expression of miR-204 assists the diagnosis of HDCP and is an independent risk factor for adverse pregnancy outcomes in HDCP patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04501-9.
Collapse
Affiliation(s)
- Xin He
- Department of Obstetrics, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University), Jiefang Xi Lu, Changsha, 410005, Hunan, China
| | - Dan-Ni Ding
- Department of Obstetrics, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University), Jiefang Xi Lu, Changsha, 410005, Hunan, China.
| |
Collapse
|
8
|
Ceccherini I, Kurek KC, Weese-Mayer DE. Developmental disorders affecting the respiratory system: CCHS and ROHHAD. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:53-91. [PMID: 36031316 DOI: 10.1016/b978-0-323-91532-8.00005-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) and Congenital Central Hypoventilation Syndrome (CCHS) are ultra-rare distinct clinical disorders with overlapping symptoms including altered respiratory control and autonomic regulation. Although both disorders have been considered for decades to be on the same spectrum with necessity of artificial ventilation as life-support, recent acquisition of specific knowledge concerning the genetic basis of CCHS coupled with an elusive etiology for ROHHAD have definitely established that the two disorders are different. CCHS is an autosomal dominant neurocristopathy characterized by alveolar hypoventilation resulting in hypoxemia/hypercarbia and features of autonomic nervous system dysregulation (ANSD), with presentation typically in the newborn period. It is caused by paired-like homeobox 2B (PHOX2B) variants, with known genotype-phenotype correlation but pathogenic mechanism(s) are yet unknown. ROHHAD is characterized by rapid weight gain, followed by hypothalamic dysfunction, then hypoventilation followed by ANSD, in seemingly normal children ages 1.5-7 years. Postmortem neuroanatomical studies, thorough clinical characterization, pathophysiological assessment, and extensive genetic inquiry have failed to identify a cause attributable to a traditional genetic basis, somatic mosaicism, epigenetic mechanism, environmental trigger, or other. To find the key to the ROHHAD pathogenesis and to improve its clinical management, in the present chapter, we have carefully compared CCHS and ROHHAD.
Collapse
Affiliation(s)
- Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Kyle C Kurek
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Debra E Weese-Mayer
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute; and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
9
|
Neubauer J, Forst AL, Warth R, Both CP, Haas C, Thomas J. Genetic variants in eleven central and peripheral chemoreceptor genes in sudden infant death syndrome. Pediatr Res 2022; 92:1026-1033. [PMID: 35102300 PMCID: PMC9586864 DOI: 10.1038/s41390-021-01899-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Sudden infant death syndrome (SIDS) is still one of the leading causes of postnatal infant death in developed countries. The occurrence of SIDS is described by a multifactorial etiology that involves the respiratory control system including chemoreception. It is still unclear whether genetic variants in genes involved in respiratory chemoreception might play a role in SIDS. METHODS The exome data of 155 SIDS cases were screened for variants within 11 genes described in chemoreception. Pathogenicity of variants was assigned based on the assessment of variant types and in silico protein predictions according to the current recommendations of the American College of Medical Genetics and Genomics. RESULTS Potential pathogenic variants in genes encoding proteins involved in respiratory chemoreception could be identified in 5 (3%) SIDS cases. Two of the variants (R137S/A188S) were found in the KNCJ16 gene, which encodes for the potassium channel Kir5.1, presumably involved in central chemoreception. Electrophysiologic analysis of these KCNJ16 variants revealed a loss-of-function for the R137S variant but no obvious impairment for the A188S variant. CONCLUSIONS Genetic variants in genes involved in respiratory chemoreception may be a risk factor in a fraction of SIDS cases and may thereby contribute to the multifactorial etiology of SIDS. IMPACT What is the key message of your article? Gene variants encoding proteins involved in respiratory chemoreception may play a role in a minority of SIDS cases. What does it add to the existing literature? Although impaired respiratory chemoreception has been suggested as an important risk factor for SIDS, genetic variants in single genes seem to play a minor role. What is the impact? This study supports previous findings, which indicate that genetic variants in single genes involved in respiratory control do not have a dominant role in SIDS.
Collapse
Affiliation(s)
- Jacqueline Neubauer
- grid.7400.30000 0004 1937 0650Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Anna-Lena Forst
- grid.7727.50000 0001 2190 5763Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Richard Warth
- grid.7727.50000 0001 2190 5763Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Christian Peter Both
- grid.412341.10000 0001 0726 4330Department of Anesthesiology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Cordula Haas
- grid.7400.30000 0004 1937 0650Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Jörg Thomas
- Department of Anesthesiology, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Perri P, Ponzoni M, Corrias MV, Ceccherini I, Candiani S, Bachetti T. A Focus on Regulatory Networks Linking MicroRNAs, Transcription Factors and Target Genes in Neuroblastoma. Cancers (Basel) 2021; 13:5528. [PMID: 34771690 PMCID: PMC8582685 DOI: 10.3390/cancers13215528] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB) is a tumor of the peripheral sympathetic nervous system that substantially contributes to childhood cancer mortality. NB originates from neural crest cells (NCCs) undergoing a defective sympathetic neuronal differentiation and although the starting events leading to the development of NB remain to be fully elucidated, the master role of genetic alterations in key oncogenes has been ascertained: (1) amplification and/or over-expression of MYCN, which is strongly associated with tumor progression and invasion; (2) activating mutations, amplification and/or over-expression of ALK, which is involved in tumor initiation, angiogenesis and invasion; (3) amplification and/or over-expression of LIN28B, promoting proliferation and suppression of neuroblast differentiation; (4) mutations and/or over-expression of PHOX2B, which is involved in the regulation of NB differentiation, stemness maintenance, migration and metastasis. Moreover, altered microRNA (miRNA) expression takes part in generating pathogenetic networks, in which the regulatory loops among transcription factors, miRNAs and target genes lead to complex and aberrant oncogene expression that underlies the development of a tumor. In this review, we have focused on the circuitry linking the oncogenic transcription factors MYCN and PHOX2B with their transcriptional targets ALK and LIN28B and the tumor suppressor microRNAs let-7, miR-34 and miR-204, which should act as down-regulators of their expression. We have also looked at the physiologic role of these genetic and epigenetic determinants in NC development, as well as in terminal differentiation, with their pathogenic dysregulation leading to NB oncogenesis.
Collapse
Affiliation(s)
- Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Tiziana Bachetti
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
11
|
Macias A, Fichna JP, Topolewska M, Rȩdowicz MJ, Kaminska AM, Kostera-Pruszczyk A. Targeted Next-Generation Sequencing Reveals Mutations in Non-coding Regions and Potential Regulatory Sequences of Calpain-3 Gene in Polish Limb-Girdle Muscular Dystrophy Patients. Front Neurosci 2021; 15:692482. [PMID: 34720847 PMCID: PMC8551377 DOI: 10.3389/fnins.2021.692482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
Limb–girdle muscular dystrophy type R1 (LGMDR1) is caused by mutations in CAPN3 and is the most common type of recessive LGMD. Even with the use of whole-exome sequencing (WES), only one mutant allele of CAPN3 is found in a significant number of LGMDR patients. This points to a role of non-coding, intronic or regulatory, sequence variants in the disease pathogenesis. Targeted sequencing of the whole CAPN3 gene including not only intronic, 3′ and 5′ UTRs but also potential regulatory regions was performed in 27 patients suspected with LGMDR1. This group included 13 patients with only one mutated CAPN3 allele detected previously with exome sequencing. A second rare variant in the non-coding part of CAPN3 was found in 11 of 13 patients with previously identified single mutation. Intronic mutations were found in 10 cases, with c.1746-20C>G variant present in seven patients. In addition, a large deletion of exons 2–8 was found in one patient. In the patients with no causative mutation previously found, we detected rare CAPN3 variants in 5 out of 10 patients and in two of them in a compound heterozygous state. Rare variants within putative regulatory sequences distant from the CAPN3 gene were found in 15 patients, although in 11 of these cases, other variants are deemed causative. The results indicate that intronic mutations are common in Polish LGMDR patients, and testing for non-coding mutations in CAPN3 should be performed in apparently single heterozygous patients.
Collapse
Affiliation(s)
- Anna Macias
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Piotr Fichna
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Topolewska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Maria J Rȩdowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna M Kaminska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|