1
|
Bagnato F, Mordin M, Greene N, Mahida S, van Wingerden J. Associations between chronic active lesions and clinical outcomes in multiple sclerosis: A systematic literature review. J Manag Care Spec Pharm 2025:1-28. [PMID: 40357663 DOI: 10.18553/jmcp.2025.24294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic neuroinflammatory and neurodegenerative disease. Emerging evidence suggests that chronic disease processes within the central nervous system are important drivers of the ongoing disability accumulation in people with MS (pwMS). Chronic lesion activity driven by smoldering neuroinflammation is considered one of the neuropathological hallmarks of disease progression in worsening disability. Our understanding of the role of chronic active lesions (CALs) in MS pathology has expanded with improvements in imaging technology. Three in vivo imaging biomarkers of CALs are available to detect CALs: paramagnetic rim lesions (PRLs), 18 kDa translocator protein (TSPO)-positron emission tomography rim-positive lesions, and the magnetic resonance imaging (MRI)-defined slowly expanding lesions (SELs). OBJECTIVE To evaluate associations between CALs and measures of worsening disability in pwMS. METHODS A systematic literature search was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines using PubMed, Embase, and the Cochrane Library on April 21, 2023. The review included randomized controlled trials, retrospective studies, and prospective cross-sectional and longitudinal studies conducted during 2010-2023 reporting the outcomes of interest. Studies evaluating people with any MS phenotype were included if they reported any associative analysis between CALs and clinical outcomes. RESULTS A total of 30 of 149 unique studies identified in the literature met the inclusion criteria. Of these 30 publications, 18 were based on PRLs, 9 on MRI-defined SELs, 1 on PRLs and MRI-defined SELs simultaneously, and 2 on TSPO-positive lesions. PRLs were associated with disability worsening in 17 studies, as measured by clinical disability scales. MRI-defined SELs were associated with worsening disability in 10 studies. CONCLUSIONS CALs are frequently associated with disease progression and disability accumulation. CALs may provide an indicator of disease severity and may assist with the assessment of treatment efficacy.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuorimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | | |
Collapse
|
2
|
Liu X, Wang Y, Wei N, Zhu W, Suo Y, Xu Y, Jin A, Xu Q, Qi N, Jiang Q, Wang Z, Su L, Guo A, Sun J, Duan Y, Zhang Z, Jing J, Tian DC. The characteristics and influencing factors of paramagnetic rim lesions in Chinese MS patients: A 7T MRI study. Mult Scler 2025:13524585251328902. [PMID: 40219829 DOI: 10.1177/13524585251328902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
BACKGROUND Paramagnetic rim lesions (PRLs) in multiple sclerosis (MS) are a significant factor for disability progression and prognosis, but their characteristics in the Chinese population are unclear. OBJECTIVE To explore PRLs in Chinese MS patients using 7T magnetic resonance imaging (MRI), including their number, proportion, distribution, and associated factors. METHODS Patients from the 7T MRI subgroup of the China National Registry of Neuro-Inflammatory Diseases (CNRID) were prospectively included. PRLs were assessed on susceptibility-weighted imaging (SWI)-phase images. Patients were grouped by PRL count (0, 1-3, 4-10, >10). Associations between clinical characteristics and PRL count were analyzed using multivariable linear regression, while correlations with disease duration were assessed using Pearson partial correlation and regression. RESULTS Among 110 participants, 96 (87.3%) had at least one PRL. In PRL groups, proportions were 12.7%, 20.0%, 29.1%, and 38.2%. PRL count positively correlated with Expanded Disability Status Scale (EDSS), total lesion count, and volume and negatively with Symbol Digit Modality Test (SDMT; p < 0.05). Longer disease duration was associated with a lower PRL proportion after adjusting for age and sex (β = -0.006, p = 0.032). CONCLUSION A high proportion of Chinese MS patients in our 7T MRI cohort had PRLs, with many exhibiting multiple PRLs (⩾4). PRL count was influenced by EDSS, SDMT, total lesion count, and volume, while PRL proportion negatively correlated with disease duration.
Collapse
Affiliation(s)
- Xinyao Liu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Wei
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wanlin Zhu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Suo
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuyuan Xu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Aoming Jin
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qin Xu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Epidemiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Qi
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qianmei Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhaobin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Su
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ai Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiali Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhe Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Jing
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - De-Cai Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Toubasi AA, Eisma JJ, Wang J, Kazimuddin HF, Hernandez B, Vinarsky T, Gheen C, Rohm Z, Koch C, Clarke MA, Cheek R, Kramer J, Eaton J, Donahue MJ, Bagnato F. Chronic active lesions preferentially localize in watershed territories in multiple sclerosis. Ann Clin Transl Neurol 2024; 11:2912-2922. [PMID: 39447194 PMCID: PMC11572742 DOI: 10.1002/acn3.52202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVE Paramagnetic rim lesions (PRLs) are a biomarker of chronic active lesions (CALs), and an important driver of neurological disability in multiple sclerosis (MS). The reason subtending some acute lesions evolvement into CALs is not known. Here we ask whether a relatively lower oxygen content is linked to CALs. METHODS In this prospective cross-sectional study, 64 people with multiple sclerosis (PwMS), clinically isolated syndrome and radiologically isolated syndrome underwent a 7.0 Tesla (7 T) brain magnetic resonance imaging (MRI). The scanning protocol included a T2-w fluid-attenuated inversion recovery (FLAIR), and a single echo gradient echo from which susceptibility-weighted imaging (SWI) was derived. WM lesions were identified on the T2-w-FLAIR whilst PRLs were identified on the SWI sequence. T2-lesions were classified as PRLs and rimless lesions (PRLs-). We registered a universal vascular atlas to each subject's T2-w-FLAIR and classified each T2-lesions according to its location into watershed- (ws), non-watershed- (nws), and mixed-lesion (m). Ws-lesions were defined as lesions that were fully located in a region between the territories of two major arteries. RESULTS Out of 1,975 T2-lesions, 88 (4.5%) were PRLs. Ws-regions had a higher number (p = 0.005) and proportion (p < 0.001) of PRLs- compared to nws-regions. Ws-PRL- were larger compared to nws-ones (p = 0.009). The number (p = 0.043) and proportion (p < 0.001) of PRLs was higher in ws-regions compared to nws-ones. Ws-PRLs were not significantly larger than nws-ones (p = 0.195). INTERPRETATION We propose the novel concept of a link between arterial vascularization and chronic activity in MS by demonstrating a preferential localization of CALs in ws-territories.
Collapse
Affiliation(s)
- Ahmad A. Toubasi
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
| | - Jarrod J. Eisma
- Cognitive Division, Department of NeurologyVUMCNashvilleTennesseeUSA
| | - Jiacheng Wang
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
- Department of Computer ScienceSchool of Engineering, Vanderbilt UniversityNashvilleTennesseeUSA
| | - Habeeb F. Kazimuddin
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
- National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH)BethesdaMarylandUSA
| | - Bryan Hernandez
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
- Medical Scientist ProgramVU School of MedicineNashvilleTennesseeUSA
- Department of Biological Sciences, College of ScienceUniversity of Texas at El PasoEl PasoTexasUSA
- Department of BiochemistryVU School of MedicineNashvilleTennesseeUSA
| | - Taegan Vinarsky
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
| | - Caroline Gheen
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
| | - Zachary Rohm
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
| | - Carynn Koch
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
| | - Margareta A. Clarke
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
| | - Rachael Cheek
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
- Meharry Medical CollegeSchool of MedicineNashvilleTennesseeUSA
| | - John Kramer
- Neuroimmunology Division, Department of NeurologyVUMCNashvilleTennesseeUSA
| | - James Eaton
- Cognitive Division, Department of NeurologyVUMCNashvilleTennesseeUSA
- Neuroimmunology Division, Department of NeurologyVUMCNashvilleTennesseeUSA
| | - Manus J. Donahue
- Cognitive Division, Department of NeurologyVUMCNashvilleTennesseeUSA
- Department of Psychiatry and Behavioral ScienceVUMCNashvilleTennesseeUSA
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
- Department of NeurologyVA Medical Center, TN Valley Healthcare SystemNashvilleTennesseeUSA
| |
Collapse
|
4
|
Bagnato F, Sati P, Hemond CC, Elliott C, Gauthier SA, Harrison DM, Mainero C, Oh J, Pitt D, Shinohara RT, Smith SA, Trapp B, Azevedo CJ, Calabresi PA, Henry RG, Laule C, Ontaneda D, Rooney WD, Sicotte NL, Reich DS, Absinta M. Imaging chronic active lesions in multiple sclerosis: a consensus statement. Brain 2024; 147:2913-2933. [PMID: 38226694 PMCID: PMC11370808 DOI: 10.1093/brain/awae013] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Chronic active lesions (CAL) are an important manifestation of chronic inflammation in multiple sclerosis and have implications for non-relapsing biological progression. In recent years, the discovery of innovative MRI and PET-derived biomarkers has made it possible to detect CAL, and to some extent quantify them, in the brain of persons with multiple sclerosis, in vivo. Paramagnetic rim lesions on susceptibility-sensitive MRI sequences, MRI-defined slowly expanding lesions on T1-weighted and T2-weighted scans, and 18-kDa translocator protein-positive lesions on PET are promising candidate biomarkers of CAL. While partially overlapping, these biomarkers do not have equivalent sensitivity and specificity to histopathological CAL. Standardization in the use of available imaging measures for CAL identification, quantification and monitoring is lacking. To fast-forward clinical translation of CAL, the North American Imaging in Multiple Sclerosis Cooperative developed a consensus statement, which provides guidance for the radiological definition and measurement of CAL. The proposed manuscript presents this consensus statement, summarizes the multistep process leading to it, and identifies the remaining major gaps in knowledge.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher C Hemond
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, MD 21201, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S, Canada
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Bruce Trapp
- Department on Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90007, USA
| | - Peter A Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martina Absinta
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Translational Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| |
Collapse
|
5
|
Xie Y, Zhang S, Wu D, Yao Y, Cho J, Lu J, Zhu H, Wang Y, Zhang Y, Zhu W. The changes of oxygen extraction fraction in different types of lesions in relapsing-remitting multiple sclerosis: A cross-sectional and longitudinal study. Neurol Sci 2024; 45:3939-3949. [PMID: 38492126 DOI: 10.1007/s10072-024-07463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES To explore the oxygen metabolism level of different types of lesions in relapsing-remitting multiple sclerosis (RRMS) patients by oxygen extraction fraction (OEF) both cross-sectionally and longitudinally. METHODS Forty-six RRMS patients and forty-one healthy controls (HC) went MRI examination. The quantitative susceptibility mapping (QSM) and OEF map were reconstructed from a 3D multi-echo gradient echo sequence. MS lesions in white matter were classified as contrast-enhancing lesions (CELs) on post-gadolinium T1-weighted sequence, paramagnetic rim lesions (PRLs), hyperintense lesions and non-hyperintense lesions on QSM, respectively. The susceptibility and OEF of different types of lesions were compared. The susceptibility and OEF values were measured and compared among different types of lesions. Among these RRMS patients, seventeen had follow-up MRI and 232 lesions, and baseline to follow-up longitudinal changes in susceptibility and OEF were measured. RESULTS PRLs had higher susceptibility and lower OEF than CELs, hyperintense lesions, and non-hyperintense lesions. The hyperintense lesions had higher susceptibility and lower OEF than non-hyperintense lesions. In longitudinal changes, PRLs had susceptibility increased (P < 0.001) and OEF decreased (P < 0.001). The hyperintense lesions showed significant decreases in susceptibility (P = 0.020), and non-hyperintense lesions showed significant increases in OEF during follow-up (P = 0.005). Notably, hyperintense lesions may convert to PRLs or non-hyperintense lesions as time progresses, accompanied by changes of OEF and susceptibility in the lesions. CONCLUSION This study revealed tissue damage and oxygen metabolism level in different types of MS lesions. The OEF may contribute to further understanding the evolution of MS lesions.
Collapse
Affiliation(s)
- Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Di Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Yihao Yao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Jun Lu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Yan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
6
|
Voon CC, Wiltgen T, Wiestler B, Schlaeger S, Mühlau M. Quantitative susceptibility mapping in multiple sclerosis: A systematic review and meta-analysis. Neuroimage Clin 2024; 42:103598. [PMID: 38582068 PMCID: PMC11002889 DOI: 10.1016/j.nicl.2024.103598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) is a quantitative measure based on magnetic resonance imaging sensitive to iron and myelin content. This makes QSM a promising non-invasive tool for multiple sclerosis (MS) in research and clinical practice. OBJECTIVE We performed a systematic review and meta-analysis on the use of QSM in MS. METHODS Our review was prospectively registered on PROSPERO (CRD42022309563). We searched five databases for studies published between inception and 30th April 2023. We identified 83 English peer-reviewed studies that applied QSM images on MS cohorts. Fifty-five included studies had at least one of the following outcome measures: deep grey matter QSM values in MS, either compared to healthy controls (HC) (k = 13) or correlated with the score on the Expanded Disability Status Scale (EDSS) (k = 7), QSM lesion characteristics (k = 22) and their clinical correlates (k = 17), longitudinal correlates (k = 11), histological correlates (k = 7), or correlates with other imaging techniques (k = 12). Two meta-analyses on deep grey matter (DGM) susceptibility data were performed, while the remaining findings could only be analyzed descriptively. RESULTS After outlier removal, meta-analyses demonstrated a significant increase in the basal ganglia susceptibility (QSM values) in MS compared to HC, caudate (k = 9, standardized mean difference (SDM) = 0.54, 95 % CI = 0.39-0.70, I2 = 46 %), putamen (k = 9, SDM = 0.38, 95 % CI = 0.19-0.57, I2 = 59 %), and globus pallidus (k = 9, SDM = 0.48, 95 % CI = 0.28-0.67, I2 = 60 %), whereas thalamic QSM values exhibited a significant reduction (k = 12, SDM = -0.39, 95 % CI = -0.66--0.12, I2 = 84 %); these susceptibility differences in MS were independent of age. Further, putamen QSM values positively correlated with EDSS (k = 4, r = 0.36, 95 % CI = 0.16-0.53, I2 = 0 %). Regarding rim lesions, four out of seven studies, representing 73 % of all patients, reported rim lesions to be associated with more severe disability. Moreover, lesion development from initial detection to the inactive stage is paralleled by increasing, plateauing (after about two years), and gradually decreasing QSM values, respectively. Only one longitudinal study provided clinical outcome measures and found no association. Histological data suggest iron content to be the primary source of QSM values in DGM and at the edges of rim lesions; further, when also considering data from myelin water imaging, the decrease of myelin is likely to drive the increase of QSM values within WM lesions. CONCLUSIONS We could provide meta-analytic evidence for DGM susceptibility changes in MS compared to HC; basal ganglia susceptibility is increased and, in the putamen, associated with disability, while thalamic susceptibility is decreased. Beyond these findings, further investigations are necessary to establish the role of QSM in MS for research or even clinical routine.
Collapse
Affiliation(s)
- Cui Ci Voon
- Dept. of Neurology, School of Medicine and Health, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tun Wiltgen
- Dept. of Neurology, School of Medicine and Health, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Benedikt Wiestler
- Dept. of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sarah Schlaeger
- Dept. of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Mark Mühlau
- Dept. of Neurology, School of Medicine and Health, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
7
|
Tozlu C, Olafson E, Jamison KW, Demmon E, Kaunzner U, Marcille M, Zinger N, Michaelson N, Safi N, Nguyen T, Gauthier S, Kuceyeski A. The sequence of regional structural disconnectivity due to multiple sclerosis lesions. Brain Commun 2023; 5:fcad332. [PMID: 38107503 PMCID: PMC10724045 DOI: 10.1093/braincomms/fcad332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
Prediction of disease progression is challenging in multiple sclerosis as the sequence of lesion development and retention of inflammation within a subset of chronic lesions is heterogeneous among patients. We investigated the sequence of lesion-related regional structural disconnectivity across the spectrum of disability and cognitive impairment in multiple sclerosis. In a full cohort of 482 multiple sclerosis patients (age: 41.83 ± 11.63 years, 71.57% females), the Expanded Disability Status Scale was used to classify patients into (i) no or mild (Expanded Disability Status Scale <3) versus (ii) moderate or severe disability groups (Expanded Disability Status Scale ≥3). In 363 out of 482 patients, quantitative susceptibility mapping was used to identify paramagnetic rim lesions, which are maintained by a rim of iron-laden innate immune cells. In 171 out of 482 patients, Brief International Cognitive Assessment was used to identify subjects as being cognitively preserved or impaired. Network Modification Tool was used to estimate the regional structural disconnectivity due to multiple sclerosis lesions. Discriminative event-based modelling was applied to investigate the sequence of regional structural disconnectivity due to (i) all representative T2 fluid-attenuated inversion recovery lesions, (ii) paramagnetic rim lesions versus non-paramagnetic rim lesions separately across disability groups ('no to mild disability' to 'moderate to severe disability'), (iii) all representative T2 fluid-attenuated inversion recovery lesions and (iv) paramagnetic rim lesions versus non-paramagnetic rim lesions separately across cognitive status ('cognitively preserved' to 'cognitively impaired'). In the full cohort, structural disconnection in the ventral attention and subcortical networks, particularly in the supramarginal and putamen regions, was an early biomarker of moderate or severe disability. The earliest biomarkers of disability progression were structural disconnections due to paramagnetic rim lesions in the motor-related regions. Subcortical structural disconnection, particularly in the ventral diencephalon and thalamus regions, was an early biomarker of cognitive impairment. Our data-driven model revealed that the structural disconnection in the subcortical regions, particularly in the thalamus, is an early biomarker for both disability and cognitive impairment in multiple sclerosis. Paramagnetic rim lesions-related structural disconnection in the motor cortex may identify the patients at risk for moderate or severe disability in multiple sclerosis. Such information might be used to identify people with multiple sclerosis who have an increased risk of disability progression or cognitive decline in order to provide personalized treatment plans.
Collapse
Affiliation(s)
- Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
| | - Emily Olafson
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
| | - Keith W Jamison
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
| | - Emily Demmon
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Ulrike Kaunzner
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Melanie Marcille
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Nicole Zinger
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Nara Michaelson
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Neha Safi
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Thanh Nguyen
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
| | - Susan Gauthier
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
| |
Collapse
|
8
|
Reeves JA, Weinstock Z, Zivadinov R, Dwyer MG, Bergsland N, Salman F, Schweser F, Weinstock-Guttman B, Benedict RH, Jakimovski D. Paramagnetic rim lesions are associated with greater incidence of relapse and worse cognitive recovery following relapse. Mult Scler 2023; 29:1033-1038. [PMID: 37161349 PMCID: PMC10523891 DOI: 10.1177/13524585231169466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Paramagnetic rim lesions (PRL) may be linked to relapse risk of people with relapsing-remitting multiple sclerosis (pwRRMS). OBJECTIVE To determine the relationship between presence of PRL lesions and cognitive recovery after relapse. METHODS PRL load was compared between acutely relapsing pwRRMS and matched stable pwRRMS controls (each group n = 21). In addition, cognitive recovery was compared between acutely relapsing pwRRMS with at least one PRL (PRL+) and those without any PRL (PRL-). RESULTS Acutely relapsing pwRRMS had significantly greater prevalence and number of PRL (p = 0.004 and p = 0.003) compared with stable controls. These findings remained significant after adjusting for global neuroinflammatory burden (enhancing and non-enhancing lesions). In addition, acutely relapsing PRL + pwRRMS (n = 10) had worse recovery of verbal memory following relapse compared with acutely relapsing PRL - pwRRMS (n = 7; p = 0.027). CONCLUSION These findings may partially explain previously suggested associations between presence of PRL with more severe disease course.
Collapse
Affiliation(s)
- Jack A Reeves
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Zachary Weinstock
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA/Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA/Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA/IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Fahad Salman
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA/Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ralph Hb Benedict
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
9
|
Tozlu C, Olafson E, Jamison K, Demmon E, Kaunzner U, Marcille M, Zinger N, Michaelson N, Safi N, Nguyen T, Gauthier S, Kuceyeski A. The sequence of regional structural disconnectivity due to multiple sclerosis lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525537. [PMID: 36747675 PMCID: PMC9900990 DOI: 10.1101/2023.01.26.525537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Objective Prediction of disease progression is challenging in multiple sclerosis (MS) as the sequence of lesion development and retention of inflammation within a subset of chronic lesions is heterogeneous among patients. We investigated the sequence of lesion-related regional structural disconnectivity across the spectrum of disability and cognitive impairment in MS. Methods In a full cohort of 482 patients, the Expanded Disability Status Scale was used to classify patients into (i) no or mild vs (ii) moderate or severe disability groups. In 363 out of 482 patients, Quantitative Susceptibility Mapping was used to identify paramagnetic rim lesions (PRL), which are maintained by a rim of iron-laden innate immune cells. In 171 out of 482 patients, Brief International Cognitive Assessment was used to identify subjects with cognitive impairment. Network Modification Tool was used to estimate the regional structural disconnectivity due to MS lesions. Discriminative event-based modeling was applied to investigate the sequence of regional structural disconnectivity due to all representative lesions across the spectrum of disability and cognitive impairment. Results Structural disconnection in the ventral attention and subcortical networks was an early biomarker of moderate or severe disability. The earliest biomarkers of disability progression were structural disconnections due to PRL in the motor-related regions. Subcortical structural disconnection was an early biomarker of cognitive impairment. Interpretation MS lesion-related structural disconnections in the subcortex is an early biomarker for both disability and cognitive impairment in MS. PRL-related structural disconnection in the motor cortex may identify the patients at risk for moderate or severe disability in MS.
Collapse
Affiliation(s)
- Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Emily Olafson
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Keith Jamison
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Emily Demmon
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Ulrike Kaunzner
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Melanie Marcille
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Nicole Zinger
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Nara Michaelson
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Neha Safi
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Susan Gauthier
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
10
|
Siger M. Magnetic Resonance Imaging in Primary Progressive Multiple Sclerosis Patients : Review. Clin Neuroradiol 2022; 32:625-641. [PMID: 35258820 PMCID: PMC9424179 DOI: 10.1007/s00062-022-01144-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022]
Abstract
The recently developed effective treatment of primary progressive multiple sclerosis (PPMS) requires the accurate diagnosis of patients with this type of disease. Currently, the diagnosis of PPMS is based on the 2017 McDonald criteria, although the contribution of magnetic resonance imaging (MRI) to this process is fundamental. PPMS, one of the clinical types of MS, represents 10%-15% of all MS patients. Compared to relapsing-remitting MS (RRMS), PPMS differs in terms of pathology, clinical presentation and MRI features. Regarding conventional MRI, focal lesions on T2-weighted images and acute inflammatory lesions with contrast enhancement are less common in PPMS than in RRMS. On the other hand, MRI features of chronic inflammation, such as slowly evolving/expanding lesions (SELs) and leptomeningeal enhancement (LME), and brain and spinal cord atrophy are more common MRI characteristics in PPMS than RRMS. Nonconventional MRI also shows differences in subtle white and grey matter damage between PPMS and other clinical types of disease. In this review, we present separate diagnostic criteria, conventional and nonconventional MRI specificity for PPMS, which may support and simplify the diagnosis of this type of MS in daily clinical practice.
Collapse
Affiliation(s)
- Malgorzata Siger
- Department of Neurology, Medical University of Łódź, 22 Kopcinskiego Str., 90-153, Łódź, Poland.
| |
Collapse
|
11
|
Wittayer M, Weber CE, Platten M, Schirmer L, Gass A, Eisele P. Spatial distribution of multiple sclerosis iron rim lesions and their impact on disability. Mult Scler Relat Disord 2022; 64:103967. [PMID: 35728430 DOI: 10.1016/j.msard.2022.103967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND In multiple sclerosis (MS), iron rim lesions (IRLs) on magnetic resonance imaging (MRI) have been suggested as an imaging marker of disease progression. However, the exact mechanisms how they contribute to disability are yet not completely known. Strategic lesion location may be an important factor concerning the impact of focal lesions on clinical disability. Therefore, the aim of this study was to investigate the spatial distribution of IRLs compared to non-IRLs and their impact on disability. METHODS We retrospectively identified 67 patients with at least one IRL on MRI and 67 age- and sex-matched patients without IRLs. We compared the spatial distribution of lesions between both groups and between IRLs and non-IRLs in patients with IRLs. Furthermore, we assessed the relationship between lesion localisation and disability on a voxel-by-voxel basis and investigated the impact on structural network disruptions. RESULTS Patients with IRLs had higher disability scores (median Expanded Disability Status Scale score (range): 3.0 (0 - 8.5) versus 1.5 (0 - 6.5); p = 0.001; median pyramidal functional system score (range): 1.0 (0 - 5) versus 0 (0 - 4); p = 0.003), significantly lower brain volumes (mean normal-appearing grey matter volume: 749.66 ± 60.58 versus 785.83 ± 53.71 mL; mean normal-appearing white matter volume: 723.58 ± 60.13 versus 753.25 ± 69.61 mL; mean deep grey matter volume: 33.21 ± 4.19 versus 35.85 ± 4.89 mL; p < 0.05 for all comparisons) and a significantly higher total T2 lesion volume (mean: 9.96 ± 11.6 versus 4.31 ± 8.9 mL; p < 0.001). We found no neuroanatomical regions that were more often affected by IRLs. Furthermore, comparing the overall network disruption in the IRL group, IRLs caused less network disruption/mL lesion size compared to non-IRLs (1.54% / mL versus 2.0% / mL; p < 0.05). CONCLUSION IRLs are associated with higher disability scores. However, our results suggest that a higher disability is not explained by the sheer topography of IRLs or their network disruption.
Collapse
Affiliation(s)
- Matthias Wittayer
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Theodor-Kutzer-Ufer 1 - 3, Mannheim 68167, Germany
| | - Claudia E Weber
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Theodor-Kutzer-Ufer 1 - 3, Mannheim 68167, Germany
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Theodor-Kutzer-Ufer 1 - 3, Mannheim 68167, Germany; DKTK CCU Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Theodor-Kutzer-Ufer 1 - 3, Mannheim 68167, Germany; Medical Faculty Mannheim, Institute for Innate Immunoscience, Heidelberg University, Mannheim, Germany
| | - Achim Gass
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Theodor-Kutzer-Ufer 1 - 3, Mannheim 68167, Germany
| | - Philipp Eisele
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Theodor-Kutzer-Ufer 1 - 3, Mannheim 68167, Germany.
| |
Collapse
|