1
|
Hwang YJ, Oh SH, Lee JH, Park MK, Suh MW. Biosafety and potency of high-molecular-weight hyaluronic acid with intratympanic dexamethasone delivery for acute hearing loss. Front Pharmacol 2024; 15:1294657. [PMID: 38292943 PMCID: PMC10824912 DOI: 10.3389/fphar.2024.1294657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Objective: This study evaluated the potential of high-molecular-weight hyaluronic acid (HHA) as an intratympanic (IT) drug delivery vehicle for dexamethasone (D) in treating acute hearing loss. We compared the efficacy, safety, and residence time of HHA to the standard-of-care IT drug delivery method. Methods: Endoscopic examinations were used to track tympanic membrane (TM) healing post-IT injection. Micro-computed tomography (CT) was used to gauge drug/vehicle persistence in the bulla air space. Histological analyses covered the middle ear, TM, and hair cell counts. Auditory brainstem responses (ABR) were used to measure hearing thresholds, while high-performance liquid chromatography (HPLC) was employed to quantify cochlear perilymph dexamethasone concentrations. Results: The HHA + D group had a notably prolonged drug/vehicle residence time in the bulla (41 ± 27 days) compared to the saline + D group (1.1 ± 0.3 days). Complete TM healing occurred without adverse effects. Histology revealed no significant intergroup differences or adverse outcomes. Hearing recovery trends favored the HHA + D group, with 85.0% of ears showing clinically meaningful improvement. D concentrations in cochlear perilymph were roughly double in the HHA group. Conclusion: HHA is a promising vehicle for IT drug delivery in treating acute hearing loss. It ensures extended residence time, augmented drug concentrations in targeted tissues, and safety. These results highlight the potential for HHA + D to excel beyond existing standard-of-care treatments for acute hearing loss.
Collapse
Affiliation(s)
- Yu-Jung Hwang
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
2
|
Gunewardene N, Ma Y, Lam P, Wagstaff S, Cortez-Jugo C, Hu Y, Caruso F, Richardson RT, Wise AK. Developing the supraparticle technology for round window-mediated drug administration into the cochlea. J Control Release 2023; 361:621-635. [PMID: 37572963 DOI: 10.1016/j.jconrel.2023.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The semi-permeable round window membrane (RWM) is the gateway to the cochlea. Although the RWM is considered a minimally invasive and clinically accepted route for localised drug delivery to the cochlea, overcoming this barrier is challenging, hindering development of effective therapies for hearing loss. Neurotrophin 3 (NT3) is an emerging treatment option for hearing loss, but its therapeutic effect relies on sustained delivery across the RWM into the cochlea. Silica supraparticles (SPs) are drug delivery carriers capable of providing long-term NT3 delivery, when injected directly into the guinea pig cochlea. However, for clinical translation, a RWM delivery approach is desirable. Here, we aimed to test approaches to improve the longevity and biodistribution of NT3 inside the cochlea after RWM implantation of SPs in guinea pigs and cats. Three approaches were tested (i) coating the SPs to slow drug release (ii) improving the retention of SPs on the RWM using a clinically approved gel formulation and (iii) permeabilising the RWM with hyaluronic acid. A radioactive tracer (iodine 125: 125I) tagged to NT3 (125I NT3) was loaded into the SPs to characterise drug pharmacokinetics in vitro and in vivo. The neurotrophin-loaded SPs were coated using a chitosan and alginate layer-by-layer coating strategy, named as '(Chi/Alg)SPs', to promote long term drug release. The guinea pigs were implanted with 5× 125I NT3 loaded (Chi/Alg) SPs on the RWM, while cats were implanted with 30× (Chi/Alg) SPs. A cohort of animals were also implanted with SPs (controls). We found that the NT3 loaded (Chi/Alg)SPs exhibited a more linear release profile compared to NT3 loaded SPs alone. The 125I NT3 loaded (Chi/Alg)SPs in fibrin sealant had efficient drug loading (~5 μg of NT3 loaded per SP that weights ~50 μg) and elution capacities (~49% over one month) in vitro. Compared to the SPs in fibrin sealant, the (Chi/Alg)SPs in fibrin sealant had a significantly slower 125I NT3 drug release profile over the first 7 days in vitro (~12% for (Chi/Alg) SPs in fibrin sealant vs ~43% for SPs in fibrin sealant). One-month post-implantation of (Chi/Alg) SPs, gamma count measurements revealed an average of 0.3 μg NT3 remained in the guinea pig cochlea, while for the cat, 1.3 μg remained. Histological analysis of cochlear tissue revealed presence of a 125I NT3 signal localised in the basilar membrane of the lower basal turn in some cochleae after 4 weeks in guinea pigs and 8 weeks in cats. Comparatively, and in contrast to the in vitro release data, implantation of the SPs presented better NT3 retention and distribution inside the cochlea in both the guinea pigs and cats. No significant difference in drug entry was observed upon acute treatment of the RWM with hyaluronic acid. Collectively, our findings indicate that SPs and (Chi/Alg)SPs can facilitate drug transfer across the RWM, with detectable levels inside the cat cochlea even after 8 weeks with the intracochlear approach. This is the first study to examine neurotrophin pharmacokinetics in the cochlea for such an extended period of times in these two animal species. Whilst promising, we note that outcomes between animals were variable, and opposing results were found between in vitro and in vivo release studies. These findings have important clinical ramifications, emphasising the need to understand the physical properties and mechanics of this complex barrier in parallel with the development of therapies for hearing loss.
Collapse
Affiliation(s)
- Niliksha Gunewardene
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia.
| | - Yutian Ma
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Patrick Lam
- Bionics Institute, East Melbourne, Victoria 3002, Australia
| | | | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yingjie Hu
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rachael T Richardson
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria 3002, Australia
| | - Andrew K Wise
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia.
| |
Collapse
|
3
|
Sahiner N, Umut E, Suner SS, Sahiner M, Culha M, Ayyala RS. Hyaluronic acid (HA)-Gd(III) and HA-Fe(III) microgels as MRI contrast enhancing agents. Carbohydr Polym 2022; 277:118873. [PMID: 34893278 DOI: 10.1016/j.carbpol.2021.118873] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022]
Abstract
Hyaluronic acid (HA) was crosslinked with Gd(III) and Fe(III) ions rendering physically crosslinked HA-metal(III) microgels as magnetic resonance imaging (MRI) enhancing contrast agents. These HA-Gd(III) and HA-Fe(III) microgels are injectable with size range, 50-5000 nm in water. The same isoelectric point, pH 1.2 ± 0.1, was measured for both microgels. HA-Gd(III) and HA-Fe(III) microgels are hemo-compatible biomaterials and can be safely used in intravascular applications up to 1000 μg/mL concentration. Furthermore, no significant toxicity was attained as 95 ± 8 and 81 ± 2% cell viability on L929 fibroblast cells at 100 μg/mL of HA-Gd(III) and HA-Fe(III) microgels were measured. Moreover, HA-Gd(III) microgels were found to afford significant contrast improvement capability in MRI with proton relaxivity, r1 = 2.11 mM-1 s-1, comparable with the values reported for Gd(III) labeled functionalized HA gel systems and commercial Gd based contrast agents.
Collapse
Affiliation(s)
- Nurettin Sahiner
- Department of Chemistry, Canakkale Onsekiz Mart University, Canakkale, Turkey; Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL 33620, USA; Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv., MDC 21, Tampa, FL 33612, USA.
| | - Evrim Umut
- Department of Medical Imaging Techniques, School of Healthcare, Dokuz Eylul University, Narlıdere, Izmir 35330, Turkey
| | - Selin S Suner
- Department of Chemistry, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Mehtap Sahiner
- Department of Fashion Design, Canakkale School of Applied Science, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey
| | - Mustafa Culha
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv., MDC 21, Tampa, FL 33612, USA; Sabanci University Nanotechnology Research and Application Center (SUNUM), Orta Mh. Universite Cd. No:27/1, Tuzla, Istanbul 34956, Turkey
| | - Ramesh S Ayyala
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv., MDC 21, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Li H, Suh MW, Oh SH. Dual Viscosity Mixture Vehicle for Intratympanic Dexamethasone Delivery Can Block Ototoxic Hearing Loss. Front Pharmacol 2021; 12:701002. [PMID: 34776942 PMCID: PMC8581269 DOI: 10.3389/fphar.2021.701002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Clinically there is no effective method to prevent drug induced hearing loss in patients undergoing chemotherapy and anti-tuberculosis therapy. In this study, we developed an intratympanic (IT) local drug delivery vehicle featuring hyaluronic acid-based dual viscosity mixture encapsulation of dexamethasone (D), named dual-vehicle + D, and assessed its protective effect in ototoxic hearing loss. We assessed the residence time, biocompatibility, and treatment outcome of the novel vehicle compared with the current standard of care vehicle (saline) and control conditions. The hearing threshold and hair cell count were significantly better in the dual-vehicle + D group compared to the other two groups. The final hearing benefit in the dual-vehicle group was approximately 25–35 dB, which is significant from a clinical point of view. Morphologic evaluation of the cochlear hair cells also supported this finding. Due to the high viscosity and adhesive property of the vehicle, the residence time of the vehicle was 49 days in the dual-vehicle + D group, whereas it was less than 24 h in the saline + D group. There was no sign of inflammation or infection in all the animals. From this study we were able to confirm that dual viscosity mixture vehicle for IT D delivery can effectively block ototoxic hearing loss.
Collapse
Affiliation(s)
- Hui Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|