1
|
Zhang Z, Li N, Ding Y, Cheng H. An integrative nomogram based on MRI radiomics and clinical characteristics for prognosis prediction in cervical spinal cord Injury. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2025; 34:1164-1176. [PMID: 39672993 DOI: 10.1007/s00586-024-08609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 09/28/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVE To construct a nomogram model based on magnetic resonance imaging (MRI) radiomics combined with clinical characteristics and evaluate its role and value in predicting the prognosis of patients with cervical spinal cord injury (cSCI). METHODS In this study, we assessed the prognosis of 168 cSCI patients using the American Spinal Injury Association (ASIA) scale and the Functional Independence Measure (FIM) scale. The study involved extracting radiomics features using both manually defined metrics and features derived through deep learning via transfer learning methods from MRI sequences, specifically T1-weighted and T2-weighted images (T1WI & T2WI). The feature selection was performed employing the least absolute shrinkage and selection operator (Lasso) regression across both radiomics and deep transfer learning datasets. Following this selection process, a deep learning radiomics signature was established. This signature, in conjunction with clinical data, was incorporated into a predictive model. The efficacy of the models was appraised using the area under the receiver operating characteristic curve (AUC), calibration curve and decision curve analysis (DCA) to assess their diagnostic performance. RESULTS Comparing the effectiveness of the models by linking the AUC of each model, we chose the best-performance radiomics model with clinical model to create the final nomogram. Our analysis revealed that, in the testing cohort, the combined model achieved an AUC of 0.979 for the ASIA and 0.947 for the FIM. The training cohort showed more promising performance, with an AUC of 0.957 for ASIA and 1.000 for FIM. Furthermore, the calibration curve showed that the predicted probability of the nomogram was consistent with the actual incidence rate and the DCA curve validated its effectiveness as a prognostic tool in a clinical setting. CONCLUSION We constructed a combined model that can be used to help predict the prognosis of cSCI patients with radiomics and clinical characteristics, and further provided guidance for clinical decision-making by generating a nomogram.
Collapse
Affiliation(s)
- Zifeng Zhang
- School of Medicine, Southeast University, Nanjing, China
| | - Ning Li
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, China.
| | - Yi Ding
- School of Medicine, Southeast University, Nanjing, China
| | - Huilin Cheng
- School of Medicine, Southeast University, Nanjing, China.
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Preisner F, Pitarokoili K, Lueling B, Motte J, Fisse AL, Grüter T, Godel T, Schwarz D, Heiland S, Gold R, Bendszus M, Kronlage M. Quantitative magnetic resonance neurography in chronic inflammatory demyelinating polyradiculoneuropathy: A longitudinal study over 6 years. Ann Clin Transl Neurol 2024; 11:593-606. [PMID: 38111964 PMCID: PMC10963304 DOI: 10.1002/acn3.51978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
OBJECTIVE To evaluate magnetic resonance neurography (MRN) for the longitudinal assessment of patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). METHODS Prospective examination of twelve CIDP patients by neurological assessment, MRN, and nerve conduction studies in 2016 and 6 years later in 2022. Imaging parameters were compared with matched healthy controls and correlated with clinical and electrophysiological markers. The MRN protocol included T2-weighted imaging, diffusion tensor imaging (DTI), T2 relaxometry, and magnetization transfer imaging (MTI). RESULTS Nerve cross-sectional area (CSA) was increased in CIDP patients compared to controls (plexus: p = 0.003; sciatic nerve: p < 0.001). Over 6 years, nerve CSA decreased in CIDP patients, most pronounced at the lumbosacral plexus (p = 0.015). Longitudinally, changes in CSA correlated with changes in the inflammatory neuropathy cause and treatment validated overall disability sum score (INCAT/ODSS) (p = 0.006). High initial nerve CSA was inversely correlated with changes in the INCAT/ODSS over 6 years (p < 0.05). The DTI parameter fractional anisotropy (FA) showed robust correlations with electrodiagnostic testing both cross-sectionally and longitudinally (p < 0.05). MTI as a newly added imaging technique revealed a significantly reduced magnetization transfer ratio (MTR) in CIDP patients (p < 0.01), suggesting underlying changes in macromolecular tissue composition, and correlated significantly with electrophysiological parameters of demyelination (p < 0.05). INTERPRETATION This study provides evidence that changes in nerve CSA and FA reflect the clinical and electrophysiological course of CIDP patients. Initial nerve hypertrophy might predict a rather benign course or better therapy response.
Collapse
Affiliation(s)
- Fabian Preisner
- Department of Neuroradiology, Neurological ClinicHeidelberg University Hospital69120HeidelbergGermany
| | - Kalliopi Pitarokoili
- Department of Neurology, St. Josef HospitalRuhr University of Bochum44791BochumGermany
| | - Benjamin Lueling
- Department of Neurology, St. Josef HospitalRuhr University of Bochum44791BochumGermany
| | - Jeremias Motte
- Department of Neurology, St. Josef HospitalRuhr University of Bochum44791BochumGermany
| | - Anna Lena Fisse
- Department of Neurology, St. Josef HospitalRuhr University of Bochum44791BochumGermany
| | - Thomas Grüter
- Department of Neurology, St. Josef HospitalRuhr University of Bochum44791BochumGermany
| | - Tim Godel
- Department of Neuroradiology, Neurological ClinicHeidelberg University Hospital69120HeidelbergGermany
| | - Daniel Schwarz
- Department of Neuroradiology, Neurological ClinicHeidelberg University Hospital69120HeidelbergGermany
| | - Sabine Heiland
- Department of Neuroradiology, Neurological ClinicHeidelberg University Hospital69120HeidelbergGermany
| | - Ralf Gold
- Department of Neurology, St. Josef HospitalRuhr University of Bochum44791BochumGermany
| | - Martin Bendszus
- Department of Neuroradiology, Neurological ClinicHeidelberg University Hospital69120HeidelbergGermany
| | - Moritz Kronlage
- Department of Neuroradiology, Neurological ClinicHeidelberg University Hospital69120HeidelbergGermany
| |
Collapse
|
3
|
Foesleitner O, Sturm V, Hayes J, Weiler M, Sam G, Wildemann B, Wick W, Bendszus M, Heiland S, Jäger LB. Microstructural changes of peripheral nerves in early multiple sclerosis: A prospective magnetic resonance neurography study. Eur J Neurol 2024; 31:e16126. [PMID: 37932921 PMCID: PMC11236022 DOI: 10.1111/ene.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND AND PURPOSE Multiple sclerosis (MS) is a demyelinating disorder of the central nervous system (CNS). However, there is increasing evidence of peripheral nerve involvement. This study aims to characterize the pattern of peripheral nerve changes in patients with newly diagnosed MS using quantitative magnetic resonance (MR) neurography. METHODS In this prospective study, 25 patients first diagnosed with MS according to the revised McDonald criteria (16 female, mean age = 32.8 ± 10.6 years) and 14 healthy controls were examined with high-resolution 3-T MR neurography of the sciatic nerve using diffusion kurtosis imaging (DKI; 20 diffusional directions, b = 0, 700, 1200 s/mm2 ) and magnetization transfer imaging (MTI). In total, 15 quantitative MR biomarkers were analyzed and correlated with clinical symptoms, intrathecal immunoglobulin synthesis, electrophysiology, and lesion load on brain and spine MR imaging. RESULTS Patients showed decreased fractional anisotropy (mean = 0.51 ± 0.04 vs. 0.56 ± 0.03, p < 0.001), extra-axonal tortuosity (mean = 2.32 ± 0.17 vs. 2.49 ± 0.17, p = 0.008), and radial kurtosis (mean = 1.40 ± 0.23 vs. 1.62 ± 0.23, p = 0.014) and higher radial diffusivity (mean = 1.09 ∙ 10-3 mm2 /s ± 0.16 vs. 0.98 ± 0.11 ∙ 10-3 mm2 /s, p = 0.036) than controls. Groups did not differ in MTI. No significant association was found between MR neurography markers and clinical/laboratory parameters or CNS lesion load. CONCLUSIONS This study provides further evidence of peripheral nerve involvement in MS already at initial diagnosis. The characteristic pattern of DKI parameters indicates predominant demyelination and suggests a primary coaffection of the peripheral nervous system in MS. This first human study using DKI for peripheral nerves shows its potential and clinical feasibility in providing novel biomarkers.
Collapse
Affiliation(s)
- Olivia Foesleitner
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Volker Sturm
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Jennifer Hayes
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Markus Weiler
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit Neuro‐oncology, German Cancer ConsortiumGerman Cancer Research CenterHeidelbergGermany
| | - Georges Sam
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
| | | | - Wolfgang Wick
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit Neuro‐oncology, German Cancer ConsortiumGerman Cancer Research CenterHeidelbergGermany
| | - Martin Bendszus
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Sabine Heiland
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | | |
Collapse
|
4
|
Boonsuth R, Battiston M, Grussu F, Samlidou CM, Calvi A, Samson RS, Gandini Wheeler-Kingshott CAM, Yiannakas MC. Feasibility of in vivo multi-parametric quantitative magnetic resonance imaging of the healthy sciatic nerve with a unified signal readout protocol. Sci Rep 2023; 13:6565. [PMID: 37085693 PMCID: PMC10121559 DOI: 10.1038/s41598-023-33618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/15/2023] [Indexed: 04/23/2023] Open
Abstract
Magnetic resonance neurography (MRN) has been used successfully over the years to investigate the peripheral nervous system (PNS) because it allows early detection and precise localisation of neural tissue damage. However, studies demonstrating the feasibility of combining MRN with multi-parametric quantitative magnetic resonance imaging (qMRI) methods, which provide more specific information related to nerve tissue composition and microstructural organisation, can be invaluable. The translation of emerging qMRI methods previously validated in the central nervous system to the PNS offers real potential to characterise in patients in vivo the underlying pathophysiological mechanisms involved in a plethora of conditions of the PNS. The aim of this study was to assess the feasibility of combining MRN with qMRI to measure diffusion, magnetisation transfer and relaxation properties of the healthy sciatic nerve in vivo using a unified signal readout protocol. The reproducibility of the multi-parametric qMRI protocol as well as normative qMRI measures in the healthy sciatic nerve are reported. The findings presented herein pave the way to the practical implementation of joint MRN-qMRI in future studies of pathological conditions affecting the PNS.
Collapse
Affiliation(s)
- Ratthaporn Boonsuth
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK.
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| | - Marco Battiston
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Francesco Grussu
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Christina Maria Samlidou
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Alberto Calvi
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Center of Neuroimmunology, Hospital Clinic Barcelona, Fundació Clinic Per a La Recerca Biomedica, Barcelona, Spain
| | - Rebecca S Samson
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- Brain Connectivity Research Centre, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Marios C Yiannakas
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
5
|
Bhaskaran S, Kumar G, Thadathil N, Piekarz KM, Mohammed S, Lopez SD, Qaisar R, Walton D, Brown JL, Murphy A, Smith N, Saunders D, Beckstead MJ, Plafker S, Lewis TL, Towner R, Deepa SS, Richardson A, Axtell RC, Van Remmen H. Neuronal deletion of MnSOD in mice leads to demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis. Redox Biol 2023; 59:102550. [PMID: 36470129 PMCID: PMC9720104 DOI: 10.1016/j.redox.2022.102550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Neuronal oxidative stress has been implicated in aging and neurodegenerative disease. Here we investigated the impact of elevated oxidative stress induced in mouse spinal cord by deletion of Mn-Superoxide dismutase (MnSOD) using a neuron specific Cre recombinase in Sod2 floxed mice (i-mn-Sod2 KO). Sod2 deletion in spinal cord neurons was associated with mitochondrial alterations and peroxide generation. Phenotypically, i-mn-Sod2 KO mice experienced hindlimb paralysis and clasping behavior associated with extensive demyelination and reduced nerve conduction velocity, axonal degeneration, enhanced blood brain barrier permeability, elevated inflammatory cytokines, microglia activation, infiltration of neutrophils and necroptosis in spinal cord. In contrast, spinal cord motor neuron number, innervation of neuromuscular junctions, muscle mass, and contractile function were not altered. Overall, our findings show that loss of MnSOD in spinal cord promotes a phenotype of demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis.
Collapse
Affiliation(s)
- Shylesh Bhaskaran
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Gaurav Kumar
- Arthritis & Clinical Immunology, Oklahoma Medical Research Foundation, OK, USA
| | - Nidheesh Thadathil
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, OK, USA
| | - Katarzyna M Piekarz
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Sabira Mohammed
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Rizwan Qaisar
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Dorothy Walton
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Jacob L Brown
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Ashley Murphy
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, OK, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, OK, USA
| | - Michael J Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Scott Plafker
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Tommy L Lewis
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Rheal Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, OK, USA
| | - Sathyaseelan S Deepa
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Arlan Richardson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Robert C Axtell
- Arthritis & Clinical Immunology, Oklahoma Medical Research Foundation, OK, USA.
| | - Holly Van Remmen
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
6
|
Combes AJE, Clarke MA, O'Grady KP, Schilling KG, Smith SA. Advanced spinal cord MRI in multiple sclerosis: Current techniques and future directions. Neuroimage Clin 2022; 36:103244. [PMID: 36306717 PMCID: PMC9668663 DOI: 10.1016/j.nicl.2022.103244] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/02/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Spinal cord magnetic resonance imaging (MRI) has a central role in multiple sclerosis (MS) clinical practice for diagnosis and disease monitoring. Advanced MRI sequences capable of visualizing and quantifying tissue macro- and microstructure and reflecting different pathological disease processes have been used in MS research; however, the spinal cord remains under-explored, partly due to technical obstacles inherent to imaging this structure. We propose that the study of the spinal cord merits equal ambition in overcoming technical challenges, and that there is much information to be exploited to make valuable contributions to our understanding of MS. We present a narrative review on the latest progress in advanced spinal cord MRI in MS, covering in the first part structural, functional, metabolic and vascular imaging methods. We focus on recent studies of MS and those making significant technical steps, noting the challenges that remain to be addressed and what stands to be gained from such advances. Throughout we also refer to other works that presend more in-depth review on specific themes. In the second part, we present several topics that, in our view, hold particular potential. The need for better imaging of gray matter is discussed. We stress the importance of developing imaging beyond the cervical spinal cord, and explore the use of ultra-high field MRI. Finally, some recommendations are given for future research, from study design to newer developments in analysis, and the need for harmonization of sequences and methods within the field. This review is aimed at researchers and clinicians with an interest in gaining an overview of the current state of advanced MRI research in this field and what is primed to be the future of spinal cord imaging in MS research.
Collapse
Affiliation(s)
- Anna J E Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States.
| | - Margareta A Clarke
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| |
Collapse
|