1
|
Jiang Y, Qi Z, Zhu H, Shen K, Liu R, Fang C, Lou W, Jiang Y, Yuan W, Cao X, Chen L, Zhuang Q. Role of the globus pallidus in motor and non-motor symptoms of Parkinson's disease. Neural Regen Res 2025; 20:1628-1643. [PMID: 38845220 PMCID: PMC11688550 DOI: 10.4103/nrr.nrr-d-23-01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/12/2024] [Accepted: 04/21/2024] [Indexed: 08/07/2024] Open
Abstract
The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency in the brain that subsequently manifests as various motor and non-motor symptoms. This review aims to summarize the involvement of the globus pallidus in both motor and non-motor manifestations of Parkinson's disease. The firing activities of parvalbumin neurons in the medial globus pallidus, including both the firing rate and pattern, exhibit strong correlations with the bradykinesia and rigidity associated with Parkinson's disease. Increased beta oscillations, which are highly correlated with bradykinesia and rigidity, are regulated by the lateral globus pallidus. Furthermore, bradykinesia and rigidity are strongly linked to the loss of dopaminergic projections within the cortical-basal ganglia-thalamocortical loop. Resting tremors are attributed to the transmission of pathological signals from the basal ganglia through the motor cortex to the cerebellum-ventral intermediate nucleus circuit. The cortico-striato-pallidal loop is responsible for mediating pallidi-associated sleep disorders. Medication and deep brain stimulation are the primary therapeutic strategies addressing the globus pallidus in Parkinson's disease. Medication is the primary treatment for motor symptoms in the early stages of Parkinson's disease, while deep brain stimulation has been clinically proven to be effective in alleviating symptoms in patients with advanced Parkinson's disease, particularly for the movement disorders caused by levodopa. Deep brain stimulation targeting the globus pallidus internus can improve motor function in patients with tremor-dominant and non-tremor-dominant Parkinson's disease, while deep brain stimulation targeting the globus pallidus externus can alter the temporal pattern of neural activity throughout the basal ganglia-thalamus network. Therefore, the composition of the globus pallidus neurons, the neurotransmitters that act on them, their electrical activity, and the neural circuits they form can guide the search for new multi-target drugs to treat Parkinson's disease in clinical practice. Examining the potential intra-nuclear and neural circuit mechanisms of deep brain stimulation associated with the globus pallidus can facilitate the management of both motor and non-motor symptoms while minimizing the side effects caused by deep brain stimulation.
Collapse
Affiliation(s)
- Yimiao Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Huixian Zhu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Kangli Shen
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Ruiqi Liu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Chenxin Fang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Weiwei Lou
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Yifan Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Wangrui Yuan
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Xin Cao
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Qianxing Zhuang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Benarroch E. What Are Current Concepts on the Functional Organization of the Globus Pallidus Externus and Its Potential Role in Parkinson Disease? Neurology 2025; 104:e213623. [PMID: 40327827 DOI: 10.1212/wnl.0000000000213623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 05/08/2025] Open
|
3
|
Hoang MD, Kang W, Koh M, Park SM. Fully Wireless Implantable Device Capable of Multichannel Neural Spike Recording and Stimulation for Long-Term Freely Moving Rodent Study. IEEE Trans Neural Syst Rehabil Eng 2025; 33:1621-1632. [PMID: 40293885 DOI: 10.1109/tnsre.2025.3564625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Neural spike recordings provide detailed insights into the neuronal activity and serve as powerful feedback signals for closed-loop neuromodulation, which is gaining significant attention as a medical technology of the future. However, chronic preclinical evaluations of such innovations have been hindered by the tethering effects of traditional systems on naturalistic movements. Numerous untethered systems have currently promoted experiments in ambulatory animals but robust spike recording remains challenging. This study presents a fully wireless implantable device with a compact volume of 4.8 cm3, offering six-channel spike recording at 20 kHz which matches the performance of commercial benchtop systems and four-channel stimulation with <0.1% error for long-term freely moving rodent studies. Together with a 6.78-MHz magnetic resonance wireless power transfer technology, the device enables 2.4 GHz bidirectional wireless communication, ensuring stable data transmission up to 1.5 m with <0.1% data loss. The alumina ceramic-kovar hermetic sealing protects the electronics with minimal radiowave efficiency losses of 10% at 6.78 MHz and 0.1% at 2.4 GHz. Successful implantations in rats (n =5) demonstrate sustained spike recordings from the hippocampus over 60 days. Successful closed-loop seizure detection based on neural activity recording and suppression through an acute status epilepticus model highlight the potential of this device in chronic disease management applications.
Collapse
|
4
|
Li J, Wang L, Pan Y, Huang P, Xu L, Zhang Y, De Ridder D, Voon V, Li D. Subthalamic nucleus oscillations during facial emotion processing and apathy in Parkinson's disease. J Affect Disord 2025; 373:314-324. [PMID: 39761756 DOI: 10.1016/j.jad.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Parkinson's disease (PD) is primarily characterized by motor symptoms, but patients also experience a relatively high prevalence of non-motor symptoms, including emotional and cognitive impairments. While the subthalamic nucleus (STN) is a common target for deep brain stimulation to treat motor symptoms in PD, its role in emotion processing is still under investigation. This study examines the subthalamic neural oscillatory activities during facial emotion processing and its association with affective characteristics. METHODS Twenty PD patients who underwent subthalamic deep brain stimulation surgery performed a facial-expression-recognition task while STN local field potential (LFP) and frontal electroencephalography (EEG) were recorded. The facial-emotion-induced time-frequency decomposition of the STN-LFP and the frontal EEG, as well as the LFP-EEG coherence, were analyzed. Furthermore, the correlation between STN activities and affective characteristics was examined. RESULTS Facial expressions elicited increased delta-theta-band and decreased alpha-beta-band activities in STN-LFP. Reduced alpha-beta-band LFP desynchronization was correlated with the severity of apathy. Increased theta-band and decreased alpha-beta-band EEG activities responded to facial emotion. Notably, lower coherence between STN-LFP and frontal EEG in delta-theta-band activity and alpha-band activity correlated with the degree of anhedonia. CONCLUSION These results indicate that subthalamic activities during facial emotion processing are associated with apathy and anhedonia, emphasizing the cognitive-limbic function of STN and its role as a physiological target for apathy neuromodulation in PD.
Collapse
Affiliation(s)
- Jun Li
- Center for Functional Neurosurgery, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Linbin Wang
- Center for Functional Neurosurgery, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Yixin Pan
- Center for Functional Neurosurgery, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Huang
- Center for Functional Neurosurgery, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Xu
- Center for Functional Neurosurgery, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dirk De Ridder
- Unit of Neurosurgery, Department of Surgical Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Dianyou Li
- Center for Functional Neurosurgery, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Balachandar A, Hashim Y, Vaou O, Fasano A. Automated Sleep Detection in Movement Disorders Using Deep Brain Stimulation and Machine Learning. Mov Disord 2024; 39:2097-2102. [PMID: 39175366 DOI: 10.1002/mds.29987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Automated sleep detection in movement disorders may allow monitoring sleep, potentially guiding adaptive deep brain stimulation (DBS). OBJECTIVES The aims were to compare wake-versus-sleep status (WSS) local field potentials (LFP) in a home environment and develop biomarkers of WSS in Parkinson's disease (PD), essential tremor (ET), and Tourette's syndrome (TS) patients. METHODS Five PD, 2 ET, and 1 TS patient were implanted with Medtronic Percept (3 STN [subthalamic nucleus], 3 GPi [globus pallidus interna], and 2 ventral intermediate nucleus). Over five to seven nights, β-band (12.5-30 Hz) and/or α-band (7-12 Hz) LFP power spectral densities were recorded. Wearable actigraphs tracked sleep. RESULTS From sleep to wake, PD LFP β-power increased in STN and decreased in GPi, and α-power increased in both. Machine learning classifiers were trained. For PD, the highest WSS accuracy was 93% (F1 = 0.93), 86% across all patients (F1 = 0.86). The maximum accuracy was 86% for ET and 89% for TS. CONCLUSION Chronic intracranial narrowband recordings can accurately identify sleep in various movement disorders and targets in this proof-of-concept study. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Arjun Balachandar
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yosra Hashim
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Okeanis Vaou
- Department of Neurology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
- CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| |
Collapse
|
6
|
Cagle JN, de Araujo T, Johnson KA, Yu J, Fanty L, Sarmento FP, Little S, Okun MS, Wong JK, de Hemptinne C. Chronic intracranial recordings in the globus pallidus reveal circadian rhythms in Parkinson's disease. Nat Commun 2024; 15:4602. [PMID: 38816390 PMCID: PMC11139908 DOI: 10.1038/s41467-024-48732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
Circadian rhythms have been shown in the subthalamic nucleus (STN) in Parkinson's disease (PD), but only a few studies have focused on the globus pallidus internus (GPi). This retrospective study investigates GPi circadian rhythms in a large cohort of subjects with PD (130 recordings from 93 subjects) with GPi activity chronically recorded in their home environment. We found a significant change in GPi activity between daytime and nighttime in most subjects (82.4%), with a reduction in GPi activity at nighttime in 56.2% of recordings and an increase in activity in 26.2%. GPi activity in higher frequency bands ( > 20 Hz) was more likely to decrease at night and in patients taking extended-release levodopa medication. Our results suggest that circadian fluctuations in the GPi vary across individuals and that increased power at night might be due to the reemergence of pathological neural activity. These findings should be considered to ensure successful implementation of adaptive neurostimulation paradigms in the real-world.
Collapse
Affiliation(s)
- Jackson N Cagle
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Tiberio de Araujo
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Kara A Johnson
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - John Yu
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Lauren Fanty
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Filipe P Sarmento
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Simon Little
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Michael S Okun
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Joshua K Wong
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Coralie de Hemptinne
- Department of Neurology, University of Florida, Gainesville, FL, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Ebden M, Elkaim LM, Breitbart S, Yan H, Warsi N, Huynh M, Mithani K, Venetucci Gouveia F, Fasano A, Ibrahim GM, Gorodetsky C. Chronic Pallidal Local Field Potentials Are Associated With Dystonic Symptoms in Children. Neuromodulation 2024; 27:551-556. [PMID: 37768258 DOI: 10.1016/j.neurom.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Novel deep brain stimulation devices can record local field potentials (LFPs), which represent the synchronous synaptic activity of neuronal populations. The clinical relevance of LFPs in patients with dystonia remains unclear. OBJECTIVES We sought to determine whether chronic LFPs recorded from the globus pallidus internus (GPi) were associated with symptoms of dystonia in children. MATERIALS AND METHODS Ten patients with heterogeneous forms of dystonia (genetic and acquired) were implanted with neurostimulators that recorded LFP spectral snapshots. Spectra were compared across parent-reported asymptomatic and symptomatic periods, with daily narrowband data superimposed in 24 one-hour bins. RESULTS Spectral power increased during periods of registered dystonic symptoms: mean increase = 102%, CI: (76.7, 132). Circadian rhythms within the LFP narrowband time series correlated with dystonic symptoms: for delta/theta-waves, correlation = 0.33, CI: (0.18, 0.47) and for alpha waves, correlation = 0.27, CI: (0.14, 0.40). CONCLUSIONS LFP spectra recorded in the GPi indicate a circadian pattern and are associated with the manifestation of dystonic symptoms.
Collapse
Affiliation(s)
- Mark Ebden
- Neurosciences and Mental Health Program, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lior M Elkaim
- Division of Neurology and Neurosurgery, McGill University, McGill University Health Centre, Montreal, Quebec, Canada
| | - Sara Breitbart
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Han Yan
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nebras Warsi
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - MyLoi Huynh
- Neurosciences and Mental Health Program, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karim Mithani
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Flavia Venetucci Gouveia
- Neurosciences and Mental Health Program, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada; CenteR for Advancing Neurotechnological Innovation to Application, Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Carolina Gorodetsky
- Division of Neurology, the Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Verma AK, Nandakumar B, Acedillo K, Yu Y, Marshall E, Schneck D, Fiecas M, Wang J, MacKinnon CD, Howell MJ, Vitek JL, Johnson LA. Slow-wave sleep dysfunction in mild parkinsonism is associated with excessive beta and reduced delta oscillations in motor cortex. Front Neurosci 2024; 18:1338624. [PMID: 38449736 PMCID: PMC10915200 DOI: 10.3389/fnins.2024.1338624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 03/08/2024] Open
Abstract
Increasing evidence suggests slow-wave sleep (SWS) dysfunction in Parkinson's disease (PD) is associated with faster disease progression, cognitive impairment, and excessive daytime sleepiness. Beta oscillations (8-35 Hz) in the basal ganglia thalamocortical (BGTC) network are thought to play a role in the development of cardinal motor signs of PD. The role cortical beta oscillations play in SWS dysfunction in the early stage of parkinsonism is not understood, however. To address this question, we used a within-subject design in a nonhuman primate (NHP) model of PD to record local field potentials from the primary motor cortex (MC) during sleep across normal and mild parkinsonian states. The MC is a critical node in the BGTC network, exhibits pathological oscillations with depletion in dopamine tone, and displays high amplitude slow oscillations during SWS. The MC is therefore an appropriate recording site to understand the neurophysiology of SWS dysfunction in parkinsonism. We observed a reduction in SWS quantity (p = 0.027) in the parkinsonian state compared to normal. The cortical delta (0.5-3 Hz) power was reduced (p = 0.038) whereas beta (8-35 Hz) power was elevated (p = 0.001) during SWS in the parkinsonian state compared to normal. Furthermore, SWS quantity positively correlated with delta power (r = 0.43, p = 0.037) and negatively correlated with beta power (r = -0.65, p < 0.001). Our findings support excessive beta oscillations as a mechanism for SWS dysfunction in mild parkinsonism and could inform the development of neuromodulation therapies for enhancing SWS in people with PD.
Collapse
Affiliation(s)
- Ajay K. Verma
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Bharadwaj Nandakumar
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Kit Acedillo
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Ethan Marshall
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - David Schneck
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
| | - Mark Fiecas
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Colum D. MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Michael J. Howell
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Luke A. Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
9
|
Verma AK, Nandakumar B, Acedillo K, Yu Y, Marshall E, Schneck D, Fiecas M, Wang J, MacKinnon CD, Howell MJ, Vitek JL, Johnson LA. Excessive cortical beta oscillations are associated with slow-wave sleep dysfunction in mild parkinsonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564524. [PMID: 37961389 PMCID: PMC10634920 DOI: 10.1101/2023.10.28.564524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Increasing evidence associates slow-wave sleep (SWS) dysfunction with neurodegeneration. Using a within-subject design in the nonhuman primate model of Parkinson's disease (PD), we found that reduced SWS quantity in mild parkinsonism was accompanied by elevated beta and reduced delta power during SWS in the motor cortex. Our findings support excessive beta oscillations as a mechanism for SWS dysfunction and will inform development of neuromodulation therapies for enhancing SWS in PD.
Collapse
Affiliation(s)
- Ajay K. Verma
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | | - Kit Acedillo
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Ethan Marshall
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - David Schneck
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Mark Fiecas
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | | - Michael J. Howell
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Luke A. Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Memon AA, Edney BS, Baumgartner AJ, Gardner AJ, Catiul C, Irwin ZT, Joop A, Miocinovic S, Amara AW. Effects of deep brain stimulation on quantitative sleep electroencephalogram during non-rapid eye movement in Parkinson's disease. Front Hum Neurosci 2023; 17:1269864. [PMID: 37810765 PMCID: PMC10551142 DOI: 10.3389/fnhum.2023.1269864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Sleep dysfunction is frequently experienced by people with Parkinson's disease (PD) and negatively influences quality of life. Although subthalamic nucleus (STN) deep brain stimulation (DBS) can improve sleep in PD, sleep microstructural features such as sleep spindles provide additional insights about healthy sleep. For example, sleep spindles are important for better cognitive performance and for sleep consolidation in healthy adults. We hypothesized that conventional STN DBS settings would yield a greater enhancement in spindle density compared to OFF and low frequency DBS. Methods In a previous within-subject, cross-sectional study, we evaluated effects of low (60 Hz) and conventional high (≥130 Hz) frequency STN DBS settings on sleep macroarchitectural features in individuals with PD. In this post hoc, exploratory analysis, we conducted polysomnography (PSG)-derived quantitative electroencephalography (qEEG) assessments in a cohort of 15 individuals with PD who had undergone STN DBS treatment a median 13.5 months prior to study participation. Fourteen participants had unilateral DBS and 1 had bilateral DBS. During three nonconsecutive nights of PSG, the participants were assessed under three different DBS conditions: DBS OFF, DBS LOW frequency (60 Hz), and DBS HIGH frequency (≥130 Hz). The primary objective of this study was to investigate the changes in sleep spindle density across the three DBS conditions using repeated-measures analysis of variance. Additionally, we examined various secondary outcomes related to sleep qEEG features. For all participants, PSG-derived EEG data underwent meticulous manual inspection, with the exclusion of any segments affected by movement artifact. Following artifact rejection, sleep qEEG analysis was conducted on frontal and central leads. The measures included slow wave (SW) and spindle density and morphological characteristics, SW-spindle phase-amplitude coupling, and spectral power analysis during non-rapid eye movement (NREM) sleep. Results The analysis revealed that spindle density was significantly higher in the DBS HIGH condition compared to the DBS LOW condition. Surprisingly, we found that SW amplitude during NREM was significantly higher in the DBS LOW condition compared to DBS OFF and DBS HIGH conditions. However, no significant differences were observed in the other sleep qEEG features during sleep at different DBS conditions. Conclusion This study presents preliminary evidence suggesting that conventional HIGH frequency DBS settings enhance sleep spindle density in PD. Conversely, LOW frequency settings may have beneficial effects on increasing slow wave amplitude during sleep. These findings may inform mechanisms underlying subjective improvements in sleep quality reported in association with DBS. Moreover, this work supports the need for additional research on the influence of surgical interventions on sleep disorders, which are prevalent and debilitating non-motor symptoms in PD.
Collapse
Affiliation(s)
- Adeel A. Memon
- Department of Neurology, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV, United States
| | - Brandon S. Edney
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alexander J. Baumgartner
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Alan J. Gardner
- Neuroscience Undergraduate Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Corina Catiul
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zachary T. Irwin
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Allen Joop
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Amy W. Amara
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
11
|
Gupta R, Kumari S, Senapati A, Ambasta RK, Kumar P. New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in Parkinson's disease. Ageing Res Rev 2023; 90:102013. [PMID: 37429545 DOI: 10.1016/j.arr.2023.102013] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of neuronal cells, which leads to synaptic dysfunction and cognitive defects. Despite the advancements in treatment strategies, the management of PD is still a challenging event. Early prediction and diagnosis of PD are of utmost importance for effective management of PD. In addition, the classification of patients with PD as compared to normal healthy individuals also imposes drawbacks in the early diagnosis of PD. To address these challenges, artificial intelligence (AI) and machine learning (ML) models have been implicated in the diagnosis, prediction, and treatment of PD. Recent times have also demonstrated the implication of AI and ML models in the classification of PD based on neuroimaging methods, speech recording, gait abnormalities, and others. Herein, we have briefly discussed the role of AI and ML in the diagnosis, treatment, and identification of novel biomarkers in the progression of PD. We have also highlighted the role of AI and ML in PD management through altered lipidomics and gut-brain axis. We briefly explain the role of early PD detection through AI and ML algorithms based on speech recordings, handwriting patterns, gait abnormalities, and neuroimaging techniques. Further, the review discuss the potential role of the metaverse, the Internet of Things, and electronic health records in the effective management of PD to improve the quality of life. Lastly, we also focused on the implementation of AI and ML-algorithms in neurosurgical process and drug discovery.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA.
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA
| | | | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA.
| |
Collapse
|
12
|
Radcliffe EM, Baumgartner AJ, Kern DS, Al Borno M, Ojemann S, Kramer DR, Thompson JA. Oscillatory beta dynamics inform biomarker-driven treatment optimization for Parkinson's disease. J Neurophysiol 2023; 129:1492-1504. [PMID: 37198135 DOI: 10.1152/jn.00055.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/23/2023] [Accepted: 05/17/2023] [Indexed: 05/19/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons and dysregulation of the basal ganglia. Cardinal motor symptoms include bradykinesia, rigidity, and tremor. Deep brain stimulation (DBS) of select subcortical nuclei is standard of care for medication-refractory PD. Conventional open-loop DBS delivers continuous stimulation with fixed parameters that do not account for a patient's dynamic activity state or medication cycle. In comparison, closed-loop DBS, or adaptive DBS (aDBS), adjusts stimulation based on biomarker feedback that correlates with clinical state. Recent work has identified several neurophysiological biomarkers in local field potential recordings from PD patients, the most promising of which are 1) elevated beta (∼13-30 Hz) power in the subthalamic nucleus (STN), 2) increased beta synchrony throughout basal ganglia-thalamocortical circuits, notably observed as coupling between the STN beta phase and cortical broadband gamma (∼50-200 Hz) amplitude, and 3) prolonged beta bursts in the STN and cortex. In this review, we highlight relevant frequency and time domain features of STN beta measured in PD patients and summarize how spectral beta power, oscillatory beta synchrony, phase-amplitude coupling, and temporal beta bursting inform PD pathology, neurosurgical targeting, and DBS therapy. We then review how STN beta dynamics inform predictive, biomarker-driven aDBS approaches for optimizing PD treatment. We therefore provide clinically useful and actionable insight that can be applied toward aDBS implementation for PD.
Collapse
Affiliation(s)
- Erin M Radcliffe
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Alexander J Baumgartner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Drew S Kern
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Mazen Al Borno
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Computer Science and Engineering, University of Colorado Denver, Denver, Colorado, United States
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Daniel R Kramer
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - John A Thompson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
13
|
Yin Z, Jiang Y, Merk T, Neumann WJ, Ma R, An Q, Bai Y, Zhao B, Xu Y, Fan H, Zhang Q, Qin G, Zhang N, Ma J, Zhang H, Liu H, Shi L, Yang A, Meng F, Zhu G, Zhang J. Pallidal activities during sleep and sleep decoding in dystonia, Huntington's, and Parkinson's disease. Neurobiol Dis 2023; 182:106143. [PMID: 37146835 DOI: 10.1016/j.nbd.2023.106143] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Sleep disturbances are highly prevalent in movement disorders, potentially due to the malfunctioning of basal ganglia structures. Pallidal deep brain stimulation (DBS) has been widely used for multiple movement disorders and been reported to improve sleep. We aimed to investigate the oscillatory pattern of pallidum during sleep and explore whether pallidal activities can be utilized to differentiate sleep stages, which could pave the way for sleep-aware adaptive DBS. METHODS We directly recorded over 500 h of pallidal local field potentials during sleep from 39 subjects with movement disorders (20 dystonia, 8 Huntington's disease, and 11 Parkinson's disease). Pallidal spectrum and cortical-pallidal coherence were computed and compared across sleep stages. Machine learning approaches were utilized to build sleep decoders for different diseases to classify sleep stages through pallidal oscillatory features. Decoding accuracy was further associated with the spatial localization of the pallidum. RESULTS Pallidal power spectra and cortical-pallidal coherence were significantly modulated by sleep-stage transitions in three movement disorders. Differences in sleep-related activities between diseases were identified in non-rapid eye movement (NREM) and REM sleep. Machine learning models using pallidal oscillatory features can decode sleep-wake states with over 90% accuracy. Decoding accuracies were higher in recording sites within the internus-pallidum than the external-pallidum, and can be precited using structural (P < 0.0001) and functional (P < 0.0001) whole-brain neuroimaging connectomics. CONCLUSION Our findings revealed strong sleep-stage dependent distinctions in pallidal oscillations in multiple movement disorders. Pallidal oscillatory features were sufficient for sleep stage decoding. These data may facilitate the development of adaptive DBS systems targeting sleep problems that have broad translational prospects.
Collapse
Affiliation(s)
- Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Timon Merk
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Campus Mitte, Charite - Universitatsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Campus Mitte, Charite - Universitatsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Houyou Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Quan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guofan Qin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Ma
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hua Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huanguang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
14
|
Verma AK, Yu Y, Acosta-Lenis SF, Havel T, Sanabria DE, Molnar GF, MacKinnon CD, Howell MJ, Vitek JL, Johnson LA. Parkinsonian daytime sleep-wake classification using deep brain stimulation lead recordings. Neurobiol Dis 2023; 176:105963. [PMID: 36521781 PMCID: PMC9869648 DOI: 10.1016/j.nbd.2022.105963] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Excessive daytime sleepiness is a recognized non-motor symptom that adversely impacts the quality of life of people with Parkinson's disease (PD), yet effective treatment options remain limited. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for PD motor signs. Reliable daytime sleep-wake classification using local field potentials (LFPs) recorded from DBS leads implanted in STN can inform the development of closed-loop DBS approaches for prompt detection and disruption of sleep-related neural oscillations. We performed STN DBS lead recordings in three nonhuman primates rendered parkinsonian by administrating neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Reference sleep-wake states were determined on a second-by-second basis by video monitoring of eyes (eyes-open, wake and eyes-closed, sleep). The spectral power in delta (1-4 Hz), theta (4-8 Hz), low-beta (8-20 Hz), high-beta (20-35 Hz), gamma (35-90 Hz), and high-frequency (200-400 Hz) bands were extracted from each wake and sleep epochs for training (70% data) and testing (30% data) a support vector machines classifier for each subject independently. The spectral features yielded reasonable daytime sleep-wake classification (sensitivity: 90.68 ± 1.28; specificity: 88.16 ± 1.08; accuracy: 89.42 ± 0.68; positive predictive value; 88.70 ± 0.89, n = 3). Our findings support the plausibility of monitoring daytime sleep-wake states using DBS lead recordings. These results could have future clinical implications in informing the development of closed-loop DBS approaches for automatic detection and disruption of sleep-related neural oscillations in people with PD to promote wakefulness.
Collapse
Affiliation(s)
- Ajay K Verma
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Sergio F Acosta-Lenis
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Tyler Havel
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | | | - Gregory F Molnar
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Colum D MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Michael J Howell
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Luke A Johnson
- Department of Neurology, University of Minnesota, Minneapolis, United States of America.
| |
Collapse
|
15
|
Tsimpanouli ME, Ghimire A, Barget AJ, Weston R, Paulson HL, Costa MDC, Watson BO. Sleep Alterations in a Mouse Model of Spinocerebellar Ataxia Type 3. Cells 2022; 11:cells11193132. [PMID: 36231095 PMCID: PMC9563426 DOI: 10.3390/cells11193132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder showing progressive neuronal loss in several brain areas and a broad spectrum of motor and non-motor symptoms, including ataxia and altered sleep. While sleep disturbances are known to play pathophysiologic roles in other neurodegenerative disorders, their impact on SCA3 is unknown. Using spectrographic measurements, we sought to quantitatively characterize sleep electroencephalography (EEG) in SCA3 transgenic mice with confirmed disease phenotype. We first measured motor phenotypes in 18-31-week-old homozygous SCA3 YACMJD84.2 mice and non-transgenic wild-type littermate mice during lights-on and lights-off periods. We next implanted electrodes to obtain 12-h (zeitgeber time 0-12) EEG recordings for three consecutive days when the mice were 26-36 weeks old. EEG-based spectroscopy showed that compared to wild-type littermates, SCA3 homozygous mice display: (i) increased duration of rapid-eye movement sleep (REM) and fragmentation in all sleep and wake states; (ii) higher beta power oscillations during REM and non-REM (NREM); and (iii) additional spectral power band alterations during REM and wake. Our data show that sleep architecture and EEG spectral power are dysregulated in homozygous SCA3 mice, indicating that common sleep-related etiologic factors may underlie mouse and human SCA3 phenotypes.
Collapse
Affiliation(s)
- Maria-Efstratia Tsimpanouli
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (M.-E.T.); (M.d.C.C.); (B.O.W.)
| | - Anjesh Ghimire
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna J. Barget
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ridge Weston
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Henry L. Paulson
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria do Carmo Costa
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (M.-E.T.); (M.d.C.C.); (B.O.W.)
| | - Brendon O. Watson
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (M.-E.T.); (M.d.C.C.); (B.O.W.)
| |
Collapse
|
16
|
Fleming JE, Kremen V, Gilron R, Gregg NM, Zamora M, Dijk DJ, Starr PA, Worrell GA, Little S, Denison TJ. Embedding Digital Chronotherapy into Bioelectronic Medicines. iScience 2022; 25:104028. [PMID: 35313697 PMCID: PMC8933700 DOI: 10.1016/j.isci.2022.104028] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|