1
|
Toader C, Serban M, Munteanu O, Covache-Busuioc RA, Enyedi M, Ciurea AV, Tataru CP. From Synaptic Plasticity to Neurodegeneration: BDNF as a Transformative Target in Medicine. Int J Mol Sci 2025; 26:4271. [PMID: 40362507 PMCID: PMC12071950 DOI: 10.3390/ijms26094271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/19/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The brain-derived neurotrophic factor (BDNF) has become one of the cornerstones of neuropathology, influencing synaptic plasticity, cognitive resilience, and neuronal survival. Apart from its molecular biology, BDNF is a powerful target for transformative benefit in precision medicine, leading to innovative therapeutic approaches for neurodegenerative and psychiatric diseases like Alzheimer's disease (AD), Parkinson's disease (PD), major depressive disorder (MDD), and post-traumatic stress disorder (PTSD). Nevertheless, clinical applicability is obstructed by hurdles in delivery, patient-specific diversity, and pleiotropic signaling. Here, we summarize findings in BDNF research, including its regulatory pathways and diagnostic/prognostic biomarkers and integrative therapeutic approaches. We describe innovative delivery systems, such as lipid nanoparticle-based mRNA therapies and CRISPR-dCas9-based epigenetic editing that bypass obstacles such as BBB (blood-brain barrier) and enzymatic degradation. The recent implementation of multiplex panels combining BDNF biodynamic indicators with tau and amyloid-β signaling markers showcases novel levels of specificity for both early detection and potential therapeutic monitoring. Humanized preclinical models like iPSC-derived neurons and organoids point to the key role of BDNF in neurodeveloping and neurodegenerative processes, paralleling advances in bridging preclinical observation and clinical environments. Moreover, novel therapeutic tools delivering TrkB activators or the implementation of AI-based dynamic care platforms enable tailored and scalable treatments. This review also aims to extend a framework used in the understanding of BDNF's relevance to traditional neurodegenerative models by situating more recent work detailing BDNF's actions in ischemic tissues and the gut-brain axis in the context of systemic health. Finally, we outline a roadmap for the incorporation of BDNF-centered therapies into worldwide healthcare, highlighting ethical issues, equity, and interdisciplinary decomposition. The therapeutic potential of BDNF heralds a new era in neuroscience and medicine, revolutionizing brain health and paving the way for the advancement of precision medicine.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
- Puls Med Association, 051885 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
- Puls Med Association, 051885 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section, Romanian Academy, 010071 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
2
|
Wang X, Zang J, Yang Y, Li K, Ye D, Wang Z, Wang Q, Wu Y, Luan Z. Human neural stem cells transplanted during the sequelae phase alleviate motor deficits in a rat model of cerebral palsy. Cytotherapy 2024; 26:1491-1504. [PMID: 39186025 DOI: 10.1016/j.jcyt.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
AIMS Cerebral palsy (CP) is the most common physical disability in children, yet lacks an ideal animal model or effective treatment. This study aimed to develop a reliable CP model in neonatal rats and explore the effectiveness and underlying mechanisms of human neural stem cells (hNSCs) transplantation during the sequelae phase of CP. METHODS Vasoconstrictor endothelin-1 (ET-1) was administered intracranially to the motor cortex and striatum of rats on postnatal day 5 to establish a CP model. hNSCs (5 × 105/5 μL) pretreated with hypoxia (5% O2 for 24 h) were transplanted near the infarct 3 weeks after ET-1 injury (the sequelae phase). The distribution and differentiation of hNSCs were observed after transplantation. Changes in neurotrophic factors, neurogenesis, angiogenesis, axonal plasticity, and motor function were analyzed. RESULTS Neurobehavioral tests showed poor muscle strength and postural control in young ET-1 rats. Motor deficits of the left forelimb and gait abnormalities persisted into adulthood. Histopathological findings and MRI indicated the atrophy of the cortex, striatum, and adjacent corpus callosum in ET-1 rats. At 56 days after transplantation, hNSCs were widely distributed in the ipsilateral hemisphere, and differentiated into neurons, oligodendrocytes and astrocytes. Transplantation of hNSCs increased BDNF and VEGF expression, EdU+ cell number in the SVZ area, RECA-1+ vessel density and GAP-43 intensity around the lesion in ET-1 rats. The cylinder test revealed a significant increase in the left forelimb motor function from 28 days after transplantation, and the staircase and CatWalk tests showed improvements in fine motor function and gait parameters. CONCLUSIONS Intracerebral injection of ET-1 modelled key functional and histopathological features of CP. hNSCs transplanted during the sequelae phase of CP resulted in long-term improvement in motor performance, possibly attributed to its capacity to stimulate neurotrophic factors, facilitate neurogenesis, angiogenesis, and promote axonal plasticity.
Collapse
Affiliation(s)
- Xiaohua Wang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China, 100048; Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China, 226001
| | - Jing Zang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China, 100048
| | - Yinxiang Yang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China, 100048
| | - Ke Li
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China, 100048
| | - Dou Ye
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China, 100048
| | - Zhaoyan Wang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China, 100048
| | - Qian Wang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China, 100048
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China, 226001.
| | - Zuo Luan
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China, 100048.
| |
Collapse
|
3
|
Ramires Júnior OV, Silveira JS, Gusso D, Krupp Prauchner GR, Ferrary Deniz B, Almeida WD, Pereira LO, Wyse AT. Homocysteine decreases VEGF, EGF, and TrkB levels and increases CCL5/RANTES in the hippocampus: Neuroprotective effects of rivastigmine and ibuprofen. Chem Biol Interact 2024; 403:111260. [PMID: 39357784 DOI: 10.1016/j.cbi.2024.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Homocysteine (Hcy) is produced through methionine transmethylation. Elevated Hcy levels are termed Hyperhomocysteinemia (HHcy) and represent a risk factor for neurodegenerative conditions such as Alzheimer's disease. This study aimed to explore the impact of mild HHcy and the neuroprotective effects of ibuprofen and rivastigmine via immunohistochemical analysis of glial markers (Iba-1 and GFAP). Additionally, we assessed levels of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), chemokine ligand 5 (CCL5/RANTES), CX3C chemokine ligand 1 (CX3CL1), and the NGF/p75NTR/tropomyosin kinase B (TrkB) pathway in the hippocampus of adult rats. Mild chronic HHcy was induced chemically in Wistar rats by subcutaneous administration of Hcy (4 mg/kg body weight) twice daily for 30 days. Rivastigmine (0.5 mg/kg) and ibuprofen (40 mg/kg) were administered intraperitoneally once daily. Results revealed elevated levels of CCL5/RANTES and reduced levels of VEGF, EGF, and TrkB in the hippocampus of HHcy-exposed rats. Rivastigmine mitigated the neurotoxic effects of HHcy by increasing TrkB and VEGF levels. Conversely, ibuprofen attenuated CCL5/RANTES levels against the neurotoxicity of HHcy, significantly reducing this chemokine's levels. HHcy-induced neurochemical impairment in the hippocampus may jeopardize neurogenesis, synapse formation, axonal transport, and inflammatory balance, leading to neurodegeneration. Treatments with rivastigmine and ibuprofen alleviated some of these detrimental effects. Reversing HHcy-induced damage through these compounds could serve as a potential neuroprotective strategy against brain damage.
Collapse
Affiliation(s)
- Osmar Vieira Ramires Júnior
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Josiane Silva Silveira
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Darlan Gusso
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Gustavo Ricardo Krupp Prauchner
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Bruna Ferrary Deniz
- Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Fisiologia e Farmacologia, Instiruto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wellington de Almeida
- Program in Neurosciences, ICBS, Federal Universityof Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Program in Neurosciences, ICBS, Federal Universityof Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Ts Wyse
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Tian Y, Fan Z, Zeng X, Yu Z, Lu X, Zhao X, Wu Z, He H, Zeng J, Zheng L, Zhang L, Correa VSMC, Ying G, Zhang S, Zhang G. Long-term follow-up of the cognitive function in children after intravitreal ranibizumab for retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol 2024; 262:3117-3124. [PMID: 38643422 DOI: 10.1007/s00417-024-06486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024] Open
Abstract
PURPOSE To evaluate the long-term cognitive function in children treated with intravitreal ranibizumab (IVR) for retinopathy of prematurity(ROP), and the impact of IVR on the growth and ocular development. METHODS In this retrospective study, the premature children aged 4 to 9 years who received monotherapy of IVR (IVR group, n = 25) or monotherapy of laser photocoagulation (LP) (LP group, n = 33) for ROP, and the same age premature children with no ROP (Control group, n = 26) were enrolled from 2020 to 2022 in the pediatric fundus clinic of Shenzhen Eye Hospital. Main outcome measures were full-scale intelligence quotient (FSIQ) and index score using the Chinese version of the Wechsler intelligence scale for children-fourth edition (WISC-IV) and Wechsler preschool and primary scale of intelligence-fourth edition (WPPSI-IV). All children were examined and analyzed for growth and ocular development by recording the height, weight, head circumference, spherical equivalent (SE), best corrected visual acuity (BCVA) and axial length (AL). RESULTS There were 17 children in IVR group, 17 in LP group, and 11 in Control group who received the WISC-IV assessment. There were no significant differences in FSIQ, verbal comprehension index, perceptual reasoning index, working memory index, processing speed index, general ability index and cognitive efficiency index among the three groups. There were 8 children in IVR group, 16 in LP group, and 15 in Control group who received the WPPSI-IV assessment. There were no significant differences in FSIQ, verbal comprehension index, visuospatial index, fluid reasoning index, working memory index, non-verbal index, general ability index and cognitive efficiency index among the three groups. There was no significant difference in BCVA among the three groups (P = 0.74), however, there is an increase for AL in IVR group when compared with LP group (22.60 ± 0.58 vs. 22.13 ± 0.84, P = 0.003), and the ROP patients of IVR group have a significant increase in the AL compared to the Control group(22.60 ± 0.58 vs. 22.03 ± 0.71, P < 0.0001). CONCLUSIONS Children with a history of IVR have a similar cognitive function outcomes compared to those with a history of LP or were premature without ROP. ROP children with a history of IVR has longer AL than those treated with LP.
Collapse
Affiliation(s)
- Ya Tian
- Department of Ophthalmology, Guizhou Provincial People's Hospital, 18 Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Zixin Fan
- Department of Pediatric Retinal Surgery, Shenzhen Eye Hospital, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Xianlu Zeng
- Department of Pediatric Retinal Surgery, Shenzhen Eye Hospital, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Zhen Yu
- Department of Pediatric Retinal Surgery, Shenzhen Eye Hospital, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Xiaofeng Lu
- Department of Pediatric Retinal Surgery, Shenzhen Eye Hospital, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Xinyu Zhao
- Department of Pediatric Retinal Surgery, Shenzhen Eye Hospital, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Zhenquan Wu
- Department of Pediatric Retinal Surgery, Shenzhen Eye Hospital, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Honghui He
- Department of Pediatric Retinal Surgery, Shenzhen Eye Hospital, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Jian Zeng
- Department of Pediatric Retinal Surgery, Shenzhen Eye Hospital, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Lei Zheng
- Department of Pediatric Retinal Surgery, Shenzhen Eye Hospital, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Linlin Zhang
- Department of Child Health Care, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518040, Guangdong Province, China
| | - Victor S M C Correa
- Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Guishuang Ying
- Center for Preventative Ophthalmology and Biostatistics, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Suite 700, Philadelphia, PA, 19104, USA
| | - Shaochong Zhang
- Department of Pediatric Retinal Surgery, Shenzhen Eye Hospital, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Guoming Zhang
- Department of Pediatric Retinal Surgery, Shenzhen Eye Hospital, 18 Zetian Road, Shenzhen, 518040, Guangdong, China.
| |
Collapse
|
5
|
Yılmaz E, Baltaci SB, Mogulkoc R, Baltaci AK. The impact of flavonoids and BDNF on neurogenic process in various physiological/pathological conditions including ischemic insults: a narrative review. Nutr Neurosci 2024; 27:1025-1041. [PMID: 38151886 DOI: 10.1080/1028415x.2023.2296165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Ischemic stroke is the leading cause of mortality and disability worldwide with more than half of survivors living with serious neurological sequelae thus, it has recently attracted considerable attention in the field of medical research. Neurogenesis is the process of formation of new neurons in the brain, including the human brain, from neural stem/progenitor cells [NS/PCs] which reside in neurogenic niches that contain the necessary substances for NS/PC proliferation, differentiation, migration, and maturation into functioning neurons which can integrate into a pre-existing neural network.Neurogenesis can be modulated by many exogenous and endogenous factors, pathological conditions. Both brain-derived neurotrophic factor, and flavonoids can modulate the neurogenic process in physiological conditions and after various pathological conditions including ischemic insults. AIM This review aims to discuss neurogenesis after ischemic insults and to determine the role of flavonoids and BDNF on neurogenesis under physiological and pathological conditions with a concentration on ischemic insults to the brain in particular. METHOD Relevant articles assessing the impact of flavonoids and BDNF on neurogenic processes in various physiological/pathological conditions including ischemic insults within the timeline of 1965 until 2023 were searched using the PubMed database. CONCLUSIONS The selected studies have shown that ischemic insults to the brain induce NS/PC proliferation, differentiation, migration, and maturation into functioning neurons integrating into a pre-existing neural network. Flavonoids and BDNF can modulate neurogenesis in the brain in various physiological/pathological conditions including ischemic insults. In conclusion, flavonoids and BDNF may be involved in post-ischemic brain repair processes through enhancing endogenous neurogenesis.
Collapse
Affiliation(s)
- Esen Yılmaz
- Selcuk University, Medical Faculty, Department of Physiology, Konya, Turkey
| | | | - Rasim Mogulkoc
- Selcuk University, Medical Faculty, Department of Physiology, Konya, Turkey
| | | |
Collapse
|
6
|
Liu X, Zhang Y, Zhao Y, Zhang Q, Han F. The Neurovascular Unit Dysfunction in the Molecular Mechanisms of Epileptogenesis and Targeted Therapy. Neurosci Bull 2024; 40:621-634. [PMID: 38564049 PMCID: PMC11127907 DOI: 10.1007/s12264-024-01193-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/09/2023] [Indexed: 04/04/2024] Open
Abstract
Epilepsy is a multifaceted neurological syndrome characterized by recurrent, spontaneous, and synchronous seizures. The pathogenesis of epilepsy, known as epileptogenesis, involves intricate changes in neurons, neuroglia, and endothelium, leading to structural and functional disorders within neurovascular units and culminating in the development of spontaneous epilepsy. Although current research on epilepsy treatments primarily centers around anti-seizure drugs, it is imperative to seek effective interventions capable of disrupting epileptogenesis. To this end, a comprehensive exploration of the changes and the molecular mechanisms underlying epileptogenesis holds the promise of identifying vital biomarkers for accurate diagnosis and potential therapeutic targets. Emphasizing early diagnosis and timely intervention is paramount, as it stands to significantly improve patient prognosis and alleviate the socioeconomic burden. In this review, we highlight the changes and molecular mechanisms of the neurovascular unit in epileptogenesis and provide a theoretical basis for identifying biomarkers and drug targets.
Collapse
Affiliation(s)
- Xiuxiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China.
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Ying Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yanming Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Qian Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China.
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 211166, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 210019, China.
| |
Collapse
|
7
|
Yang M, Li Y, Liu X, Zou S, Lei L, Zou Q, Zhang Y, Fang Y, Chen S, Zhou L. Autophagy-related genes in mesial temporal lobe epilepsy: an integrated bioinformatics analysis. ACTA EPILEPTOLOGICA 2024; 6:16. [PMID: 40217519 PMCID: PMC11960276 DOI: 10.1186/s42494-024-00160-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Autophagy plays essential roles in the development and pathogenesis of mesial temporal lobe epilepsy (mTLE). In this research, we aim to identify and validate the autophagy-related genes associated with mTLE through bioinformatics analysis and experimental validations. METHODS We obtained the dataset GSE143272 and high-throughput sequencing results of mTLE from public databases. Potential differentially expressed autophagy-related genes related to mTLE were identified using R software. Subsequently, genomes pathway enrichment analysis, protein-protein interactions (PPIs), and the gene ontology (GO) enrichment were performed for the selected autophagy-related genes. The mRNA expression profiles of hub genes were then used to establish a least absolute shrinkage and selection operator (LASSO) model. Finally, seven hub candidate autophagy-related genes were confirmed in hippocampus using the lithium-pilocarpine chronic epilepsy model. RESULTS A total of 40 differential expression genes (DEGs) among the core autophagy-related genes were identified. The analysis results of PPI revealed that interactions among these DEGs. KEGG pathway and GO analysis of selected candidate autophagy-related genes indicated that those enriched terms mainly focused on macroautophagy, regulation of autophagy, cellular response to extracellular stimulus and mitochondrion disassembly. The results suggested that SQSTM1, VEGFA, BNIP and WIPI2 were consistent with the bioinformatics analysis. The expression levels of SQSTM1 and VEGFA in epilepsy model samples were significantly higher than those in normal control, while BNIP and WIPI2 expression levels were notably decreased. The final hub gene-based LASSO regression model accurately predicted the occurrence of epilepsy (AUC = 0.88). CONCLUSIONS Through bioinformatics analysis of public data, we identified 40 candidate autophagy-related genes associated with mTLE. SQSTM1, VEGFA, BNIP and WIPI2 may play significant roles in autophagy, influencing the onset and development of mTLE by regulating autophagy pathway. These findings deepen our understanding of mTLE, and may serve as sensitive and valuable indicators for the prognosis and diagnosis of this condition.
Collapse
Affiliation(s)
- Man Yang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Yinchao Li
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Xianyue Liu
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Shangnan Zou
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Lei Lei
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Qihang Zou
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Yaqian Zhang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Yubao Fang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Shuda Chen
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China.
| | - Liemin Zhou
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China.
| |
Collapse
|
8
|
Gargas J, Janowska J, Gebala P, Maksymiuk W, Sypecka J. Reactive Gliosis in Neonatal Disorders: Friend or Foe for Neuroregeneration? Cells 2024; 13:131. [PMID: 38247822 PMCID: PMC10813898 DOI: 10.3390/cells13020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
A developing nervous system is particularly vulnerable to the influence of pathophysiological clues and injuries in the perinatal period. Astrocytes are among the first cells that react to insults against the nervous tissue, the presence of pathogens, misbalance of local tissue homeostasis, and a lack of oxygen and trophic support. Under this background, it remains uncertain if induced astrocyte activation, recognized as astrogliosis, is a friend or foe for progressing neonatal neurodevelopment. Likewise, the state of astrocyte reactivity is considered one of the key factors discriminating between either the initiation of endogenous reparative mechanisms compensating for aberrations in the structures and functions of nervous tissue or the triggering of neurodegeneration. The responses of activated cells are modulated by neighboring neural cells, which exhibit broad immunomodulatory and pro-regenerative properties by secreting a plethora of active compounds (including interleukins and chemokines, neurotrophins, reactive oxygen species, nitric oxide synthase and complement components), which are engaged in cell crosstalk in a paracrine manner. As the developing nervous system is extremely sensitive to the influence of signaling molecules, even subtle changes in the composition or concentration of the cellular secretome can have significant effects on the developing neonatal brain. Thus, modulating the activity of other types of cells and their interactions with overreactive astrocytes might be a promising strategy for controlling neonatal astrogliosis.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, A. Pawinskiego 5, 02-106 Warsaw, Poland; (J.G.); (J.J.)
| |
Collapse
|
9
|
Moon S, Ito Y. Vasculature cells control neuroglial co-localization and synaptic connection in a central nervous system tissue mimic system. Hum Cell 2023; 36:1938-1947. [PMID: 37470936 DOI: 10.1007/s13577-023-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Despite the development of neural tissue differentiation methods using a wide variety of stem cells and compartments, there is no standardized strategy for establishing synapses. As the neuronal network is developed in parallel with blood vessel angiogenesis in the central nervous system (CNS) from the embryonic period, we examined neuron-astrocyte-vasculature interactions to understand the effect of the vasculature on the development and stabilization of neurological morphogenesis. We generated a cellular co-culture module targeting the CNS that was embedded in a collagen-based extracellular matrix (ECM) gel. Our neuron-astrocyte-vascular complex module identified the neurological co-localization effect by endothelial cells, as well as the pericyte-induced improvement of synaptic connections. Furthermore, it was suggested that the PDGF, BDNF, IGF, and WNT/BMP pathways were upregulated in synaptic connections enhanced conditions, which are composed of neurexin. These results suggest that the integrity of the vasculature cells in the CNS is important for the establishment of neuronal networks and for synapse connection.
Collapse
Affiliation(s)
- SongHo Moon
- Faculty of Life and Environmental Sciences (Bioindustrial Sciences), University of Tsukuba, 1-1-1 Tenno-Dai, Tsukuba, Ibaraki, 305-8972, Japan
| | - Yuzuru Ito
- Faculty of Life and Environmental Sciences (Bioindustrial Sciences), University of Tsukuba, 1-1-1 Tenno-Dai, Tsukuba, Ibaraki, 305-8972, Japan.
- Life Science Development Department, Frontier Business Division, Chiyoda Corporation, Yokohama, Kanagawa, Japan.
| |
Collapse
|
10
|
Markowska A, Koziorowski D, Szlufik S. Microglia and Stem Cells for Ischemic Stroke Treatment-Mechanisms, Current Status, and Therapeutic Challenges. FRONT BIOSCI-LANDMRK 2023; 28:269. [PMID: 37919085 DOI: 10.31083/j.fbl2810269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/04/2023]
Abstract
Ischemic stroke is one of the major causes of death and disability. Since the currently used treatment option of reperfusion therapy has several limitations, ongoing research is focusing on the neuroprotective effects of microglia and stem cells. By exerting the bystander effect, secreting exosomes and forming biobridges, mesenchymal stem cells (MSCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and multilineage-differentiating stress-enduring cells (Muse cells) have been shown to stimulate neurogenesis, angiogenesis, cell migration, and reduce neuroinflammation. Exosome-based therapy is now being extensively researched due to its many advantageous properties over cell therapy, such as lower immunogenicity, no risk of blood vessel occlusion, and ease of storage and modification. However, although preclinical studies have shown promising therapeutic outcomes, clinical trials have been associated with several translational challenges. This review explores the therapeutic effects of preconditioned microglia as well as various factors secreted in stem cell-derived extracellular vesicles with their mechanisms of action explained. Furthermore, an overview of preclinical and clinical studies is presented, explaining the main challenges of microglia and stem cell therapies, and providing potential solutions. In particular, a highlight is the use of novel stem cell therapy of Muse cells, which bypasses many of the conventional stem cell limitations. The paper concludes with suggestions for directions in future neuroprotective research.
Collapse
Affiliation(s)
- Aleksandra Markowska
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland
| |
Collapse
|
11
|
[Relevance of COMT inhibitors in the treatment of motor fluctuations]. DER NERVENARZT 2022; 93:1035-1045. [PMID: 35044481 DOI: 10.1007/s00115-021-01237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Catechol O‑methyltransferase (COMT) inhibitors have been established in the treatment of Parkinson's disease for more than 20 years. They are considered the medication of choice for treating motor fluctuations. The available COMT inhibitors, entacapone, opicapone and tolcapone, differ pharmacokinetically in terms of their half-lives with implications for the dose frequency, in their indication requirements and in their spectrum of side effects, including diarrhea and yellow discoloration of urine. Many patients with motor fluctuations are currently not treated with COMT inhibitors and are, therefore, unlikely to receive individually optimized drug treatment. This manuscript summarizes the results of a working group including several Parkinson's disease experts, in which the value of COMT inhibitors was critically discussed.
Collapse
|